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ABSTRACT

This thesis proposes a method for generating multi-contact, humanlike locomo-

tion via a human-inspired optimization. The chief objective of this work is to offer

an initial solution for obtaining multi-domain walking gaits containing domains with

differing degrees of actuation. Motivated by the fact that locomotion inherently in-

cludes impacts, a hybrid systems approach is used. Through Lagrangian mechanics, a

dynamic model of the system is derived that governs the continuous dynamics, while

the dynamics during the impacts are modeled assuming perfectly plastic impacts in

which the ground imparts an impulsive force on the impacting link.

Using the dynamic model of the planar bipedal robot Amber 2, a seven link biped,

a human-inspired optimization is presented which leverages the concept of zero dy-

namics, allowing for a low dimensional representation of the full order dynamics.

Within the optimization, constraints are constructed based on the interaction be-

tween the robot and the walking surface that ensure the optimized gait is physically

realizable. Other constraints can be used to influence or “shape” the optimized

walking gait such as kinematic and/or torque constraints. This optimized walking

gait is then realized through the method of Input/Output Linearization. Finally,

the utilization of online optimization in the form of a quadratic program increase

the capabilities of simple Input/Output Linearization by introducing a notion of

optimality as well as the ability to distribute torque as necessary to meet actuator

requirements. Ultimately the combination of the flexability of the human-inspired

optimization along with the controllers described result in not only multi-domain

human-like walking, but even more importantly a tool for rapidly designing new

walking gaits.
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NOMENCLATURE

HC Hybrid Control System

Γ Directed Graph

D Domain describing the set of admissible configurations

U Set of admissible controls

S Set of guards

∆ Set of reset maps

FG Control system

V Set of vertices in the directed graph Γ

E Set of edges in the directed graph Γ

v A specific vertex in the set of vertices

e A specific edge in the set of edges

R Set of real numbers

u vector of actuator torques

oa Over actuation

fa Full actuation

ua Under actuation

ts Toe Strike

hl Heel lift

hs Heel strike

Q Generalized robot coordinates

Qr Robot body coordinates

sh Stance heel

st Stance toe
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nsh Nonstance heel

nst Nonstance toe

C Set of possible contacts

coa Contact set for over actuation

cfa Contact set for full actuation

cua Contact set for under actuation

n Total number of degrees of freedom

ncv Number of holonomic constraints in the domain v

mr Number of actuators on the robot

TQ Tangent Bundle

F Contact wrench of forces and moments

dfa Constant used to align time with zero at the start of the fully

actuated domain

dua Constant used to align time with zero at the start of the under

actuated domain

Av Unilateral constraints on the domain v

sor Denoting a source domain

tar Denoting a target domain

Roa→fa Relabeling matrix to map over actuated domain to fully

actuated domain

Rfa→ua Relabeling matrix to map fully actuated domain to under

actuated domain

Rua→oa Relabeling matrix to map under actuated domain to over

actuated domain
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α Matrix of controller parameters for the over actuated domain

βfa Matrix of controller parameters for the fully actuated domain

βua Matrix of controller parameters for the under actuated domain

A Decoupling matrix for Input-Output Linearization control law

yoa Vector of control outputs for over actuation

yfa Vector of control outputs for full actuation

yua Vector of control outputs for under actuation

τ Parameterization of time

ε Controller gain dictating the rate of convergence

Zua A full zero dynamics surface for the under actuated domain

PZoa A partial zero dynamics surface for over actuation

Zfa A full zero dynamics surface for full actuation

ξv,1 The position of the hip as a zero dynamics coordinate for a domain v

ξv,2 The velocity of the hip as a zero dynamics coordinate for a domain v

M Inertia matrix

C Coriolis matrix

G Gravity vector

QP Quadratic Program
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1. INTRODUCTION

The long standing, implicit goal of robotics has been to design and control robots

to look and behave like humans. Great strides have been made in robotics re-

search that have produced arms and hands capable of anthropomorphic motions

with strength comparable to that of humans. In short, the development of robotic

grasping and manipulation has greatly eclipsed robotic bipedal locomotion. One ex-

ample of this is the Sandia Hand [37] produced by Sandia National Labs. The Sandia

Hand possess incredible dexterity comparable to that of humans. In contrast, there

are a relatively small number of bipedal robots capable of walking reliably, none of

which have been capable of walking with anything other than slow, simple gaits.

This is, however, not due to a lack of effort, as bipedal robots have been walking

for quite some time. Initially it was shown that dynamic walking could be obtained

without the use of control at all [26, 10]. The fact that passive approaches could be

used to obtain walking is a testament to the fact that there is a great deal of passive

energy stored in dynamic walking, and if harnessed correctly and paired with good

control, dynamic walking can be achieved with minimal input.

In the field of bipedal locomotion control, a large number of novel approached have

been developed. One of the more popular approaches has been to design controllers

based on the zero-moment point(ZMP) [22, 57]. The ZMP approach has been success-

full in producing surprisingly robust locomotion on a number of humanoid platforms

including Honda’s Assimo [25], the entire series of HRP humanoids from Kawada

Industries(see HRP-2 in [55]), as well as countless other humanoid robots(see [21] for

another example). Zero-moment point control is based upon precisely planned gaits

centered around balancing the forces and moments at the feet in order to keep the
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feet flat.

Another control strategy similar to ZMP based control is capture point control

[24, 31]. Capture point control is based upon the assumption that there is a region on

the stepping surface in which, if the swing foot is placed, the robot can successfully

stop. Capture point methods have certain inherent characteristics which make them

especially powerful, that is the ability to directly calculate whether or not it is feasible

for the robot to slow down and stop, or if the robot must prepare for a fall. As

with ZMP based control, capture point has been successfully realized on multiple

platforms including the humanoid M2V2 [32]. ZMP and capture point control are

part of a large family of quasi-static approaches to bipedal locomotion, of which the

major downfall is that the resulting walking tends to be somewhat inefficient.

Other more mathematically formal methods that have been developed more re-

cently include geometric reduction [16, 46], control symmetries [49], and hybrid zero

dynamics [4, 3, 16]. These control approaches are designed to allow for formal no-

tions of stability for locomotion. Geometric reduction and control symmetries have

yet to be realized experimentally; however, hybrid zero dynamics based control has

seen great success on multiple platforms such as RABBIT [9], MABEL [52], ATRIAS

[20], and Amber 1 [36], the point footed predecessor to the robot discussed in this

thesis. Extraordinarily, MABEL has also achieved human-like running using control

based on hybrid zero dynamics [52]. RABBIT, MABEL, and Amber 1 are all 2-D

planar bipeds with point feet; therefore, they are only able to take the notion of

being human-like so far. Controllers designed based on hybrid zero dynamics have

been shown to work on footed robots as well, such as the 2-D footed biped Amber 2

which is the robot model used to produce the results in this thesis and can be seen in

Figure 1.1. Human-inspired hybrid zero dynamics based controllers have also been

shown to give dynamic walking in 3 dimensions as well, as demonstrated on the NAO
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humanoid robot [11, 4].

Nearly all of the locomotion approaches discussed thus far, despite their suc-

cess, fail to address one very important aspect of human walking, and that is the

fact that, when humans walk, there are often multiple points in contact with the

ground at a given time. Furthermore during locomotion the contact points are

constantly changing. This multi-contact problem along with having to model the

impacts with the environment are just two of the many issues that make physically

realizable human-like walking extremely difficult to achieve both in simulation or

experimentally [44, 45, 46]. A small amount of multi-contact theory has been done

in [40] and [61]; however, these only address multi-contact points for full body con-

trol during static behaviors which is very different than controlling a biped through

multi-contact behaviors while maintaining the dynamic stability inherent to human

locomotion. In [25], multiple contacts are dealt with for bipedal balancing, but not

for dynamic walking which is of course very different than balancing.

Not only does the human gait consist of multi-contact phases (formally referred

to as over actuation), but there are also phases of both full actuation and under

actuation. Full actuation and under actuation are two cases that are encountered

much more often in controls and thus have been given far more attention than the

control of over actuated systems. Under actuation has been studied in the context of

bipedal walking for some time in cases such as point footed walking in [17, 41, 59, 1]

to name just a few. The phase of footed human-like walking that is under actuated

is the portion of the gait in which the stance toe is the only point in contact with

the ground and the stance heel is lifting. In [8], regulation of the ZMP point is

used to achieve the under actuated heel lift domain. Unfortunately, over actuated

systems have not been studied as extensively as have systems with full and under

actuation. An over actuated system is one which has more actuators than degrees of

3



Figure 1.1: Amber 2 is a footed, planar robot designed in AMBER Lab at Texas
A&M University. A SolidWorks render (left) is shown as well as the actual robot
(right).

freedom. The difficulties that arise in the control of these systems are that there are

potentially an infinite number of ways to apply actuation that will achieve a given

control objective. In this case, the goal becomes how the control objective can be

met in an optimal manner.

When designing controllers for human-like locomotion, the control strategy is

often to first disect the human gait into phases and design the controllers based

on these phases. These phases are generally based on the impacts and contact

conditions, however, bipedal robotic locomotion has been achieved by using a number

of different phase breakdowns. The most simple domain breakdown which has been

studied extensively is the single phase, compass gait biped [48, 12, 15]. As the

complexity of the model is increased, often so is the number of phases, referred

to as domains for the purposes of this thesis. The point footed model with knees

and feet has been considered as both a single domain or as two domains in which
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oa

Toe Strike

fa

Heel Lift

ua

Heel Strike

1

Figure 1.2: Hybrid domain structure for 3-Domain multi-contact walking.

the swing phase is divided into pre and post knee lock [45]. Adding feet allows

for an even more complex and humanlike domain breakdown by having as many

as four [44] or even five [45] domains. The domain breakdown considered for this

thesis is shown in Figure 1.2 and consists of three domains including a multi-contact

phase(over actuation), a single support phase with a flat stance foot(full actuation),

and a single support phase in which the robot is rotating about the stance toe while

the nonstance leg is swinging(under actuation).

