3 research outputs found

    Improved Operational Matrices of DP-Ball Polynomials for Solving Singular Second Order Linear Dirichlet-type Boundary Value Problems

    Get PDF
    Solving Dirichlet-type boundary value problems (BVPs) using a novel numerical approach is presented in this study. The operational matrices of DP-Ball Polynomials are used to solve the linear second-order BVPs. The modification of the operational matrix eliminates the BVP\u27s singularity. Consequently, guaranteeing a solution is reached. In this article, three different examples were taken into consideration in order to demonstrate the applicability of the method. Based on the findings, it seems that the methodology may be used effectively to provide accurate solutions

    NUMERICAL SOLUTIONS OF SINGULAR NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS USING SAID-BALL POLYNOMIALS

    Get PDF
    In this article, the collocation method based on Said-Ball polynomials have been used to solve the singular nonlinear ordinary differential equations of various orders numerically. An operational matrix forms of these ordinary differential equations are obtained from Said-Ball polynomial with variated relations of solution and different derivatives. The presented method reduces the given problem to a system of nonlinear algebraic equations, which removed the singularity of ordinary differential equations. Resulting system is solved using Newton\u27s iteration method to get the coefficients of Said-Ball polynomials. We obtained approximate solutions of the problem under study. Numerical results have been obtained and compared with exact and other works. The presented method gives impressive solutions, that show the accuracy and reliability of the proposed method
    corecore