9 research outputs found

    Nomenclature

    Get PDF
    ABSTRACT — Bouncing, balancing and swinging the leg forward can be considered as three basic control tasks for bipedal locomotion. Defining the trunk by an unstable inverted pendulum, balancing as being translated to trunk stabilization is the main focus of this paper. The control strategy is to generate a hip torque to have upright trunk to achieve robust hopping and running. It relies on the Virtual Pendulum (VP) concept which is recently proposed for trunk stabilization, based on human/animal locomotion analysis. Based on this concept, a control approach, named Virtual Pendulum Posture control (VPPC) is presented, in which the trunk is stabilized by redirecting the ground reaction force to a virtual support point. The required torques patterns generated by the controller, could partially be exerted by elastic structures like hip springs. Hybrid Zero Dynamics (HZD) control approach is also applied as an exact method of keeping the trunk upright. Stability of the motion which is investigated by Poincare ´ map analysis could be achieved by hip springs, VPPC and HZD. The results show that hip springs, revealing muscle properties, could facilitate trunk stabilization. Compliance in hip produces acceptable performance and robustness compared with VPPC and HZD, while it is a passive structure

    LeggedWalking on Inclined Surfaces

    Full text link
    The main contribution of this MS Thesis is centered around taking steps towards successful multi-modal demonstrations using Northeastern's legged-aerial robot, Husky Carbon. This work discusses the challenges involved in achieving multi-modal locomotion such as trotting-hovering and thruster-assisted incline walking and reports progress made towards overcoming these challenges. Animals like birds use a combination of legged and aerial mobility, as seen in Chukars' wing-assisted incline running (WAIR), to achieve multi-modal locomotion. Chukars use forces generated by their flapping wings to manipulate ground contact forces and traverse steep slopes and overhangs. Husky's design takes inspiration from birds such as Chukars. This MS thesis presentation outlines the mechanical and electrical details of Husky's legged and aerial units. The thesis presents simulated incline walking using a high-fidelity model of the Husky Carbon over steep slopes of up to 45 degrees.Comment: Masters thesi

    Control Barrier Function Based Quadratic Programs with Application to Bipedal Robotic Walking

    Get PDF
    This thesis presents a methodology for the development of control barrier functions (CBFs) through a backstepping inspired approach. Given a set defined as the superlevel set of a function, h, the main result is a constructive means for generating control barrier functions that guarantee forward invariance of this set. In particular, if the function defining the set has relative degree n, an iterative methodology utilizing higher order derivatives of h provably results in a control barrier function that can be explicitly derived. To demonstrate these formal results, they are applied in the context of bipedal robotic walking. Physical constraints, e.g., joint limits, are represented by control barrier functions and unified with control objectives expressed through control Lyapunov functions (CLFs) via quadratic program (QP) based controllers. The end result is the generation of stable walking satisfying physical realizability constraints for a model of the bipedal robot AMBER2

    Robot Locomotion Controller Generation Through Human-Inspired Optimization

    Get PDF
    This thesis presents an approach to the formal design, optimization and implementation of bipedal robotic walking controllers, with experimental application on two biped platforms. Standard rigid-body modeling is used to construct a hybrid sys- tem model of robotic walking; this model estimates the motion of the robot hardware under a given control action. The primary objective of this thesis is the construction of a control law which effects, on the robot, a periodic “walking” behavior. The pro- cess begins with examination of human walking data—specifically outputs of human walking—which provide inspiration for the construction of formal walking control laws. These controllers drive the robot to a low-dimensional representation, termed the partial hybrid zero dynamics, which is shaped by the parameters of the outputs describing the human output data. The main result of this paper is an optimization problem that produces a low-dimensional representation that “best” fits the human data while simultaneously enforcing constraints that ensure a stable periodic orbit and constraints which model the physical limitations of the robot hardware. This formal result is demonstrated through simulation and utilized to obtain 3D walking experimentally with an Aldebaran NAO robot and NASA’s prototype Leg Testbed robot