The remainder of this thesis will present a method for achieving multi-phase,

planar bipedal locomotion including phases of under actuation, full actuation, and

over actuation, as well as a simple method for navigating through over actuated

domains with minimal actuator requirements. Additional considerations that must

be considered when designing controllers for bipedal locomotion are ground contact

forces, usually referred to as lagrange multipliers in bipedal locomotion [56]. When

designing controllers for locomotion, one must take care in ensuring that the forces,

enforced as holonomic constraints, are indeed physically realizable. For example in
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considering the 2D planar robot with feet, during the fully actuated phase, one must

make sure that the stance foot does not roll on either the heel or toe prematurely

[16].

This thesis leverages a hybrid systems approach to bipedal walking as well as

the principle of hybrid zero dynamics. The control design approach is inspired by

data gathered in human walking experiments. In order to achieve 3-domain human-

like walking, a human inspired optimization will be used to design surfaces that

have encoded in them the desired behavior of the robot. Using these surfaces and

the control algorithm Input/Output(IO) Linearization [39], the human-inspired op-

timization will be shown to be a an exceptional tool for gait design due to the ease

with which gaits can be altered while remaining physically realizable. Also shown

will be a method for overcoming various issues inherent to over actuated control.

The remainder of this thesis will be structured as follows. Chapter 2 will intro-

duce hybrid systems and discuss how the hybrid systems approach is useful in mod-

eling multi-domain systems with both continuous and discrete dynamics. Chapter

3 discusses the dynamic model of Amber 2 as well as the method used for model-

ing impacts. Chapter 4 details how the use of motion capture data obtained from

human walking experiments is used in human-inspired control. In Chapter 5, a

human-inspired optimization is introduced which utilizes the data from the walking

experiments discussed in Chapter 4. Chapter 6 shows how online optimization via

quadratic programs can be used to introduce a notion of optimality to the human in-

spired controllers, and in Chapter 7, simulation results from a walking gait obtained

from the human inspired optimization will be presented as well as a short discussion

of future work.
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2. HYBRID SYSTEMS

Due to the fact that walking robots are systems with impacts, a hybrid systems

approach will be used; however, other methods are available for modeling such sys-

tems such as differential inclusions [47]. Hybrid systems are defined as systems with

both continuous and discrete dynamics; therefore, it is natural to use a hybrid sys-

tems approach when modeling walking robots. In addition it is a well studied area

even in the context of bipedal robots [60, 59] and has been shown to yield successful

experimental results on both planar and 3 dimensional robots [36, 4].

The formal model of a bipedal robot with a multi-contact multi-domain walking

gait follows the general development given in [44], In particular, consider a hybrid

control system model given by a tuple:

HC = (Γ, D, U, S,∆, FG), (2.1)

where

• Γ = (V,E) is a directed graph, where V is the set of vertices and E ⊂ V ×V is

the set of edges; an edge e ∈ E can be written as e = (i→ j), and the source

of e is sor(e) = i and the target of e is tar(e) = j.

• D = {Dv}v∈V is a set of domains, where Dv ⊆ Rnv ×Rmv is a smooth subman-

ifold of Rnv × Rmv (with Rmv representing conrol inputs),

• U = {Uv}v∈V , where Uv ⊂ Rmv is a set of admissible controls,

• S = {Se}e∈E is a set of guards, where Se ⊆ Dsor(e),
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• ∆ = {∆e}e∈E is a set of reset maps, where ∆e : Rnsor(e) → Rntar(e) is a smooth

map,

• FG = {(fv, gv)}v∈V , where (fv, gv) is a control system on Dv, i.e. , ẋ =

fv(x) + gvu for x ∈ Dv and u ∈ Uv.

The remainder of this section will be devoted to defining the specific elements of this

hybrid system in the context of the multi-domain walking gait of interest.

Graph Structure. For the multi-contact walking gait of interest, the graph Γ

of the hybrid control system HC is pictured in Figure 1.2. In particular, the discrete

structure of the walking gait implies that Γ is a directed cycle, with vertices and

edges given by:

V = {oa, fa, ua} (2.2)

E = {ts = (oa→ fa), hl = (fa→ ua), hs = (ua→ oa)}.

where in this case the vertices (also referred to as domains) are labeled by the type of

actuation each of these domains possess (as will be discussed later), i.e., the vertices

oa, fa and ua correspond to over, full and under actuation, respectively.

Coordinates, Constraints and Actuation Types. The basic terminology re-

lated to coordinates, constraints and actuation types that will be necessary to define

the hybrid control system (2.1) modeling a planar bipedal robot exhibiting a multi-

domain walking gait will now be introduced. In particular, due to the multi-domain

structure of the hybrid system model, this involves considering the generalized coor-

dinates of the robot: Q = R2× SO(2)×Qr, where Qr is the (relative) configuration

space of the robot characterized by the relative angles of the system. It is assumed

that a subset of Qr are chosen so that there is a well-defined coordinate system,
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i.e., so that Qr is embeddable in Rnr , Qr ⊂ Rnr , with coordinates expressed as

qr ∈ Qr. The generalized coordinate space Q ⊂ Rn, can be expressed in coordinates

as q = (pT , ϕ0, qr)
T , where p = (px, pz)

T is a position and ϕ0 ∈ SO(2) is an angle

expressing the position and orientation of a reference frame, Rb, attached to the body

of the robot relative to a world frame R0.

Contact Conditions: For each vertex of the graph Γ, there are associated contact

points interacting with the physical world that dictate multi-contact conditions in

the robot. This is represented by a set of contact points C = {sh, st, nsh, nst},

indicating which points on the robot can, or are, interacting with the world. Since

the robot model is that of a planar robot locomoting, one need only consider the

contact points associated with the feet, i.e., sh is the stance-heel, st is the stance-

toe, nsh is the non-stance heel and nst is the non-stance toe. Associated with the

indexing set of contact points are two types of constraints: unilateral and holonomic.

Unilateral constraints, denoted by hv for v ∈ V , are a vector-valued function that

dictates the admissible configurations of the system on each domain by codifying

which contact points are not on the ground and must stay above the ground as well

as points that are in contact with the ground and must continue pressing into the

ground. Conversely, holonomic constraints, denoted by ηv for v ∈ V , is a vector-

valued function encoding which contact points are in contact with the ground and,

therefore, must be held constant.

Example 1 To provide a specific example, for the domain structure considered in

this thesis (see Figure 1.2) there are the following constraints for each domain:

• For v = fa ∈ V , hfa(q) consists of the vertical reaction force at the stance heel,

and ηfa(q) ∈ R3 consists of the x, z position of the stance toe together with the

z position of the stance heel.
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• For v = ua ∈ V , hua(q) consists of the z position of the non-stance heel, while

ηua(q) ∈ R2 consists of the x, z position of the stance toe.

• For v = oa ∈ V , hoa(q) consists of the z position of the stance toe, while

ηoa(q) ∈ R4 consists of the x, z position the stance heel and the x, z position

of the stance toe.

Actuation Type: With notions of coordinates and constraints in hand, explicit

definitions of what is meant by full, over, and under actuation are needed. First,

let mr denote the number of actuators of the robot, and ncv denote the number of

holonomic constraints in a given domain. For a domain, v ∈ V , the type of actuation

is

• Fully-actuated if mr = n− ncv ,

• Under-actuated if mr < n− ncv ,

• Over-actuated if mr > n− ncv .

Similarly, Vfa is defined to be the set of full-actuated domains, Vua to be the set of

under-actuated domains, and Voa to be the set of over-actuated domains.

Example 2 For a floating base model (See Chapter 3) of AMBER 2, n = 9 and

mr = 6. For v = oa, ncoa = 4 thus n − ncoa = 9 − 4 = 5 < 6 and the robot is over-

actuated. For v = fa, ncfa = 3 thus n−ncfa = 9− 3 = 6; therefore, the robot is said

to be fully-actuated. For v = ua, ncua = 2 thus n− ncua = 9− 2 = 7 > 6; therefore,

the robot is under-actuated. Note that it will be useful to refer to this example when

reading the control section where controllers will be developed specifically based upon

the type of actuation.
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3. ROBOT MODELING

Modeling bipedal robots is similar to modeling any kinematic chain in that they

are simply a series of rigid bodies connected by a series of prismatic and/or rotational

degrees of freedom. Two popular techniques for modeling these systems include

The Denavit-Hartenberg [42] method and the method of Exponential Twists [28].

Both approaches are much less laborious than the standard Newtonian method,

and are equally viable. For high degree of freedom systems, numerical techniques

such as Spatial Vector Algebra [13] become the favored approach due to the slow

computational speed of the closed form dynamics.

The remainder of this chapter will discuss all aspects of the bipedal robot model

by first deriving in detail the process of using Lagrangian mechanics to obtain the

dynamic model for a planar biped with feet. It will then be shown how to calculate

and apply both unilateral and holonomic constraints as well as verify that the con-

straints are satisfied. The discrete phase dynamics will then be derived, followed by

an explanation of the impact map and relabeling matrix.

3.1 Floating Base Model

The bipedal robot model of importance for this paper is a seven link, nine degree

of freedom kinematic chain. Some choose to model bipeds as being pinned to the

ground at one contact point; however, in order to simplify the overall modeling

process and to strive for maximum generality, the biped for this paper will be modeled

as floating with nine degrees of freedom (DOF) in which certain contact constraints

will be shown later to reduce the mechanical degrees of freedom. In order to do this,

it is first necessary to establish a coordinate frame that is fixed to a point on the

robot, denoted Rb. This body fixed frame is referenced with respect to a fixed world
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Figure 3.1: In a floating base model, the robot is modeled as a floating chain of links
with a body fixed frame Rb referenced relative to a fixed world frame R0.

frame, R0. The two orthonormal axes of R0 denoted as (x̂, ẑ) are oriented such that

ẑ is aligned with gravity and pointing upward. The frames R0 and Rb are shown in

Figure 3.1 for clarification. In order to express the position and orientation of Rb

with respect to R0, pb = {px, pz} ∈ R2 is defined as the Cartesian position of the

body fixed frame, and ϕ0 ∈ SO(2) being defined as the orientation. Letting qr ∈ Qr

be a vector of body coordinates, it follows that q = {pb, ϕ0, qr} ∈ Q represent a set

of generalized coordinates for the robot. For the robot model here, that of AMBER

2, the configuration space Qr is given by qr = {qsa, qsk, qsh, qnsh, qnsk, qnsa}. These

coordinates are illustrated in Figure 3.2. Having established a set of generalized

coordinates for the robot, a Lagrangian formulation of the dynamics can now be

derived. The robot Lagrangian L(q, q̇) : TQ→ R is of the form,

L(q, q̇) = T (q, q̇)− V (q) (3.1)
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Figure 3.2: The generalized coordinates for the 2 dimensional bipedal robot.

where T (q, q̇) is the kinetic energy and V (q) is the potential energy [51, 42, 28]. The

kinetic energy, T (q, q̇), is given by,

T (q, q̇) =
1

2
q̇TM(q)q̇ (3.2)

where M(q) is the inertia matrix. The equations of motion are then given by substi-

tuting (3.1) into Lagrange’s equations [28],

d

dt

δL

δq̇
− δL

δq
= Bu (3.3)

where B is the torque distribution matrix which has a rank equal to that of the

number of actuated joints, and u is a vector of combined actuator torques. Equation
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(3.3) leads to the standard form for the equations of motion for a robot,

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu (3.4)

where C(q, q̇) is the coriolis matrix, and G(q) is a vector describing the effects of

gravity.

