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ABSTRACT

This thesis presents an approach to the formal design, optimization and imple-

mentation of bipedal robotic walking controllers, with experimental application on

two biped platforms. Standard rigid-body modeling is used to construct a hybrid sys-

tem model of robotic walking; this model estimates the motion of the robot hardware

under a given control action. The primary objective of this thesis is the construction

of a control law which effects, on the robot, a periodic “walking” behavior. The pro-

cess begins with examination of human walking data—specifically outputs of human

walking—which provide inspiration for the construction of formal walking control

laws. These controllers drive the robot to a low-dimensional representation, termed

the partial hybrid zero dynamics, which is shaped by the parameters of the outputs

describing the human output data. The main result of this paper is an optimization

problem that produces a low-dimensional representation that “best” fits the human

data while simultaneously enforcing constraints that ensure a stable periodic orbit

and constraints which model the physical limitations of the robot hardware. This

formal result is demonstrated through simulation and utilized to obtain 3D walking

experimentally with an Aldebaran NAO robot and NASA’s prototype Leg Testbed

robot.
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1. INTRODUCTION

Thesis: the state-based torque control law, u(x), provided by the Human-

Inspired Control approach to bipedal robotic walking evokes stable walking behaviors

in a hybrid system model of a given anthropomorphic robotic biped.

ϕra

θsf

θsk

ϕrh

θsh ϕlh

θnsh

θnsk

ϕla

θnsf

θrs
θls

1

(a) NAO (b) NASA’s Leg Testbed

Figure 1.1: Anthropomorphic bipedal robots: NAO and NASA’s Leg Testbed.

The term “robot” in this thesis takes a specific meaning: a robot is an anthro-

pomorphic biped which takes the form of a machine, such as the ones shown in Fig-

ure 1.1a and Figure 1.1b, comprised of rigid mechanical limb segments, connected by

rotary or prismatic joints, and designed to resemble the human lower body. DC mo-

tors, hydraulics, or pneumatics are the primary source of mechanical input (force and

torque) in robots; these actuators, together with the influence of gravity and forceful
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interaction with the environment, dictate the motion of a robot’s limbs. As control

theorists and engineers, our task is to design actuator torque control laws (mathe-

matical controllers implemented via computer and micro controller code) which use

knowledge of the robot (in the form of a model of the structure, sensors and actua-

tors) to accomplish a desired behavior in our robot, per project specifications. The

behavior of interest in this thesis is stable walking and the purpose of this document

is to present a method, termed the Human-Inspired Control method, of generating

torque control laws which drive the robot into a stable walking gait.

1.1 Motivation for Walking Robots

Tasks that require humans to work in hazardous environments, e.g. those with

high risk of exposure to toxic chemicals, radiation, extreme temperature, unstable

terrain, or falling debris, are excellent potential applications for walking humanoid

robots. The purpose of robots in this context would be to reduce the time human

operators spend in such environments. Successful implementation of robots in these

scenarios would give such human operators higher quality of life, by definition, and

could potentially reduce the monetary cost associated with such tasks. Walking

robots are preferred over their wheeled counterparts as legs provide a significant mo-

bility advantage; and to completely replace a human operator, a robot would have to

have mobility on par with that of humans. Furthermore, understanding of bipedal

locomotion from a robotics perspective yields useful cross-industry knowledge. Dis-

covering how to make a robot walk can help us understand how to build better

prosthetic and rehabilitation devices [33, 15].

1.2 Notable Ideas in Bipedal Robotic Walking Research

This section highlights other researchers’ work in the field of bipedal walking

robots and in particular, those methods which most aided the control design of this

2



thesis. Specifically, the Zero-Moment Point control method for bipedal robotic walk-

ing is a popular paradigm for achieving conservative, robust walking and has been

implemented successfully on numerous robots. Another approach in the literature

is the Hybrid Zero Dynamics approach, in which formal guarantees are made about

the stability of the modeled walking. The following sections briefly describe work

done in each of these areas.