    Planar Multicontact Locomotion Using Hybrid Zero Dynamics

    Get PDF
    This thesis proposes a method for generating multi-contact, humanlike locomotion via a human-inspired optimization. The chief objective of this work is to offer an initial solution for obtaining multi-domain walking gaits containing domains with differing degrees of actuation. Motivated by the fact that locomotion inherently includes impacts, a hybrid systems approach is used. Through Lagrangian mechanics, a dynamic model of the system is derived that governs the continuous dynamics, while the dynamics during the impacts are modeled assuming perfectly plastic impacts in which the ground imparts an impulsive force on the impacting link. Using the dynamic model of the planar bipedal robot Amber 2, a seven link biped, a human-inspired optimization is presented which leverages the concept of zero dynamics, allowing for a low dimensional representation of the full order dynamics. Within the optimization, constraints are constructed based on the interaction be- tween the robot and the walking surface that ensure the optimized gait is physically realizable. Other constraints can be used to influence or “shape” the optimized walking gait such as kinematic and/or torque constraints. This optimized walking gait is then realized through the method of Input/Output Linearization. Finally, the utilization of online optimization in the form of a quadratic program increase the capabilities of simple Input/Output Linearization by introducing a notion of optimality as well as the ability to distribute torque as necessary to meet actuator requirements. Ultimately the combination of the flexability of the human-inspired optimization along with the controllers described result in not only multi-domain human-like walking, but even more importantly a tool for rapidly designing new walking gaits

    HZD-Based Control of a Five-Link Underactuated 3D Bipedal Robot

    No full text
    Abstract — This paper presents a within-stride feedback controller that achieves an exponentially stable, periodic, and fast walking gait for a 3D bipedal robot consisting of a torso, revolute knees, and passive (unactuated) point feet. The walking surface is assumed to be rigid and flat; the contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must explicitly account for the robot’s natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics (HZD), a very successful method for planar bipeds, in order to determine a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3D (spatial) bipedal walking robot. The effect of output selection on the zero dynamics is highlighted and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller. I

    Hybrid Geometric Feedback Control of Three-Dimensional Bipedal Robotic Walkers with Knees and Feet

    Get PDF
    This thesis poses a feedback control method for obtaining humanlike bipedal walking on a human-inspired hybrid biped model. The end goal was to understand better the fundamental mechanisms that underlie bipedal walking in the hopes that this newfound understanding will facilitate better mechanical and control design for bipedal robots. Bipedal walking is hybrid in nature, characterized by periodic contact between a robot and the environment, i.e., the ground. Dynamic models derived from Lagrangians modeling mechanical systems govern the continuous dynamics while discrete dynamics were handed by an impact model using impulse-like forces and balancing angular momentum. This combination of continuous and discrete dynamics motivated the use of hybrid systems for modeling purposes. The framework of hybrid systems was used to model three-dimensional bipedal walking in a general setup for a robotic model with a hip, knees, and feet with the goal of obtaining stable walking. To achieve three-dimensional walking, functional Routhian reduction was used to decouple the sagittal and coronal dynamics. By doing so, it was possible to achieve walking in the two-dimensional sagittal plane on the three-dimensional model, restricted to operate in the sagittal plane. Imposing this restriction resulted in a reduced-order model, referred to as the sagittally-restricted model. Sagittal control in the form of controlled symmetries and additional control strategies was used to achieve stable walking on the sagittally-restricted model. Functional Routhian reduction was then applied to the full-order system. The sagittal control developed on the reduced-order model was used with reduction to achieve walking in three dimensions in simulation. The control schemes described resulted in walking which was remarkably anthropomorphic in nature. This observation is surprising given the simplistic nature of the controllers used. Moreover, the two-dimensional and three-dimensional dynamics were completely decoupled inasmuch as the dynamic models governing the sagittal motion were equivalent. Additionally, the reduction resulted in swaying in the lateral plane. This motion, which is generally present in human walking, was unplanned and was a side-effect of the decoupling process. Despite the approximate nature of the reduction, the motion was still almost completely decoupled with respect to the sagittal and coronal planes

    Symmetry Method for Limit Cycle Walking of Legged Robots.