Without the presence of ground contacts, the dynamics of the system are de-

scribed by (3.4); however, in the presence of constraints introduced by contacts with

the environment, the dynamical model needs to be updated to include these con-

straints. The following section will introduce the notion of holonomic constraints as

well as show how to formally include them into the dynamical model.

3.2 Constraints

During times of single and double support, the ground acts as a constraint on

the allowable configurations of the system, leading to such constraints to be also

referred to as kinematic constraints. These types of constraints are known formally

as holonomic constraints [28], which actually constrain the kinematic degrees of

freedom of the system. The dynamical model for each contact set can be obtained

by imposing these holonomic constraints to the unpinned dynamical model described

by (3.4).

3.2.1 Holonomic Constraints

In locomotion, humans use the interaction with ground to both accelerate and de-

celerate. For a bipedal robot and a given domain v ∈ V , this contact is defined to oc-

cur at a small number of points termed contact points denoted by cv = {c1, c2, . . . , ck}

where each point ci is associated with a point on the robot in contact with the en-

vironment. A holonomic constraint as briefly introduced in the previous chapter is
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then defined as ηv for cv ∈ C where for the contact to be maintained the following

must be true,

ηv(q, q̇) = constant, (3.5)

with q ∈ Q. For ground contact constraints as seen in bipedal walking, the constraint

is expressed as

ηv(q, q̇) = Jv(q)q̇ = constant (3.6)

where Jv(q) is the jacobian of the constraint poa(see Example 3).

In order to impose these constraints on the dynamical model, (3.4) is modified to

contain the contact wrench according to the principle of virtual work as demonstrated

in [50, 28],

M(q, q̇)q̈ +H(q, q̇) = Bu+ JTv (q)Fv(q, q̇, u), (3.7)

where for simplicity, H = C(q, q̇)q̇ + G(q) from (3.4). Fv(q, q̇, u) in (3.7) is known

as a Lagrange multiplier and Fv(q, q̇, u) is a multidimensional vector of forces and

moments, also called a wrench. In order to fully define the model, the holonomic

constraint is differentiated twice which allows the wrench to be solved [16, 44],

J̇v(q, q̇)q̇ + Jv(q)q̈ = 0. (3.8)
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Combining (3.8) and (3.7), the contact wrench F (q) can be solved yielding,

Fv(q, q̇, u) = −(Jv(q)M
−1(q)Jv(q)

T )−1(J̇v(q, q̇)q̇+ (3.9)

Jv(q)M
−1(q)(Bu−H(q, q̇))),

where the wrench results in a vector with three forces and three moments for 3-

dimensional bipeds and two forces and one moment for 2-dimuensional bipeds. For

the 2-dimensional system being considered here the resulting wrench is,

Fv,i(q, q̇, u) = (F x, F z,My)T i ∈ cv (3.10)

It is important to note that Jv(q) must have full row rank. The following example

will help to better clarify the specification of the holonomic constraint(s) for a given

domain.

Example 3 Consider the domain of over actuation(See Figure 1.2) where the stance

heel and nonstance toe are in contact with the ground and the robots feet are rotating

about each contact point. For this domain, coa = {sh, nst}. Consider the frames

Rsh and Rnst located at both the stance heel and nonstance toe with each frames

Cartesion position with respect to the world frame denoted by psh = (xsh, zsh)
T and

pnst = (xnst, znst)
T . Each is then grouped together yielding poa = (pTsh, p

T
nst)

T . This is

then differentiated yielding Joa = ∂poa/∂q which completes the constrained dynamic

model for the double support domain in (3.7)

For convenience, (3.7) can be written as a control system of the form ẋ = fv(x) +
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gv(x)u where x = (q, q̇)T and,

fv(q, q̇) =


q̇

M−1(q)((JTv (q)Ξ(q)Jv(q)M
−1(q)

−I)H(q, q̇)− JTv (q)Ξ(q)J̇v(q, q̇)q̇)

 (3.11)

gv(q) =

 0

M−1(q)(I − JTv (q)Ξ(q)Jv(q)M
−1(q))B

 , (3.12)

where Ξ(q) = (Jv(q)M(q)−1JTv (q))−1 for simplicity

3.2.2 Unilateral Constraints

Another type of constraint, known as a unilateral constraint, will be used to

signify the boundary of certain domains as well as force based constraints that further

restrict the set of admissible configurations. Given a particular domain, i.e. a v ∈ V

and a contact set cv, constraints are used to prevent the robot from pulling against

the ground by ensuring F z
v,i(q, q̇, u) ≥ 0 where Fv,i(q, q̇, u) for i ∈ cv is a contact

wrench. Coupling the force based constraints with the constraint on the domain,

hv ≥ 0, which for domains in which an impact occurs denotes the height of impacting

points and denotes the vertical reaction force of the stance heel for the domain of

full actuation (i.e. the heel is lifting), the unilateral constraints are given by,

Av(q, q̇, u) =

F z
v,i(q, q̇, u)

hv(q)

 ≥ 0. (3.13)

3.3 Modeling Impacts

In bipedal robotics as well as other areas of robotics, contact with the environ-

ment is unavoidable. In certain areas of robotics it may be possible to ignore such
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impacts if the impacting velocity is relatively low thus having a small effect on the

overall dynamics of the system. With locomotion, however, the impacts can have a

stabilizing effect since they remove energy from the system.

One of the more popular methods for modeling impacts is to assume elastic

impacts [58, 33]. Though this may be a somewhat simple approach, it is dependent

on guessing coefficients desrcribing the the elasticity of the walking surface. A second

method for modeling impacts is to model them as inelastic collisions, which is the

approach that will be used in this paper and has been used extensively [3, 43] and is

derived in detail in [59].

In order to model impacts as plastic collisions, the force due to the impact is as-

sumed to be an impulse which acts over an infinitesimal time interval. This impulse,

denoted δf , will result in a discrete jump in the velocities of the system; however,

the angles of the system will be continuous through the impact. It is important to

note that this method requires prior knowledge of the contact points post impact.

Beginning with the constrained dynamical in (3.7) model and adding in an impulse

wrench yields,

M(q)q̈ +H(q, q̇) = Bu+ JTv (q)δfv, (3.14)

where Jv is derived in the same way as in Example 3. Using the assumption that

the robots actuators do not produce impulsive torques, (3.14) simplifies to,

M(q)q̈ = JTv (q)δf. (3.15)

Integrating (3.15) yields the following equation in terms of the reaction wrench, Fimp,
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the pre impact joint angles, and the pre and post impact joint velocities,

M(q)(q̇+ − q̇−) = JTv (q)Fimp, (3.16)

where q− and q+ are the pre and post impact joint velocities, respectively, and Fimp

is obtained by integrating the impulse over the duration of the impact and assuming

no rebound or sliding with,

Fimp =

∫ t+

t−
δf(τ)dτ. (3.17)

It is clear that in (3.16) both q̇+ and Fimp are unknown. Another constraint is needed

in order to make the equation solvable. To do this, certain assumptions about the

impact must be assumed even before the impact occurs. The constraint equation

required to complete the model again comes from the fact that the points impacting

the ground are to have zero post impact velocity, i.e.

Jv(q)q̇
+ = 0 (3.18)

where Jv is the jacobian of the constraints to be applied post impact. To apply this

constraint, some information about the impact is assumed in order to know exactly

what Jv needs to be. This can be clarified by the following example.

Following Example 3 and using (3.16), both the post impact velocities and the

impulsive forces imparted on the robot by the contact surface can be obtained.
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Rearranging the two equations yields,

 q̇+

Fimp

 =

M(q) −Jv(q)

Jv(q) 0


−1 M(q)q̇−

0

 (3.19)

Once the post impact velocities have been calculated, it is also necessary to verify

that post-impact state of the system is consistent with the holonomic constraints

being applied and the post impact state belongs to the domain of admissibility.

3.4 Reset Map

When modeling bipedal robots, it is common to consider the robot as having a

stance and nonstance leg rather than a right and left leg. At a prespecified point in

the gait(tyically at an impact), the angles are relabeled and the stance leg becomes

the nonstance leg and vice versa. Consider a source domain Dsor and target domain

Dtar as well as a pretransition state x− that is on the guard of Dsor, i.e. x− ∈

(Ssor ∩Dsor). The state x− = (q−, q̇−)T is mapped to a state on the target domain

x+ ∈ Dtar by,

x+ = ∆sor→tar(x
−) (3.20)

where ∆sor→tar represents the application of the impact map and the relabeling

matrix. Specifically, ∆sor→tar(x
−) is,

∆sor→tar(q
−, q̇−) =

Rsor→tar 0

0 Rsor→tar


 q−

P (q−, q̇−),

 (3.21)

where q− and q̇− are vectors of the pre impact positions and velocities and P (q−, q̇−)

is a vector of the post impact velocities and are computed from (3.19) and isolated
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from Fimp using the Schur Complement [62],

P (q−, q̇−) =
(
I −M−1(q−)JTtar(q

−)(Jtar(q
−)M−1(q−)JTtar(q

−))−1Jtar(q
−)
)
q̇− (3.22)

The relabeling matrix Rsor→tar is used to swap the stance and nonstance legs. For

the walking discussed in this thesis, the legs are swapped at heel strike, thus the

relabeling matrix for sor = ua and tar = oa is,

Rua→oa =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 1 1 1 −1 −1 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0



(3.23)

while the relabeling matrices Roa→fa and Rfa→ua are simply the identity matrix

because no leg swapping occurs during those domain transitions.