1.2.1 Planning Zero-Moment Point (ZMP)Trajectories

The most prevalent concept utilized in modern control design for bipedal robotic

walking is the Zero-Moment Point (ZMP). Several (sometimes inconsistent) defini-

tions have been applied to the ZMP concept; the definition we prefer is that the

“ZMP is defined as that point on the ground at which the net moment of the inertial

force and the gravity force has no component along the horizontal axes” [41]. Infor-

mally, the ZMP can be used to determine whether a robot, standing on one or two

feet, is balanced or falling. The ZMP is calculated via:

xzmp =

∑
My∑
F

yzmp =

∑
Mx∑
F

(1.1)

where
∑
Mx and

∑
My represent the resultant moments acting on the support

polygon and F is the reaction force. The ZMP is useful because it describes a state

of equilibrium in the forces acting on the biped’s support base; i.e., when a robot’s

ZMP lies within plane of the stance foot, the foot will not rotate. Therefore, as long

as the ZMP does not leave the biped’s support base during walking, the robot will

not fall over.

Some researchers plan foot-step locations and trajectories of the ZMP – to keep

it within the footsteps – over multiple steps and then compute inverse kinematics

to determine corresponding joint angle trajectories, which are finally fed into stiff
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position controllers to achieve the desired motion. Online modifications to ZMP tra-

jectories via control of the biped’s torso have also been proposed [26, 39]. Several

notable robots employ ZMP methods, including Honda’s Asimo [32]. Even the Alde-

baran NAO robot, which we use in experimental implementation of the work in this

thesis, is equipped with built-in walking algorithms that employ the ZMP concept!

Other notable online ZMP approaches are given in additional references [24]. As the

ZMP is such a prevalent control scheme, accurate sensing and estimation of the ZMP

for robot hardware is an active area of research [9]. ZMP data from human walking

experiments with “rigid shoes” is used to characterize flat footed walking [34] and a

similar approach is applied to passivity based robots also walking with flat feet [10].

1.2.2 Hybrid Zero Dynamics (HZD)

Most closely related to the work in this thesis is the use of control to achieve

Hybrid Zero Dynamics [43] in the hybrid system model of a robot. Hybrid system

models encapsulate the continuous (foot swing) and discrete dynamics (foot strike)

of rigid-body robot walking in a formal framework. The theory of Hybrid Zero

Dynamics extends the concept of Zero Dynamics [19] in which continuous-time state

feedback controllers create a zero dynamics manifold which is a low-dimensional

representation of the full dynamics. Specifically, in Hybrid Zero dynamics, the zero

dynamics manifold, Z, must be invariant through impact, ∆, i.e.

∆(S ∩ Z) ⊂ Z (1.2)

where S denotes the guard of a given hybrid system. Bipedal robotic walking con-

troller design using HZD involves specification of an exponentially stable continuous-

time controller and corresponding periodic orbit which satisfy (1.2). In the work of

Grizzle et al. [14, 43] Bezier polynomials are used in the construction of state-
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feedback control laws; Bezier polynomials are chosen as they provide analytic means

for ensuring HZD. Work has also been done to control the evolution of the ZMP

within a HZD-based controller [8]. In a similar light, in this thesis, we introduce the

notion of “Partial Hybrid Zero Dynamics” and use constraints in an optimization

problem to ensure that the evolution of the ZMP within our PHZD-based controller

remains in the sole of the stance foot.

1.3 The Human-Inspired Method

This work leverages the authors’ previous discovery [3, 4] that certain outputs

of the human locomotion control system can be represented by the solution to an

under-damped, second-order mass spring damper system; these outputs, thus, rep-

resent a low-dimensional system which encodes the fundamental behaviors of human

walking1. When applied through feedback linearization control [35], these outputs

yielded human-like walking for the NAO robot, despite the mismatch in mass and

length distribution between the NAO and humans. Similar to this control approach

is the use of other low-dimensional representations used to achieve robotic walking,

such as the spring-loaded inverted pendulum [16], or SLIP model, and the construc-

tion of Hybrid Zero Dynamics [43] surfaces.