    Full text link
    Dynamic steady-state walking or running gaits for legged robots correspond to periodic orbits in the dynamic model. The common method for obtaining such periodic orbits is conducting a numerical search for fixed points of a Poincare map. However, as the number of degrees of freedom of the robot grows, such numerical search becomes computationally expensive because in each search trial the dynamic equations need to be integrated. Moreover, the numerical search for periodic orbits is in general sensitive to model errors, and it remains to be seen if the periodic orbit which is the outcome of the search in the domain of the dynamic model corresponds to a periodic gait in the actual robot. To overcome these issues, we have presented the Symmetry Method for Limit Cycle Walking, which relaxes the need to search for periodic orbits, and at the same time, the limit cycles obtained with this method are robust to model errors. Mathematically, we describe the symmetry method in the context of so-called Symmetric Hybrid Systems, whose properties are discussed. In particular, it is shown that a symmetric hybrid system can have an infinite number of periodic orbits that can be identified easily. In addition, it is shown how control strategies need to be selected so that the resulting reduced order system still possesses the properties of a symmetric hybrid system. The method of symmetry for limit cycle walking is successfully tested on a 12-DOF 3D model of the humanoid robot Romeo.PhDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133356/1/razavi_1.pd

    Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods

    Get PDF
    Robotic bipedal locomotion has become a rapidly growing field of research as humans increasingly look to augment their natural environments with intelligent machines. In order for these robotic systems to navigate the often unstructured environments of the world and perform tasks, they must first have the capability to dynamically, reliably, and efficiently locomote. Due to the inherently hybrid and underactuated nature of dynamic bipedal walking, the greatest experimental successes in the field have often been achieved by considering all aspects of the problem; with explicit consideration of the interplay between modeling, trajectory planning, and feedback control. The methodology and developments presented in this thesis begin with the modeling and design of dynamic walking gaits on bipedal robots through hybrid zero dynamics (HZD), a mathematical framework that utilizes hybrid system models coupled with nonlinear controllers that results in stable locomotion. This will form the first half of the thesis, and will be used to develop a solid foundation of HZD trajectory optimization tools and algorithms for efficient synthesis of accurate hybrid motion plans for locomotion on two underactuated and compliant 3D bipeds. While HZD and the associated trajectory optimization are an existing framework, the resulting behaviors shown in these preliminary experiments will extend the limits of what HZD has demonstrated is possible thus far in the literature. Specifically, the core results of this thesis demonstrate the first experimental multi-contact humanoid walking with HZD on the DURUS robot and then through the first compliant HZD motion library for walking over a continuum of walking speeds on the Cassie robot. On the theoretical front, a novel formulation of an optimization-based control framework is introduced that couples convergence constraints from control Lyapunov functions (CLF)s with desirable formulations existing in other areas of the bipedal locomotion field that have proven successful in practice, such as inverse dynamics control and quadratic programming approaches. The theoretical analysis and experimental validation of this controller thus forms the second half of this thesis. First, a theoretical analysis is developed which demonstrates several useful properties of the approach for tuning and implementation, and the stability of the controller for HZD locomotion is proven. This is then extended to a relaxed version of the CLF controller, which removes a convergence inequality constraint in lieu of a conservative CLF cost within a quadratic program to achieve tracking. It is then explored how this new CLF formulation can fully leverage the planned HZD walking gaits to achieve the target performance on physical hardware. Towards this goal, an experimental implementation of the CLF controller is derived for the Cassie robot, with the resulting experiments demonstrating the first successful realization of a CLF controller for a 3D biped on hardware in the literature. The accuracy of the robot model and synthesized HZD motion library allow the real-time control implementation to regularize the CLF optimization cost about the nominal walking gait. This drives the controller to choose smooth input torques and anticipated spring torques, as well as regulate an optimal distribution of feasible ground reaction forces on hardware while reliably tracking the planned virtual constraints. These final results demonstrate how each component of this thesis were brought together to form an effective end-to-end implementation of a nonlinear control framework for underactuated locomotion on a bipedal robot through modeling, trajectory optimization, and then ultimately real-time control.</p
    corecore