3.5 Hybrid System Construction

In this section a hybrid system is constructed using a Lagrangian, a directed cycle,

a hybrid model, and a domain breakdown. Recall in Section 3.1 the Lagrangian model

was developed for the robot, and along with the holonomic constraints from Section

3.2.1, a control system, FG, of the form ẋ = fv(x) + gv(x)u is constructed in which

fv(x) and gv(x) are given in (3.11). With a control system and the contstraints
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described in (3.13), the domain of admissibility is expressed as,

Dv = {(q, q̇, u) ∈ TQ× Rmv : Av(q, q̇, u) ≥ 0} (3.24)

The guard, Sv is simply the boundary of a domain with the vector field pointing

outside of the domain. For a particular edge, e ∈ E,

Sv = {(q, q̇) ∈ Dv : hv = 0 and ḣv < 0} (3.25)

The impact map, ∆sor→tar(q, q̇) : TQ → TQ, derived in detail in Section 3.3 relies

on information about the post impact contact conditions and ultimately maps a

preimpact state on a source domain to a post impact state on a target domain as

shown in (3.20). Each compenent defined here is an element in the tuple describing

the hybrid control system for the 3-domain walking considered and when put together

the hybrid system takes takes the form defined in Equation (2.1). It is important to

understand that for the 3-domain walking discussed in this thesis, the impact map

is only applied at heel strike and toe strke. At the transition from full actuation to

under actuation there is no impact; therefore, the impact map is not applied at this

transition.
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4. HUMAN INSPIRED CONTROL

In this section, a notion of human inspired control will be introduced, leveraging

knowledge obtained via the analysis of human walking data obtained from motion

capture experiments. It will be shown how the human data directly inspires human

outputs that can be used in control to achieve human-like locomotion. Controllers

utilizing Input-Output Linearization will also be introduced that will allow robot

outputs to be driven to referrence trajectories inspired by the human walking exper-

iments, thus resulting in human-like motion.

4.1 Human Walking Experiments

Human locomotion has been studied extensively in the literature (see [34, 54,

18, 6, 19, 35]) and is a natural place to look when designing controllers for bipedal

robots. For the purposes of this thesis, a series of motion capture experiments were

conducted [5] in which 19 LED sensors were fixed to the body of each test subject

in specific locations on the lower and upper body as each subject walked a straight

line as in Figure 4.1. Each subject performed 11 trials and there were a total of 9

subjects consisting of 3 females and 6 males. The age of the subjects ranged from

17 to 77, heights from 161-189 centimeters, and weights from 47.6-90.7 kg. Each

subject was instructed to walk normally at a comfortable pace. The experiments

were conducted using the Phase Space System which captured data at 480 frames

per second from 12 cameras each of which was accurate to 1 millimeter.

4.2 Human-Inspired Outputs

Although humans seem to be the most logical place to look for intuition in bipedal

robots, human data has not played a large role in robotic walking to date. Works
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Figure 4.1: Human data experiments were conducted in which 9 subjects walked
a straight line as position data was taken using LED sensors placed at strategic
locations [5].

such as [4, 36, 46, 45] and the multi-contact gaits shown here are an attempt to span

the gap separating the walking seen on bipedal robots today and the highly dynamic

gaits humans exhibit. The analysis of the human data showed that there are certain

combinations of the joint angles that accurately represent human walking(see [5]).

These outputs are shown in Figure 4.3. Using the data and these simple output

relationships, it was shown in [5] that the solution to a linear mass spring damper

system, a function of relatively simple form, could fit many of the human outputs

with a high correlation and thus could be used to define the desired behavior for

corresponding robot outputs. This function, termed the canonical human walking

function for its simple form and ability to accurately represent human walking, is

simply the solution to a linear mass spring damper system and is thus a simple
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Figure 4.2: Human data taken from walking exeriments. The data sets plotted are
for the human inspired outputs shown in Figure 4.3.

combination of sines, cosines, and exponentials,

ycwf (α) = e−α4t(α1cos(α2t) + α3sin(α2t)) + α5. (4.1)

In addition, it is shown in [30] that human data for ascending and descending stairs

could be represented equally as well using the solution to a linear mass spring damper

system with constant sinusoidal excitation. This function was termed the extended

canonical human walking function,

yecwf (α) = e−α4t(α1cos(α2t) + α3sin(α2t)) (4.2)

+α5cos(α6t) +
2α4α5α6

α2
4 + α2

2 − α2
6

sin(α6t) + α7.

The principle gain from using these functions to define desired trajectories comes not

from fitting human data with a high correlation, but from the fact that the combina-

tion of sines, cosines, and exponential terms together create a flexible function that

is well behaved even outside the desired region of operation. Using arbitrarily high
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Figure 4.3: Outputs used in the control design. Some outputs such as the knee angles
are body coordinates while some are combinations of body coordinates such as the
torso angle, the angle between the thighs, and angle of the nonstance foot with the
ground.

order polynomials, one could fit any set of human data. Bezier polynomials have in

fact successfully been used to yield planar, humanlike bipedal walking and running

on both RABBIT, MABEL, and Atrias [9, 52, 20]. In order to sufficiently represent

all of the human outputs, however, polynomials of order 9 or possibly higher must

be used. This results in a curve with very good behavior inside the designed region

of operation and very poor behavior even slightly outside the desired region. This

can be seen in Figure 4.4 in which a 9th order polynomial and the human canon-

ical walking function are used to fit the human data for the nonstance knee over

the course of one step. Also plotted in Figure 4.4a is the same data fit using the

canonical human walking function. Comparing the fits in Figure 4.4 reveals the ma-

jor advantage of using the canonical walking function instead of polynomials. The
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Figure 4.4: Non-stance knee data from a single step(heel strike to heel strike) fit
with the canonical walking function(left) and a 9th order polynomial(right). Both
functions fit the data very well, yet the polynomial quickly blows up outside the data
bounds while the canonical human walking function remains well behaved.

9th order polynomial does produce a slightly better fit to the data; however, the

behavior of the polynomial even slightly outside the data is poor. It is clear that

the canonical walking function fits the data well and behaves reasonably well outside

the data. This is an invaluable characteristic of a referrence trajectory due to the

inevitable fact that during robotic locomotion, unexpected events will undoubtedly

occur that will take the robot outside the designed region of operation. Ultimately

the behavior of these referrence signals outside the designed region could mean the

difference between a light stumble or a major failure capable of breaking a robot.

Other function forms have also been used including Gaussian curves and sinusoids

[44] to name a few. Though sinusoids and Gaussian’s may not be subject to the

same downfalls as polynomials, these curves are only able to fit a small number of

human outputs and add little to the basic understanding of how humans behave

during locomotion. With the introduction of the canonical and extended canonical
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Figure 4.5: Human data for the stance and nonstance knees and the non-stance foot
angles on the left and the hip angle and stance ankle angle on the right as well as
the fits to each one with the canonical walking function.

walking functions in [5], it was shown that humans behave like mass spring damper

systems while locomoting, a very important find considering it has been long known

that humans do not behave like rigid systems [27, 7]. Furthermore, the fact that

this function can be used to very accurately fit nearly all of the human locomotion

outputs further increases the functions usefullness. Shown in Figure 4.5 are human

walking data for the stance and nonstance knees, the stance ankle angle, and the

hip angle with their respective fits using the canonical human walking function. The

corresponding robot outputs and their conventions are shown in Figure 4.3. The

fits to the human data for each control output are plotted in Figure 4.5, and the

mathematical description of each output is given in Section 4.4.

4.3 Human-Inspired Control

The ultimate goal in achieving human-like robotic walking is to apply control

such that the chosen robot outputs are driven to match the corresponding human

inspired reference trajectories, i.e. ensuring that ya(q) → yd(t) as t → ∞. To do
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this, a human-inspired optimization will be used to automatically generate controller

parameters that define these referrence trajectories while simultaneously ensuring

that the resulting multiphase walking is physically realizable through constraints.

Before discussing the human-inspired optimization it will be necessary to first discuss

Input/Output Linearization and the various properties that make it suitable for

robotic locomotion.

4.3.1 Input/Output Linearization

Input/Output Linearization is a nonlinear control method that results in the

input-output relationship of a nonlinear system rendered exactly linear, as apposed

to the standard jacobian linearization [14]. This is accomplished through nonlinear

state feedback (a full derivation and discussion of Input/Output Linearization is

given in chapter 9 of [39]). Given the affine control system in (3.11) for each v ∈ V

representing a mechanical control system with yv a vector of relative degree one and

relative degree two control outputs defined by the error between the actual outputs

and corresponding referrence trajectories,

yv =

yv,1(x)

yv,2(x)

 =

yav,1(x)

yav,2(x)

−
ydv,1(x)

ydv,2(x)

 , (4.3)

Differentiating (4.3) to get ẏv yields,

ẏv =
∂yv
∂x

∂x

∂t
=
∂yv
∂x

[
fv(x) + gv(x)u

]
:= Lfyv + Lgyvu, (4.4)
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where Lfyv and Lgyv are the Lie derivatives of yv with respect to fv(x) and gv(x),

respectively. For the relative degree one outputs, yv,1 the control law,

uv,1 =
1

Lgyv,1

[
− Lfyv,1 + ν1

]
, (4.5)

yields the following linear relationship between the new input ν and the relative

degree one outputs,

ẏv,1 = ν1. (4.6)

For the relative degree two outputs, Lgyv,2 will be equal to zero; Therefore, yv,2 is

differentiated again yielding,

ÿv,2 =
∂Lfyv,2
∂x

∂x

∂t
:=

∂Lfyv,2
∂x

fv(x) +
∂Lfyv,2
∂x

gv(x)u, (4.7)

The resulting control law for the relative degree two outputs becomes,

uv,2 =
1

LgLfyv,2

[
− LfLfyv,2 + ν2

]
. (4.8)

The new inputs v1 and v2 are chosen to be the following polynomials,

ν1
ν2

 =

 ψ0yv,1

φ1Lfyv,2 + φ0yv,2.