This thesis proposes a formal human-inspired optimization (HIO) which provably

results in exponentially stable bipedal robotic walking and satisfies many of the

physical constraints necessary to realize the walking experimentally. Specifically, the

optimization minimizes an objective function which is the least-squares fit of the

output functions of the robot to the human output data. Constraints are enforced

which guarantee that the zero dynamics surface associated with the certain output

functions is invariant through impact resulting in a partial hybrid zero dynamics

1Human walking data were obtained in a set of experiments conducted by Dr. Bajcsy at the
University of California, Berkeley [40].
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[3]. These constraints, together with a specific choice of (linear) output functions,

allow for closed-form computation of the solution to the dynamics of the robot over

the course of one step, i.e., the behavior of the robot can be determined without

integrating the dynamics of the system. This allows for the computation of physical

constraints required for experimental implementation, such as the ZMP and friction,

to be added to the HIO as constraints and computed in a feasible time-frame (as

opposed to the time required to integrate the full dynamics of the system, which

in the case of the robot model considered in this paper is 20-dimensional). These

formal results are verified both in simulation and in experiment with the NAO robot

and NASA’s prototype biped system.

1.4 Organization of This Thesis

In Section 2, we discuss how to construct a model of unsupported, 3D bipedal

robotic walking using standard rigid-body assumptions: the method of Lagrange is

applied to compute equations of motion of the robot and robot-ground interactions

are model as instantaneous rigid impacts. The specific walking gait, or “behavior”,

we consider is flat-footed walking on level ground. At the end of Section 2, we show

how all aspects of our model – continuous dynamics, impact equations and admis-

sibility constraints on the walking gait – can be represented in a compact form via

the construction of a hybrid system model. In Section 3, we discuss the main re-

sult of this thesis: how to create control laws for the modeled robot which yield

stable periodic walking. Specifically, we describe the collection and examination

of experimental human walking data, the construction of a parameterized Feedback

Linearization control law based upon suggestions from these human data, and finally,

the formulation of an optimization problem which determines values of the control

parameters corresponding to stable robot walking controllers. The results from ap-
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plication of our method to the Leg Testbed and the NAO robots are presented in

Section 4. Here, simulations are performed using the hybrid system model of Section

2 together with the optimized walking controllers, obtained through the methods of

Section 3. Furthermore, trajectories from simulation are used in walking experiments

on the actual hardware; we show that the actual robot systems take several steps

using controllers produced by our method. We give concluding remarks in Section 5.

7



2. ROBOT WALKING MODEL

The purpose of this section is to show how to construct a mathematical model of

a biped robot; this model will be used to determine the relationship between control

commands and observed motions. An accurate mathematical model of the robot is

an essential component of successful torque control as the proposed control design

method uses the modeled dynamics in the computation of torque commands.

As commonly done in the literature, in this thesis a robot is modeled as a system

of rigid-bodies, termed “links”, connected by “joints” which constrain the relative

motion of two connected links to be rotation about a common joint axis. The iner-

tial and length properties of each rigid link can be obtained through measurement,

estimation (system identification), or CAD modeling. Standard methods are used

to compute kinematics and dynamics of the rigid-body system; namely, the Euler-

Lagrange equations are used to compute the dynamics of the robot model under

holonomic constraints. These dynamics provide an estimation of the movement of

the actual robot for a given set of torque commands. Interaction of the robot with the

environment, through contact of the robot’s feet with the walking surface, is modeled

through impulsive impact events; these are assumed to be perfectly inelastic and to

occur instantaneously.

The final product of this section is a hybrid system model of bipedal robotic walk-

ing which encapsulates phases of continuous evolution, as modeled by Lagrangian

dynamics, and intermittent discrete impact events. This model provides an excellent

representation of the relationship between controller commands and the resulting

robot motion and does so in a manner that is amenable to the study of “stable

robotic walking” via the methods of Poincaré.