 (4.9)
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The coefficients ψ0 and {φ0, φ1} of (4.9) are chosen to place the roots of the polyno-

mials,

s+ ψ0 = 0 (4.10)

s2 + φ1s+ φ0 = 0

at −ε, ensuring the two polynomials are Hurwitz. The resulting control law for both

relative degree one and relative degree two outputs becomes,

uv = −A−1
( 0

LfLfyv,2

+

 Lfyv,1

2εLfyv,2

+

 εyv,1
ε2yv,2

) (4.11)

where Av, referred to as the decoupling matrix, for an output combination consisting

of both relative degree one and relative degree two outputs is defined to be,

Av =

 Lgyv,1

LgLfyv,2

 . (4.12)

For the case in which an output combination contains only relative degree two out-

puts, the control law becomes

uv = −A−1v
(
LfLfyv,2 + 2εLfyv,2 + ε2yv,2

)
(4.13)

where for this case the decoupling matrix is,

Av = LgLfyv,2 (4.14)
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It is important to note that the decoupling matrix must have full row rank since it

is inverted. This is done through carefully choosing the outputs to ensure that they

are mutually exclusive. The result is that yv → 0 exponentially at a rate of −ε. The

next sections will discuss the output selection for each domain.

4.4 Human Outputs

The first step to designing human walking controllers is to choose a set of outputs

that adequately represent human walking. The human inspired output functions used

here are shown in Figure 4.3, and many of which have been proven to successfully

yield robotic walking [36]. Motivated by both the desire to control the walking speed,

the linearized forward velocity of the hip was chosen as an output and is given by,

δvhip =
δphip
∂q

q̇, (4.15)

where,

δphip = −Lc(ϕ0 + qsa)− Lt(ϕ0 + qsa + qsk). (4.16)

The coordinates qsa, qsk, and ϕ0 are as defined in Figure 3.2 and Lc and Lt are the

lengths of the thigh and calf links as shown in the figure on page 60.Also chosen as

outputs are the angle between the legs,

θhips(q) = qsh − qnsh, (4.17)
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the stance ankle angle, the stance and nonstance knee angles, the nonstance foot

angle given by,

θsa(q) = qsa (4.18)

θsk(q) = qsk (4.19)

θnsk(q) = qnsk (4.20)

θnsf (q) = ϕ0 + qsa + qsk + qsh − qns − qnsk − qnsa (4.21)

and finally the torso angle,

θtorso(q) = ϕ0 + qsa + qsk + qsh. (4.22)

A combination of each of these outputs will be used to control the robot through

each domain. It is important to note the linear form of each output, significance of

which will be made clear later.

4.4.1 Human Locomotion(Actual) Outputs

Using the data in 4.2 from human walking experiments, if was found that certain

combinations of human joint angles exhibit simple behavior. These outputs, termed

human-inspired outputs, allow for a low dimensional representation of human com-

plex human locomotion. Combinations of these outputs, shown in Figure 4.3, are

used to control the robot through each domain. It is important that each combina-

tion of outputs for any particular domain is linearly independent to ensure that the

decoupling matrix has full row rank.

Definition 1 A human output combination for v ∈ V is a tuple Y H
v = (Qr, y

H
v )

consisting of the configuration space Qr and a set of robot outputs yHv : Qr → R. A
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particular output combination is linearly independant if,

rank(yHv (q, q̇)) ≤ n− cv. (4.23)

where n and cv are defined in Chapter 2.

Keeping Definition 1 in mind, the outputs for each domain will now be shown.

4.4.1.1 Over-Actuation

During over actuation (see the domain graph in Figure 1.2 in Chapter 1), there

are 4 contact constraints, i.e. coa = 4. With the number of degrees of freedom

n = 9, this makes the number of degrees of freedom during over actuation to be

noa = n − coa := 5. Since the has robot six actuators, nr > noa means the robot is

over actuated and is only capable of independantly tracking noa trajectories. With

this in mind, the outputs for over actuation are,

yoa,1(q, q̇) = δvhip, yoa,2(q) =



θsk(q)

θtor(q)

θhips(q)

θnsk(q)


(4.24)

4.4.1.2 Full Actuation

For the fully actuated domain, i.e. v = fa, the robots stance foot is flat on the

ground and the nonstance leg is swinging. This phase is characterized by cfa = 3,

resulting in the number of degrees of freedom being nfa = n − cfa = 6 which is

equal to the number of actuators on the robot. During full actuation the robot can
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independantly track six outputs, resulting in the following choice of outputs,

yfa,1(q, q̇) = δvhip, yfa,2(q) =



θsk(q)

θtor(q)

θhips(q)

θnsk(q)

θnsf (q)


. (4.25)

It is important to note that the outputs for full actuation are the same as for over

actuation with the addition of the nonstance foot angle.

4.4.1.3 Under Actuation

During the over actuated phase, the robot is rotating about its stance toe and

the heel is lifting. In this configuration cua = 2, resulting in nua = n − cua = 7.

With nua > nr, the robot is in an under actuated configuration. During under

actuation(see the domain graph in Figure 1.2), the robot does not have direct control

over the forward hip velocity; therefore, during under actuation only relative degree

two outputs are controlled,

yua,2(q) =



θsa(q)

θsk(q)

θtor(q)

θhips(q)

θnsk(q)

θnsf (q)


. (4.26)

The linear form of the outputs used in each domain allows the outputs to be written

in a simple form as demonstrated in the following example.
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Example 4 Using linear outputs allows for a particular output combination to be

written in a relatively simple form. For a domain with both relative degree one and

relative degree two outputs, i.e. over actuation and full actuation, the outputs can be

written as

yHoa,1 = ρoaq̇ (4.27)

yHoa,2 = Hoaq

yHfa,1 = ρfaq̇

yHfa,2 = Hfaq

where,

ρoa = ρfa =

[
0 0 0 (−Lc − Lt) −Lt 0 0 0 0

]
(4.28)

Hoa =



0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 0



Hfa =



0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 −1 −1 −1


where Lc and Lt are the lengths of the calf and thigh as shown in the figure on page

60. The under actuated domain, however, does not have any relative degree two
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outputs. This results in the outputs being written as,

yHua = Huaq (4.29)

where,

Hua =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 −1 −1 −1


From the definition of a valid output combination in Definition 1, an output com-

bination is valid if rank(yHv ) ≤ n − cv. For v = oa, rank(yHoa) = 5 and coa = 4.

With n = 9 for each domain, thus the output combination for yoa given in (4.24)

passes as a valid combination. For v = fa, rank(yHfa) = 6 and cfa = 3, thus again

rank(yfa) = n − cfa and the outputs for the fully actuated domain given in (4.25)

also pass as a valid output combination. Finally, for the underactuated domain,

rank(yHua) = 6 and cua = 2, resulting in rank(yua) < n − cua implying that the

output combination for under actuation given in (4.26) is valid.

4.4.2 Paramaterization of Time

It is widely known that non-time based controllers, i.e. autonomuos controllers,

possess an inherent robustness that is difficult to achieve through time dependent

controllers. With this in mind, time is parameterized using the evolution of the

forward position of the hip, as it was shown in the human data(see Figure 4.2) to
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evolve in a linear fashion yielding,

τv(q) =
phip,v(q)− dv

vhip,v
, (4.30)

where dv ∈ R is used to align τv(q) = 0 at the beginning of each domain. This

parameterization is then substituted into Equations (4.1) and (4.2) yielding fully

autonomous referrence trajectories.

The term dv is a parameter chosen by the optimization to decide the initial

forward position of the hip in each domain, which is directly related by Equation

(4.30) to the duration of a domain. It is important to note that doa is predetermined

using inverse kinematics, and thus it is not optimized (this will be made more clear

in Section 5.2).

4.4.3 Desired Output Functions

It was stated earlier that during locomotion, humans behave as linear spring

mass damper systems. With this in mind, a set of referrence trajectories can now

be specified for the human outputs discussed in Section 4.4.1. With the goal of

controlling the walking speed, the desired referrence trajectory for the relative degree

one output becomes,

ydv,1 = vhipv v ∈ {oa, fa} (4.31)

It is important to note again that there are no relative degree one outputs for the

under actuated domain. For the relative degree two outputs during over actuation,

i.e. v = oa, the goal of behaving like a mass spring damper systems motivates the

choice of the canonical walking function. Defining an indexing set Ov for ydv,2 and
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v = oa, the referrence trajectories for double support are,

ydoa,2(τoa(q), α) = [ycwf (τoa(q), α
i
oa)]i∈Ooa (4.32)

where each αioa is a row of constants for a canonical walking function in (4.1). Sim-

ilarly, the referrence trajectory for relative degree two outputs of the fully actu-

ated and under actuated domains is the extended canonicaly function(the reason for

switching to the extended canonical function for these domains will be clarified in

Chapter 5). Defining indexing sets for full and under actuation, i.e. v ∈ {fa, ua}, to

be Ofa and Oua, respectively, the desired trajectories become,

ydfa,2(τfa(q), β) = [yecwf (τfa(q), β
i
fa)]i∈Ofa

(4.33)

ydua,2(τua(q), β) = [yecwf (τua(q), β
i
ua)]i∈Oua

where βiv is a row of 7 parameters of an extended canonical walking function in (4.2).

4.4.4 Over/Fully Actuated Control

Using I/O Linearization [39], the goal is to drive a set of carefully chosen robot

outputs to a set of human inspired referrence trajectories represented by the canonical

human walking function. To do this, the final form of the outputs for over actuation

and full actuation take the form:

yoa,1(q, q̇) = yaoa,1(q, q̇)− vhipoa
yoa,2(q) = yaoa,2(q)− ydoa,2(τoa(q), α)

yfa,1(q, q̇) = yafa,1(q, q̇)− vhipfa
yfa,2(q) = yafa,2(q)− ydfa,2(τfa(q), βfa)

(4.34)

With both a mixture of relative degree one and relative degree two outputs for
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both the over actuated and fully actuated domains, the control laws for v ∈ {oa, fa}

domain becomes,

uv = −A−1v (q, q̇)

( 0

LfLfyv,2(q, q̇)

+

 Lfyv,1(q, q̇)

2εLfyv,2(q, q̇)

+

εyv,1(q, q̇)
ε2yv,2(q)

) (4.35)

where the decoupling matrix for v ∈ {oa, fa} is given in equation (4.12) and has

full row rank by choice of a valid output combination. With this control law, the

error between the robot output referrence trajectory is exponentially driven to zero

at a rate of ε. It is important to note that, during over actuation, the system

only has five degrees of freedom and thus can only independently track five outputs

(adding more outputs will cause singularities in the decoupling matrix). This results

in only five torques specified by I/O Linearization. Obviously since the robot has

six actuators the robot cannot walk with one actuator outputting zero torque. This

is the fundamental problem of over actuation and a method for dealing with over

actuated control will be presented in a Chapter 6.

4.4.5 Under Actuated Control

During the under actuated phase, the robot no longer has full control authority

over its forward velocity. This is a product of the fact that their is no actuator at

the robots toe thus there is no way to independenly control the extended coordinate

ϕ0. It is for this reason that the forward velocity of the hip is not controlled during

under actuation. With only relative degree two outputs during under actuation, the

set of human inspired control outputs becomes,

yua,2(q) = yaua,2(q)− ydua,2(τua(q), βua). (4.36)
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For the case of only relative degree two outputs, the corresponding control law is

shown in equation (4.13) to be,

uua = −A−1ua (q, q̇)
(
LfLfyua,2(q, q̇) + 2εLfyua,2(q, q̇) + ε2yua,2(q, q̇)

)
(4.37)

where the decoupling matrix for under actuation is,

Aua(q, q̇) = LgLfyua,2(q, q̇). (4.38)

The next chapter discusses how a human inspired optimization is used to shape the

referrence trajectories to produce planar, 3-domain multi-contact walking.
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5. HUMAN INSPIRED OPTIMIZATION

This section presents a human inspired optimization for designing planar, 3-

domain walking gaits. The output of this optimization is a set of controller parame-

ters that yields a particular 3-domain gait which is shaped through the optimization

using constraints. The objective function to the human inspired optimization is a

least squares fit to corresponding outputs computed on discrete human locomotion

data, reflecting the desire that the 3-domain walking be as humanlike as possible.

From a subjects walking data, discrete times tH [k] and discrete values for the human

output data, yHi,v[k], for i ∈ Ov where Ov are indexing sets as in Equations (4.32)

and (4.33) for the outputs in each domain v ∈ V . For clarity, the final discrete point

in each domain will be denoted as kv. For example, the last discrete time for the

fully actuated domain will be referred to as t[kfa]. With this in mind, the objective

function for the human inspired optimization is expressed mathematically as,

CostHD(α, βv) =
∑
i∈Ooa

koa∑
k=1

(yHi [k]− ydoa,i(tH [k], αi))
2 (5.1)

+
∑
j∈Ofa

kfa∑
k=koa

(yHj [k]− ydfa,j(tH [k], βfa,j))
2

+
∑

m∈Oua

kua∑
k=kfa

(yHm [k]− ydua,m(tH [k], βua,m))2

Minimizing this cost means creating trajectories as close to the human data as possi-

ble and thus creating human-like locomotion. Equally as important to the optimiza-

tion are the equality and inequality constraints that, when satisfied, yield periodic,

three domain walking. The notion of hybrid zero dynamics is key to ensuring peri-

odicity [63] and will be explained in detail in the next section.
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5.1 Hybrid Zero Dynamics

The goal of the controller in each domain is to drive the robot outputs to the

corresponding human outputs, i.e. yav → ydv or yv = yav − ydv → 0 where yv consists

of either relative degree one or a mixture of relative degree one and two outputs as

discussed in Chapter 4. This motivates the definition of the zero dynamics manifold

for v = ua to be defined by,

Zua = {(q, q̇) ∈ TQR : yua(q, q̇) = 0, Lfyua(q, q̇) = 0} (5.2)

On this surface the control outputs yua and their derivatives Lfyua are zero, and

using the control laws in (4.35) they will remain zero for all time in the absence of

disturbances(see Chapter 9 of [39] for a proof of this). Other works using the notion

of zero dynamics in the context of bipedal locomotion include [3, 4]. For v = oa,

a similar zero dynamics surface is defined; however, the relative degree one outputs

are not included, thus it is termed a partial zero dynamics surface and is given by,

PZoa = {(q, q̇) ∈ TQR : yoa,2(q, q̇) = 0, Lfyoa,2(q, q̇) = 0} (5.3)

For the fully actuated domain, the full zero dynamics surface, similar to under actu-

ation except with the inclusion of relative degree one outputs in yfa, is given by,

Zfa = {(q, q̇) ∈ TQR : yfa(q, q̇) = 0, Lfyfa(q, q̇) = 0}. (5.4)

These zero dynamics surfaces are invariant for the continuous dynamics, but are not

invariant through perturbations such as impacts. The desire is to create surfaces

that are invariant to impacts, thus creating surfaces that are hybrid zero dynamics
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surfaces. With this in mind, the following optimization is defined in which the

constraints are used to ensure the zero dynamics surfaces are hybrid invariant,

(α∗, β∗v , d
∗
fa, d

∗
ua) = argmin

α,dfa,dua∈R27

CostHD(α, βv) (5.5)

s.t. ∆ua→oa(Sua ∩ Zua) ⊂ PZoa (HZD1)

∆oa→fa(Soa ∩ PZoa) ⊂ Zfa (HZD2)

(Sfa ∩ Zfa) ⊂ Zua (HZD3)

Notice that the constraint (HZD3) does not contain an impact map because the

transition from full actuation to under actuation does not contain an impact. In the

final form of this optimization, both constraints (HZD2) and (HZD3) will be satisfied

by the use of a motion transition [29] which will be discussed in Section 5.4.

5.2 Inverse Kinematics

In order to obtain an initial condition on the under actuated zero dynamics

surface, i.e. (q, q̇)T ∈ Zua, the outputs can be used along with the fact that on the

edge between the under actuated and over actuated domains the height of the swing

heel is zero. To construct this point, the impact invariance of the under actuated

zero dynamics surface will be used. On Zua all relative degree two control outputs

are zero by definition, i.e. yua = yaua − ydua := 0. Using this and the fact that the

outputs are all linear and time is zero at the beginning of the over actuated domain,

a particular configuration ϑ(α) of the system at the beginning of the over actuated

domain can be solved for in terms of the controller parameters,

ϑ(α) = q s.t.

yua(Rua→oaq)

hnsh(q)

 =

0

0

 (5.6)
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where Rua→oa is the relabeling matrix and hnsh(q) is the height of the nonstance heel

above the walking surface. The reason for considering for considering yoa at the point

Rua→oaq is because this implies that the configuration of the robot at the beginning

of the step is q+ = Rua→oaq at which point τoa(Rua→oaq
+) = 0. This implies that

yoa(Rua→oaq
+) = HoaRua→oaq

+ − ydoa(0). Using ϑ(α) a point (ϑ(α), ϑ̇(α))T ∈ (Zua ∩

Sua) can be found by first defining,

Y (q) =

∂δphip(q)∂q

∂yua(q)
∂q

 (5.7)

which yields,

ϑ̇(α) = Y −1(ϑ(α))

vhipoa
0

 (5.8)

where Y (ϑ(α)) is guaranteed to be invertible for a valid output combination.

5.3 State Reconstruction

This section presents the key benefits to the zero dynamics approach to locomo-

tion by leveraging the form of the outputs, specifically the fact that all of the robot

outputs are linear. Using the zero dynamics, a low dimensional representation of the

full order biped can be found [63, 1, 4] that can then be used to reconstruct the full

order dynamics. Consider the following coordinates to represent the zero dynamics

for the over actuated and fully actuated domains,

ξv,1 = δphip(q) = ρvq (5.9)

ξv,2 = ρv q̇ (5.10)
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where δphip,v(q) is simply the linearized forward posititon of the hip which is used

to parameterize time in (4.30). With this the desired outputs become ydv,2(τv(q)) =

ydv,2(ξ1). The linear form of the outputs makes it possible to reconstruct the full

state from ξv,1 and ξv,2. First recall the linear form of the outputs allows them to

be written in the simple form given in Equation (4.27). With this, the full state of

the system can be reconstructed to yield the reconstructed positions and velocities,

denoted (qr, q̇r),

qrv =

 ρv
Hv


−1 ξv,1

ydv,2

 (5.11)

q̇rv =

 ρv
Hv


−1  ξv,2

∂ydv,2
∂ξv,1

ξv,2

 (5.12)

It is important to recall that, for the over actuated domain, the zero dynamics surface

only has a dimension of five while the system has seven angles(see Figure 3.2). Due

to this the reconstruction for qoa and q̇oa will only contain the first 10 joint angles

and velocities of the system and the remaining four positions and velocities are found

using inverse kinematics. The following example will help to clarify this,

Example 5 A given state reconstruction for v = oa will only contain (qroa,1:5, q̇
r
oa,1:5)

T

or (ϕ0, qsa, qsk, qsh, qnsh, ϕ̇0, q̇sa, q̇sk, q̇sh, q̇nsh)
T . The remaining four positions and ve-

locities can be solved for using inverse kinematics and the fact that during double

support the distance between the contact points is known and constant. With this,
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the remaining elements in the state are given by,

qroa,6 = Ψ1(q
r
oa,1:5) (5.13)

qroa,7 = Ψ2(q
r
oa,1:6) (5.14)

q̇roa,6 = Ψ̇1(q
r
oa,1:5, q̇

r
oa,1:5) (5.15)

q̇roa,7 = Ψ̇2(q
r
oa,1:6, q̇

r
oa,1:6) (5.16)

Fortunately, the fully reconstruction during the fully actuated domain is able to

reconstruct the full system; therefore, no additional inverse kinematics are needed to

obtain the full state.