8



2.1 Robot Model Properties

The robots of concern in this study are anthropomorphic bipeds. As such, we refer

to components of the robot by the names of their human analogues. For example,

the NAO and Leg Testbed robots have limb segments: feet, calves, thighs, hips

and a torso; these segments are connected by joints: ankles, knees and hips. During

walking experiments, a robot’s limb segments undergo continuous deformation caused

by forceful interaction with the environment; however, for modeling purposes this

deformation is considered to be negligible; hence, the robot is a system of rigid-bodies.

The Link-Segment Model Development found in [44] gives an excellent description of

the properties of the robot models used in this thesis. Specifically, the robot model,

as shown in Figure 2.1 , consists of:

• Limb segments - each limb segment, ` ∈ {f, c, t, T}, corresponding to the

foot, calf, thigh and torso, has a fixed mass, m`, located as a point mass at

its center of mass (COM). The position of each COM is described by a line

segment, r`, which starts at the distal joint of the limb segment.

– The mass moment of inertia, I`, of each limb segment about its mass

center is constant with respect to time.

– The length of each segment, L`, remains constant with respect to time.

Values of the mass, inertia, length and center of mass of the limb segments of

a given robot are obtained through measurement, estimation, or CAD models.

• Joints - each joint is considered to be a frictionless hinge joint, driven by an

ideal actuator, i.e. an ideal torque source with infinite bandwidth. Limits

on the maximum torque capabilities of the actual robot actuators, which are
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typically DC motors, are enforced on the robot model controller via constraints

in the controller optimization.

2.1.1 Assumptions on the Robot Walking Gait

The phrase “bipedal walking” encompasses many qualitatively different behav-

iors, referred to as “walking gaits”. A bipedal walking gait – human or robotic –

is characterized by the (temporal or spatial) evolution of biped-environment con-

tact points, i.e. locations on the biped’s feet which are in contact with the walking

surface. This thesis considers a single, specific type of bipedal walking gait consist-

ing of alternating phases of single and double support. In the single-support phase

considered here, the plane of one foot, termed the “stance foot”, remains in con-

tact with the ground while the other, “nonstance foot”, remains entirely above the

ground. Phases of double support occur instantaneously when the nonstance foot

impacts the ground – these phases are modeled by impact mechanics as described

in Section 2.3. The stance/nonstance naming convention is used throughout the

thesis when identifying qualities and quantities corresponding to the leg in contact

with the ground – the stance leg – and the opposite leg, termed the nonstance leg,

which remains off the ground in single support. The primary objective of this work is

to construct controllers which evoke this single-support / double-support flat-footed

gait on a robot and in a symmetric and periodic manner.

2.1.2 Forward Kinematics: Coordinates and Convention

Forward kinematics maps [23], computed over generalized coordinates, are used

to describe the position and orientation of any point on the robot with respect to a

fixed reference frame. Here, the generalized coordinates are chosen to be the robot’s

configuration (joint) space together with the coordinates of a body-fixed (base) frame.
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Figure 2.1: A depiction of the modeled rigid-body robot, comprised of links ` ∈
{f, c, t, T} corresponding to the foot, calf, thigh and torso, each with mass m`, inertia
I`, length L` and center of mass r`. The width of a hip is given by Wh and the width
of the foot is Wf .
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The configuration space, QR ∈ R10, of the system is given in coordinates by:

q = (ϕsa, θsa, θsk, θsh, ϕsh, ϕnsh, θnsh, θnsk, θnsa, ϕnsa)
T , (2.1)

where, as illustrated in Figure 1.1a, ϕsa, ϕsh, ϕnsh, and ϕnsa are the stance ankle,

stance hip, nonstance hip and nonstance ankle roll angles, respectively, and θsa, θsk,

θsh, θnsh, θnsk, and θnsa are the stance ankle, stance knee, stance hip, nonstance

hip, nonstance knee and nonstance ankle pitch angles, respectively. Note that the

configuration is the 3D version of the commonly employed seven-link biped model

[17, 6]. To complete the generalized coordinates, as in [13], let R0 be a fixed inertial

frame and let Rb be a reference frame attached to the projection of the ankle joint

onto the stance foot. Let pb ∈ R3 be the Cartesian position of Rb with respect to R0

and let φb ∈ SO(3) be the orientation. Then qe = (pb, φb, q) ∈ Qe = R3×SO(3)×QR

is set of generalized coordinates for the robot model.