For the over and fully actuated domains, the control law in (4.35) fully linearizes

the dynamics, resulting in the relative degree one outputs evolving according to

ẏv,1 = −εyv,1. This results in the zero dynamics surface evolving according to the

linear ODE,

ξ̇v,1 = ξv,2 (5.17)

ξ̇v,2 = −ε(ξv,2 − vhipv), v ∈ {oa, fa} (5.18)

The advantage of representing the zero dynamics in this way is that the full state of

the system can be reconstructed with the position and velocity of the hip, thus not

needing to numerically integrate the system forward in time. For the under actuated

domain, however, this reconstruction is not valid because there are no relative degree

one outputs; therefore, the full order dynamics were integrating forward in time using

Matlabs ODE45 function. This can be done since the initial condition for v = ua

can be obtained via a reconstruction on Sfa and then integrated forward until the

swing heel strikes.
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5.4 Motion Transitions

At the end of the over actuated phase, the stance toe strikes the ground, thus

imparting another impulsive force to the robot. There is also a change in the degrees

of actuation as the robot transitions from over actuation to full actuation. Due to

the change in degrees of actuation and this impact, constraining the partial zero

dynamics surface to be impact invariant through toe strike is not possible because

the robot can track six outputs during full actuation compared to five outputs during

over actuation. It is for this reason that the notion a motion transition [29] will be

introduced. First consider the extended canonical walking function in (4.2) which is

used for the desired trajectories for the relative degree two outputs in both the fully

and under actuated phases, i.e. v ∈ {fa, ua},

ydv,2 = yecwf (β
i
v) = [e−β

i
v,4t(βiv,1cos(β

i
v,2t) + βiv,3sin(βiv,2t)) (5.19)

+ βiv,5cos(β
i
v,6t) +

2βiv,4β
i
v,5β

i
v,6

(βiv,4)
2 + (βiv,2)

2 − (βiv,6)
2
sin(βiv,6t) + βiv,7]i∈Ov

where Ov is an indexing set of the outputs for each v ∈ {fa, ua}. This function, being

the solution to a linear mass spring damper system subject to sinusoidal forcing, is

very similar to the canonical walking function in (4.1) with the additional parameters.

The goal is to use these extra parameters along with the partial hybrid zero dynamics

surface from the over actuated domain and to solve for the parameters of (5.19) that

will connect the surfaces together. Figure 5.1 shows the closed loop geometry of

the connected zero dynamics surfaces generated by motion transitions. In order to

do this, first consider the state of the system at the beginning and end of the over

actuated phase, denoted x0oa and xfoa, respectively, where it is important to note

that xfoa is immediately after the toe strikes. Using these states, the positions and
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PZoa Zfa
Zua

∆ua→oa(ϑ(α), ϑ̇(α))
T

∆oa→fa(q, q̇)

Soa
Sfa Sua

1

Figure 5.1: The geometry of the close loop that results from connecting the three
zero dynamics surfaces.

velocities of any output combination can be computed. In this case the interest lies

in connecting all of the outputs used in both the fully actuated and under actuated

domains to the over actuated domain. To do so, first notice the linear dependence

of the extended canonical walking function on the terms βi,1, β
i
,3, β

i
,5, and βi,7. This

linearity along with the parameterization of time, t = ξv,1−dv
vhip,v

, allows (5.19) to be

written as,

yecwf (β
i
v, ξv,1, dv, vhip,v) = Yecwf (β

i
v,2, β

i
v,4, β

i
v,6, ξv,1, dv, vhip,v)



βiv,1

βiv,3

βiv,5

βiv,7


(5.20)
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where,

Yecwf (β
i
v,2, β

i
v,4, β

i
v,6, ξv,1, dv, vhip,v) = (5.21)

e−β
i
v,4τv(ξv,1,vhip,v ,dv)cos(βiv,2τv(ξv,1, vhip,v, dv))

e−β
i
v,4τv(ξv,1,vhip,v ,dv)sin(βiv,2τv(ξv,1, vhip,v, dv))

cos(βiv,6τv(ξv,1, vhip,v, dv)) +
2βi

v,4β
i
v,6

(βi
v,4)

2+(βi
v,2)

2−(βi
v,6)

2 sin(βiv,6τv(ξv,1, vhip,v, dv))

1



T

Recall from the previous section that ξv,1 is the forward position of the hip, and thus

can be directly substituted into Equation (4.30) for the parameterization of time.

Next the positions and velocities of all relative degree two outputs are computed at

the two points being connected yielding,

y0i = yecwf (τv(ξv,1, vhip,v, dv), β
i
v) (5.22)

ẏ0i =
d

dξv,1
yecwf (τv(ξv,1, vhip,v, dv), β

i
v))
∣∣∣
ξv,1=ξ0v,1

(5.23)

yfi = yecwf (τv(ξv,1, vhip,v, dv), β
i
v) (5.24)

ẏfi =
d

dξv,1
yecwf (τv(ξv,1, vhip,v, dv), β

i
v))
∣∣∣
ξv,1=ξ

f
v,1

(5.25)

for i ∈ Outputsv. Using (5.20), the following matrix is defined:

Y =



Yecwf (τv(ξv,1, vhip,v, dv), β
i
v,2, β

i
v,4, β

i
v,6)

d
dξv,1

Yecwf (τv(ξv,1, vhip,v, dv), β
i
v,2, β

i
v,4, β

i
v,6)
∣∣∣
ξv,1=ξ0v,1

Yecwf (τv(ξv,1, vhip,v, dv), β
i
v,2, β

i
v,4, β

i
v,6)

d
dξv,1

Yecwf (τv(ξv,1, vhip,v, dv), β
i
v,2, β

i
v,4, β

i
v,6)
∣∣∣
ξv,1=ξ

f
v,1


(5.26)
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By selecting βiv,2, β
i
v,4, and βiv,6 such that (βiv,2)

2+(βiv,4)
2−(βiv,6)

2 6= 0, the parameters

βiv,1, β
i
v,3, β

i
v,5, and βiv,7 can be solved for in close form that will produce a surface

that connects to PZoa on both edges,



βiv,1

βiv,3

βiv,5

βiv,7


= Y−1



y0i

ẏ0i

yfi

ẏfi


(5.27)

Performing a motion transition for each output results in a matrix with each row

containing the parameters to an extended canonical function pertaining to each rel-

ative degree two output. Furthermore, the desired hip velocity for the fully actu-

ated phase is simply chosen to be the velocity of the hip after toe strike. Defining

(q+oa, q̇
+
oa)

T = ∆oa→fa(x
f
oa), the desired hip velocity for the fully actuated domain

becomes,

vhipfa =
∂δphip(q

+
oa)

∂q+oa
q̇+oa (5.28)

Since toe strike will cause the velocity of the hip to undergo a discrete jump, this

simply makes the desired hip velocity equal to the actual hip velocity after toe strike.

Using these motion transitions, controller parameters can be solved for in closed form

that will connect a source domain to a target domain while maintaining on the zero

dynamics surface.

5.4.1 Over Actuation Constraints

In order to ensure that the resulting walking is physically realizable, constraints

must be placed on the contact forces. To compute the contact forces, standard meth-
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ods described in [16] are used to obtain the contacting forces and moments for the

over actuated phase. During over actuation, both the stance heel and nonstance

toe are in contact with the walking surface. Recall that a domain contains a set of

contact points cv as well as a jacobian, Jv(q), that is then used to complete the con-

strained dynamical model in (3.7). It follows from this that the contact forces and

moments can then be computed using equation (3.9)(refer to Example 3 for an exam-

ple showing how to compute the jacobian). From this, the following vector of forces

and moments are obtained: Foa = {F x
sh,oa, F

z
sh,oa,My

sh,oa, F
x
nst,oa, F

z
nst,oa,My

nst,oa}T .

Since the robot is rotating about the toe and heel, constraints on the direction of

the reaction forces are needed to ensure the robot can not pull up on the ground,

F z
sh,oa ≥ 0 (C1)

F z
nst,oa ≥ 0. (C2)

The domain following over actuation is the fully actuated domain in which the robots

stance foot is flat while the nonstance leg is swinging. In order to ensure that at

the end over actuation the robot transitions into the fully actuated domain, the

height of the stance toe must be zero and the force with which the nonstance toe

is pushing into the ground must also be zero. Considering a reconstructed state

xr = (qr, q̇r)T ∈ (Soa ∩ Doa), the height of the stance toe and the vertical reaction

force at the nonstance toe at that point, denoted hest,oa and F z,e
nst,oa, must be zero,

F z,e
nst,oa = 0 (C3)

hest,oa = 0. (C4)
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5.4.2 Full Actuation Constraints

During the fully actuated domain the robots stance foot is flat on the ground

and the nonstance leg is swinging. As with over actuation, constraints are needed to

ensure the physical realizability of the walking. Since the stance foot is flat during

full actuation, the reaction forces at the stance heel and stance toe must be pushing

into the ground,

F z
st,oa ≥ 0 (C5)

F z
sh,oa ≥ 0. (C6)

This also prevents the robot from rolling forward or backward on either edge of the

foot, which is synonomous with making sure the center of pressure(COP) [38] remains

within the edges of the stance foot. With the domain following full actuation being

under actuation in which the stance heel is lifting, a constraint must be imposed

so that, on the edge of the two domains, the vertical reaction force on the stance

heel is zero. As was done with under actuation, consider a state obtained from the

reconstruction xr = (qr, q̇r)T ∈ (Sfa ∩Dfa), the vertical reaction force at the stance

heel, denoted F z,e
sh,fa, must be zero,

F z,e
sh,fa = 0. (C7)

5.4.3 Under Actuation Constraints

During under actuation the only point on the robot in contact with the ground

is the stance toe. It is thus necessary to constrain the vertical reaction force at the
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toe, denoted F z
st,ua, to be positive,

F z
st,ua ≥ 0. (C8)

As was done with over actuation and full actuation, this constraint is needed to

ensure that the robot does not attempt to pull against the ground.

5.5 Optimization Formulation

With the critical optimization constraints outlined, the final form of the opti-

mization becomes,

(α∗, β∗v , d
∗
fa, d

∗
ua) = argmin

α,dfa,dua∈R27

CostHD(α, βv) (5.29)

s.t. (C1,C2, ...,C8,HZD1)

Upon completion, this optimization yields periodic, 3-domain planar bipedal walk-

ing that is physically realizable and thus experimentally implementable. The op-

timization is solved using Matlab’s FMINCON function, which solves nonlinear,

constrained optimization problems. Using a standard desktop computer/laptop

equipped with a quadcore processor, the optimization generally finishes in 0.5-1.5

hours if using Matlab’s parallel computing toolbox allowing the optimization to uti-

lize all four processor cores. The overall flow of the human inspired optimization is

summarized in a concise itemized list as follows:

1) By fitting the canonical function to human walking data, provide initial guesses

for controller parameters, α, and the domain transition points, dfa, and dua.

2) Solve the inverse kinematics problem, yielding (ϑ(α), ϑ̇(α))– the initial condi-

tion to the double support domain on the partial hybrid zero dynamics surface,
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PZoa.

3) Compute the state reconstruction for the double support domain and use this

reconstruction to compute constraints on the domain of admissibility Doa for

double support.