The position and orientation of a Cartesian reference frame, a, with respect to

another Cartesian reference frame, b, are denoted pab (q) and Ra
b (q), where pab (q) is

a Euclidean vector and Ra
b (q) is a rotation matrix. These relations can be grouped

into a single entity, termed a homogeneous transformation [37]. Homogeneous trans-

formations are used to establish position and orientation of reference frames, fixed

to key locations on the robot, with respect to the world frame: this is useful for

determining when the nonstance foot hits the ground and for visualization purposes

(Figure 2.1 and all simulation figures in this thesis use homogeneous transformations

to compute line segments of the robot model). Furthermore, homogeneous transfor-

mations are also used in solving inverse kinematics problems, such as those posed in

the optimization of Section 3.3 .
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2.2 Robot Model Dynamics and Constraints

The dynamics of the robot model are the relationship between torque input and

observed link segment motion as described by equations of motion which can be for-

mulated via several methods, e.g. Newton-Euler or Hamiltonian’s method. Here the

Euler-Lagrange equations (see standard references [23]) are used. The Lagrangian,

Le : TQe → R, of the unconstrained robot model is calculated via:

Le(qe, q̇e) := Te(qe, q̇e)− Ve(qe) (2.2)

where Te(qe, q̇e) and Ve(qe) are the kinetic and potential energy of the robot, respec-

tively. The Lagrangian is used to calculate equations of motion:

d

dt

(
∂Le
∂q̇e

)
− ∂Le
∂qe

= Be(qe)u, (2.3)

which are commonly reorganized into the standard equations of motion for a fric-

tionless robot manipulator:

De(qe)q̈e +He(qe, q̇e) = Be(qe)u. (2.4)

withDe(qe) ∈ R16×16 a generalized inertia matrix, He(qe, q̇e) ∈ R16 a vector of Coriolis

and gravity terms and Be(qe) ∈ R16×10 a torque distribution map. These equations

of motion describe the dynamics of the robot when it is not in contact with any

other objects, including the ground, thus the robot is simply “floating”. In the next

section, we describe how to incorporate the ground-reaction forces – experienced at

the interface between the ground and the sole of the robot’s stance foot – into the

dynamical model.
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2.2.1 Foot-Ground Contact Constraints

The flat stance foot assumption described in Section 2.1.1 is modeled as a holo-

nomic constraint on the generalized coordinates [13]:

η(qe) =

 pb(qe)

φb(qe)

 = constant, (2.5)

which simply means that the stance foot position, pb, and orientation, φb, must

remain fixed in the world frame. Taking the first and second time-derivative of both

sides of (2.5) yields:

J(qe)q̇e = 0 (2.6)

J̇(qe, q̇e)q̇e + J(qe)q̈e = 0 (2.7)

where J = ∂η(qe)
∂qe

is commonly referred to as the Jacobian of η(qe) with respect to qe.

When enforced, these constraints ensure that the velocity of the sole of the stance

foot is constant, and thus, can be used to regulate a flat stance foot on the robot.

Additionally, the enforcement of these holonomic constraints reduces the degrees of

freedom of the system to 10.

2.2.2 Lagrangian Dynamics with Constraints

The Euler-Lagrange equations of motion for constrained robot manipulators can

be written in the form [23]:

De(qe)q̈e +He(qe, q̇e) = Be(qe)u+ JT (qe)Fst, (2.8)
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where Fst is a vector of Lagrange Multipliers. For our specific choice of J(qe), i.e. the

Jacobian of the position and orientation of the sole of the stance foot, the elements

in Fst are the resulting reaction forces and moments acting on the robot’s foot at

the position described by the projection of the ankle onto the sole. To obtain an

expression for Fst, first rewrite (2.8)

q̈e = D−1e (qe)(−He(qe, q̇e) +Be(qe)u+ JT (qe)Fst), (2.9)

and then substitute (2.9) into (2.7) to obtain

J̇(qe, q̇e)q̇e + J(qe)D
−1
e (qe)(−He(qe, q̇e) +Be(qe)u+ JT (qe)Fst) = 0 (2.10)

Finally, rewrite (2.10)

Fst =
[
J(qe)D

−1
e (qe)J

T (qe)
]−1 [

J(qe)D
−1
e (qe)(He(qe, q̇e)−Be(qe)u)− J̇(qe, q̇e)q̇e

]
,

(2.11)

which is an expression for the reaction forces and wrenches describing the influence of

the ground on the robot, at the interface between the sole of the foot and the ground;

(2.11) is used to verify that the reaction forces induced by our control law u satisfy

ZMP conditions. These forces and moments, described by (2.11), are substituted

into (2.8) to yield the constrained equations of motion for the biped:

D(q)q̈ +H(q, q̇) = B(q)u (2.12)

with D(q) ∈ R10×10 a constrained generalized inertia matrix, H(q, q̇) ∈ R10 and

B(q) ∈ R10×10.
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2.2.3 Constraints on the Walking Gait

This section presents the computation of the constraints which must be satisfied

to maintain planar contact between the stance foot and the ground.

Stance Foot Constraints. The element-wise Lagrange multipliers, Fst, in (2.11),

are labeled

Fst = (F fx
st , F

fy
st , F

fz
st , F

mx
st , F

my
st , F

mz
st ) (2.13)

where the first three components are the forces and the last three components are the

moments acting on the stance foot. To prevent rotation about an edge, the following

constraints on the ground reaction moment must hold [7]:

−wf
2
F fz
st < Fmx

st <
wf
2
F fz
st (2.14)

−lhF fz
st < Fmy

st < ltF
fz
st , (2.15)

where wf is the width of the foot, lt is the length of the toe and lh is the length of

the heel. When these inequalities are satisfied, the ZMP (Zero Moment Point) of the

biped is located within the plane of the stance foot [20, 41].

Nonstance Foot Constraints. To satisfy the flat foot modeling assumption, the

nonstance foot must make planar contact with the ground, i.e., the foot must land

flat. Therefore, define two kinematic outputs computed over the modeled-robot’s

state: ψRx (q), the absolute roll angle of the nonstance foot, and ψRy (q), the absolute

pitch angle of the nonstance foot. These constraints are enforced via control, as

discussed in Section 3.2; where the nonstance foot is driven to be parallel to the

ground throughout the entire gait; as a result, ψRx (q(t)) ≡ ψRy (q(t)) ≡ 0 for all t.
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2.3 Impact Mechanics

An impact – in the gait of consideration – occurs when the nonstance foot hits the

ground. Based on the instantaneous double-support phase assumption, the nonstance

foot immediately becomes the stance foot after impact and furthermore, the stance

foot is assumed to always be in planar contact with the ground. Therefore, the

nonstance foot must make planar contact with the ground during impact. The

mechanics of robot-ground impacts are modeled using the rigid-body impact method

of [18, 38, 42], closely following the formulation in [42]. Specifically, at an impact

the Euler-Lagrange equations of motion are:

De(qe)q̈e +He(qe, q̇e) = Be(qe)u+ δFext, (2.16)

where δFext is a vector of external (impact) forces incurred by collision of the non-

stance foot and the walking surface. Integrating this equation over an infinitesimally

small time, yields

De(q
+
e )q̇+e −De(q

−
e )q̇−e = Fext (2.17)

where Fext :=
∫ t+
t−
δFext(τ)dτ is the result of integrating the impulsive contact force of

the impact duration, q̇−e is the velocity just before the impact and q̇+e is the velocity

just after the impact.