4) Compute the reconstruction of the system on the guard from double support

to full actuation Soa→fa and apply the resetmap ∆oa→fa to obtain the state

after toe strike.

5) Compute parameters for the full actuation domain, βfa, that construct a motion

transition (5.27) from the state of the system immediately after toe strike to

the initial condition (ϑ(α), ϑ̇(α)).

6) Compute the state reconstruction for the fully actuated domain and use this

reconstruction to compute inequality constraints on the domain of admissibility,

Dfa, for full acutation.

7) Compute the state reconstruction on the guard from full actuation to under

actuation, Sfa→ua and apply the resetmap ∆oa→fa.

8) Compute parameters for the full actuation domain, βua, that construct a motion

transition from the state of the system immediately after heel lift to the initial

condition (ϑ(α), ϑ̇(α)).

9) Integrate through the underactuated domain to compute inequality constraints

on the domain of admissibility Dua for under actuation.

10) Evaluate CostHD(α, βv). If local minimum has been reached and constraints

are satisfied, exit; otherwise, use gradient based method to initialize new values

for α, dfa, and dua and return to 2).
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6. QUADRATIC PROGRAMS

One of the more difficult aspects of designing controllers for humanlike locomotion

is attempting to tie together domains of differing degrees of actuation. Systems that

dynamically change the level of actuation are not often encountered in controls;

however, it is a problem that is inherent to bipedal locomotion. The key difficulty

in controlling such systems arises in applying control during over actuated domains.

As stated in Section 4.4.4, the control law for over actuation in Equation (4.35)

does not allow torques to be specified for each joint; because, during over actuation,

the degrees of actuation are less than the number of actuators on the robot, and

attempting to track more outputs during over actuation would result in singularities

in the decoupling matrix.

The reason the decoupling matrix goes singular during over actuation is that, with

more actuators than degrees of freedom, there are essentially an infinite number of

ways to apply actuation to meet the control objective. In situations in which there

are many solutions such as with the human inspired optimization in (5.29), the

simplest way to find a viable solution is to pose an optimization. In this case, the

optimization needs to be able to solve fast enough to be ran in real time on a robot.

This can be done using a quadratic program(QP) [2] which can be solved extremely

quickly and have been shown to yield success experimentally [23, 53]. One of the

more recent methods described in [2] involves the use of Lyapunov functions to define

the convergence characteristics. The key benefits to this Lyapunov based formulation

is the way that it allows for tasks to be prioritized, meaning that the convergence of

some outputs can be allowed to converge at slower rates if needed, allowing the QP

more room to satisfy constraints. For the purposes of this thesis, a somewhat more
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simple quadratic program formulation will be used.

Since torque saturation is a common issue in bipedal robots, the desire is to pose

a quadratic program that will meet the control objective while being optimal with

respect to the amount of actuator torque requested. First recall that for v ∈ {oa, fa},

the control law for these domains is given in Equation (4.37). This can be rewritten

in the following form,

−Av(q, q̇)uv =

( 0

LfLfyv,2(q, q̇)

+

 Lfyv,1(q, q̇)

2εLfyv,2(q, q̇)

+

εyv,1(q, q̇)
ε2yv,2(q)

) (QPC1)

in which it can be posed as a constraint to a quadratic program, resulting in the

following control law for v ∈ {oa, fa},

u∗v = argmin
uv∈R9

uTvWvuv (6.1)

s.t. (QPC1)

where Wv is a 9 × 9 torque distribution matrix that can be used to distribute the

torques to allow certain actuators to do more of the work than others if some joints

have more powerful actuators than others which is commonly the case. For the robot

model being used here, the torque distribution matrix takes the form,

Wv =

03×3 03×6

06×3 (ωv)mr×mr

 (6.2)

where mr is the number of actuators on the robot and ωv is a mr × mr diagonal

matrix in which the diagonal elements reflect the desired torque distribution. If each

actuator is to be weighted equally, ωv is the identity matrix. If there are no relative
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degree one outputs as with the under actuated domain, the IO control law in (4.37)

is rewritten as,

−Aua(q, q̇)uv =
(
LfLfyua,2(q, q̇) + 2εLfyua,2(q, q̇) + ε2yua,2(q, q̇)

)
. (QPC2)

With this, the resulting control law for the under actuated domain becomes,

u∗ua = argmin
uv∈R9

uTuaWuauua (6.3)

s.t. (QPC2)

These quadratic programs not only allow for the distribution of torque, they also

do not require the inversion of the decoupling matrix, meaning that during over

actuation the quadratic program can specify torques for each actuator that mini-

mizes torque while meeting the convergence objectives. The following section will

present simulation results from a 3-domain gait obtained using the human inspired

optimization.
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7. SIMULATION RESULTS

This chapter presents a simulation example showing how the optimization algo-

rithm of Chapter 5 was used to produce a multi-domain walking gait for the planar

biped Amber 2. Amber 2 is a planar bipedal robotic testbed that was designed

and partially machined within AMBER lab at Texas A&M University. Amber 2

is a seven link robot supported by a light weight, carbon fiber boom that restricts

motion to the saggital plane. The boom is counter weighted so as to not introduce

any mass to the robot; however, there is an inertial load introduced to the torso

link that is negligable due to the low friction bearings used in the construction of

the boom as well as a long moment arm (approx. 8ft) separating the robot from

the center of rotation of the boom. The mass and length parameters of Amber 2

are shown in Table 7.1 with variable conventions as defined in Figure 7.1. The op-

timization algorithm of Chapter 5 was implemented using MATLAB’S FMINCON

command. In the underactuated phase, the integration algorithm ode45 was used

to integrate the dynamics forward in time. In both the double support and fully

actuated phases, the solution at each timestep was found in closed-form using the

reconstruction algorithm discussed in Section 5.3. The walking gait that results

Table 7.1: AMBER 2.0 Mass & Length Parameters

Link Mass(g) Length(mm) Width(mm)

Foot 204.42 177.8 47.63
Calf 1119.43 343.13 50.8

Thigh 1172.57 298.45 50.8
Torso 2154.79 104.01 285.75

from the optimization is plotted as a series of tiles in Figure 7.2. An animation

is available at [http://www.youtube.com/watch?v=OY-QsaIglQY]. The gait shown
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Figure 7.1: Notation and and layout of the robot model parameters.

here has an average velocity of 0.42 m/s, with a step length of 0.373 m (58 pct of

leg length) and a period of T = 0.88 sec. The step time can be further broken down,

with 0.139 s (16 pct) in double support / over actuation, 0.19 s (21 pct) in full ac-

tuation, and 0.56 s (63 pct) in under actuation. The initial condition for the gait on

the guard of the under actuated domain,i.e. x0 = (q0, q̇0)
T ∈ Sua→oa, expressed in

the form (q0, q̇0)
T = {px, py, ϕ0, qr, ṗx, ṗy, ϕ̇0, q̇r}T , is

q0 = (0, 0,−0.162,−0.298, 0.303, 0.073,−0.546, 0.469,−0.366)T (7.1)

q̇0 = (0, 0,−0.628,−0.069, 0.036, 0.661,−0.262,−4.985,−2.246)T (7.2)

The actual and desired outputs for the gait are shown in Figure 7.3. Recall that the

hip velocity is not invariant through impact and thus the actual hip velocity is not

equal to the desired hip velocity at the beginning of the step. Also note the discrete

jump in the velocity of the hip is due to the impact at toe strike. Shown in Figure

7.4 on the left is a phase plot of the 3-domain walking over 9 steps displaying the
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Figure 7.2: Gait tiles for 3 domain walking gait.

periodic nature of the walking. Also in Figure 7.4 are plots of the joint angles and

joint velocities in the top right and bottom right, respectively.

As stated in Chapter 5, I/O Linearization is used to design the multi-domain

walking gaits. Recall the limitations with I/O Linearization and over actuation

discussed in Section 4.4.4. With the over actuated domain here consisting of 5

degrees of freedom, a torque cannot be specified for the nonstance ankle. This can

be seen in Figure 7.5 on the left in which the joint torques are shown over the course

of a single step using simple I/O Linearization. The figure on the right is also the

torques over a single step using the quadratic program from Chapter 6 that is able

to specify a torque at all six actuators to track the outputs. It is also important to

note that the torque across domain transitions is not continuous. For experimental

implementation, however, low pass filters would be applied to the commanded torques

which would smooth out the discontinuities.
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Figure 7.3: Actual and desired outputs over one step for a 3 domain walking gait.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−6

−4

−2

0

2

4

6

 

 

ϕ0 q2 q3 q4 q5 q6 q7

0 1 2 3 4 5 6 7 8 9

−0.5

0

0.5

1

1.5

 

 

ϕ0 q2 q3 q4 q5 q6 q7

0 1 2 3 4 5 6 7 8 9

−5

0

5

 

 

ϕ̇0 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7
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8. CONCLUSION

The objective of this thesis has been to present one of the first formal methods

with which to design multi-domain walking gaits. It began with the introduction of

multi-domain hybrid systems followed by the introduction of the floating base model.

The principle contribution lies, however, in the multi-domain human inspired opti-

mization. Using the human inspired optimization, walking gaits and other behaviors

can be easily designed and shaped by simply altering constraints while ensuring the

gaits remain physically realizable. In addition to the constraints, alterations to the

cost could be made that could result in gaits that are optimal with respect to energy

or a number of other important metrics. The human-like walking presented here

was achieved using Input/Output Linearization, but was augmented with an online

quadratic program to introduce a sense of optimality to the applied control, allowing

for a single control law to be used for domains with differing degrees of actuation.

Online quadratic programs are becoming increasingly attractive in controls with the

dramatic increase in computational speed. These online optimizations have endless

potential in the field of robot control and could help streamline the transition from

simulation to hardware.

Future work is needed to improve the optimization described here so that a single

set of outputs can be used rather than connecting domains and switching outputs as

well as extending the optimization to 3-dimensions. Finally, it is important to start

researching reactive walking behaviors in which any behavior design is done via online

optimizations possibly with a quadratic program. This kind of real time planning

would allow for the variation of the walking surface as well as the ability to start,

stop, and change directions effortlessly. For this to become realizable, researchers
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need to better understand how to include the external forcing into the design of the

controllers since interaction with the environment plays such a substancial role in

locomotion.
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