Attach a body-fixed frame, Rnst to the projection of the nonstance ankle on the

nonstance foot, and let pnst(qe) and φnst(qe) be the position and orientation of Rnst
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with respect to the world frame. At impact,

 pznst(qe)

φnst(qe)

 = 0, (2.18)

where pznst(qe) describes the vertical position of the foot with respect to the floor. It

follows from the principle of virtual work that

Fext = JTnst(qe)Fnst (2.19)

where Jnst(qe) = ∂
∂qe
pnst(qe) and Fnst is a a vector of reaction forces and moments

which the ground imparts on the nonstance foot. The combined set of equations

yields

 De(q
−
e ) −JTnst(qe)

JTnst(qe) 0


 q̇+e

Fnst

 =

 De(q
−
e )q̇−e

0

 . (2.20)

the post impact velocity and corresponding impact forces can then be obtained by

solving

 q̇+e

Fnst

 =

 De(q
−
e ) −JTnst(qe)

JTnst(qe) 0


−1  De(q

−
e )q̇−e

0

 , (2.21)

To simplify notation, the change in velocity due to impact is written:

q̇+e = ∆q̇(q
−
e )q̇−e . (2.22)
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2.4 Hybrid System Model

A hybrid control system model encapsulates all components of the robot model

in this section. Here, the robot is modeled as a simple hybrid control system:

H C R = (DR, UR, SR,∆R, fR, gR). (2.23)

The individual elements of this hybrid system are obtained through traditional meth-

ods, as discussed in the following paragraphs.

The domain, DR, specifies the allowable configuration of the system while the

guard, SR, indicates the edge of the domain, i.e. the configuration in which the robot

transitions out of the given domain. The domain is specified by the list of assumptions

made on the biped’s gait in Section 2.1.1, in particular, the single-support domain

is the set of all joint angles and velocities such that the nonstance foot is above the

ground. Mathematically, this is described by a unilateral constraint function, hR(q),

the height of the nonstance foot above the walking surface. ZMP constraints on the

stance foot are treated as implicit admissibility conditions; only gaits in which ZMP

are satisfied (via proper control design) are considered. The guard event occurs when

the nonstance foot strikes the ground, i.e. the instantaneous double support phase

of the assumed walking gait. The domain and guard are given by:

DR =
{

(q, q̇) ∈ TQR : hR(q) ≥ 0
}
.

SR =
{

(q, q̇) ∈ TQR : hR(q) = 0 and dhR(q)q̇ < 0
}
,

where dhR(q) is the Jacobian of hR at q.

In a simple hybrid system, the reset map, ∆R, is a map from the guard to the
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domain, i.e.

∆R : SR → DR, ∆R(q, q̇) =

 ∆qq

∆q̇(q)q̇

 , (2.24)

where ∆q is the relabeling matrix which switches the stance and non-stance leg at

impact (by appropriately changing the angles). Here, ∆q̇ determines the change in

velocity due to impact (see [18], [13] and [3]).

The affine control system, (fR, gR), is a set of first order ordinary differential equa-

tions (ODEs) obtained from the equations of motion under holonomic constraints

(2.12) and which can be written:

ẋ = fR(x) + gR(x)u (2.25)

where

fR(q, q̇)=

 q̇

−D−1(q)H(q, q̇)

 , gR(q)=

 0

D−1(q)B(q)

,
with UR ⊂ R10 a set of constraints on the admissible joint torques, i.e. actuator

torque limitations that are obtained from the robot hardware specification sheets.

The control system describes the continuous-time evolution of the robot model and

is paramount in the construction of control laws for walking, as discussed in the next

section.
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3. WALKING CONTROLLER CONSTRUCTION

The Human-Inspired Optimization (HIO) is a method for rapidly generating

walking controllers for a robot model; the HIO provides a torque control law, u,

and fixed point, x∗, corresponding to a stable periodic orbit in the state-space of the

hybrid system model of the robot (2.23). The method leverages insight obtained from

human walking data; specifically that human walking data suggest bipedal human

walking can be represented by a set of kinematic output “behaviors” which follow

a very simple function. These simple behaviors found in human walking data mo-

tivate the design of parameterized control objectives or outputs which are imposed

on the robot model through Feedback Linearization [35]. Values of the control pa-

rameters are obtained through the solution of a constrained nonlinear optimization

problem which minimizes the least-squares error of robot and human output func-

tions while satisfying physical constraints, e.g. actuator torque limits, and ensuring

that the resulting hybrid system has a stable periodic orbit. That is, after solving

an optimization problem, we obtain parameters for control laws, which we apply to

the robot control system and achieve periodic walking which, through minimizing

the cost to human data, looks remarkably human-like. This section describes the

Human-Inspired Optimization approach for obtaining single-domain walking in a 10

degree of freedom (DOF), 3D robot model.
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3.1 Insights from Human Walking Data

Human walking can be represented, with high correlation, as a set of simple be-

haviors; this revelation by Dr. Ames in the summer of 2011 was the genesis of the

Human-Inspired Optimization method [3]. The main idea behind this method is that

the simple behaviors humans display in walking can be used as suggestions for the

construction of robot behaviors (outputs) for robot walking controllers. Specific sets

of these outputs are sought which seem to encode certain fundamental kinematics

behaviors present in human walking. This section describes the processing and in-

spection of human walking data for the purpose of furthering our understanding of

bipedal locomotion.

3.1.1 Data Collection

Human walking data were obtained in a set of experiments conducted by Dr.

Bajcsy at the University of California, Berkeley [40]. In these experiments, test

subjects walked forward along a straight line and on a level floor. The goal of these

experiments was to track the evolution of the spatial positions of specific points on the

human body during walking on flat ground. For each trial in the experiments, LED

sensors were fixed to a test subject in key locations, such as the joints, along the lower

body. As the test subject walked forward, the spatial XYZ position (with respect to

a fixed reference frame) of each LED sensor was measured using the Phase Space [27]

system – which measures the position of LED sensors with a 1 millimeter accuracy

at a sampling rate of 480 Hz. The relevant data used from these experiments is the

mean data from 11 trials per subject for 9 subjects. Figure 3.1a is a representation

of the LED sensor layout on a given test subject - with RED circles indicating LED

sensor placement at the joints of the lower body.
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Figure 3.1: Visualization of the LED sensor placement used on test subjects during
the walking experiments (left) and a fit of (3.2) to the mean data for the forward
position of the hip vs time (right).

3.1.2 Data Analysis

Consider the data corresponding to a single trial in the experiments. Let T ∈ R

denote the total time elapsed during the trial, and K ∈ N denote the total number

of samples collected. Let t[k] be the time associated with a discrete sampling event k

during the trial, with k ∈ {1, 2, ..., K} and where t[1] = 0 and t[k] < t[k+1]. The cor-

responding position of an LED, `, at a sampling event time t[k] is given by p`(t[k]) =

(px` (t[k]), py` (t[k]), pz`(t[k])), with ` ∈ {sh, st, sa, sk, ship, nship, nsk, nsa, nst, nsh}.

These LED position data are used to compute various kinematic quantities, or out-

puts, of the human lower body at each sampled point in time. For example, the

“nonstance slope output”, mnsl(t[k]) is calculated via

mnsl(t[k]) :=
pxnship(t[k])− pxnsa(t[k])

pznship(t[k])− pznsa(t[k])
. (3.1)

23



The nonstance slope represents a virtual line segment from the test subject’s non-

stance hip to the nonstance ankle. Examination of human walking data over a single-

step interval indicates that this output seems to perform a vital role in walking – an

insight that will be further expounded upon in the following sections.

Another observation from the walking data is that all test subjects in the afore-

mentioned experiments displayed a linear relationship in “forward” position1 of the

hip data with respect to time. Specifically, all test subject’s x-position of the hip

data can be fit with high correlation via the following function:

pxhip(t[k]) = vxhipt[k] + pxhip(t[1]), (3.2)

with vxhip ∈ R a positive constant. This data is shown in Figure 3.1b.

The nonstance slope, forward position of the hip and other kinematic maps on the

data are termed “human walking outputs” as they represent the kinematic outputs of

the human locomotion control system. The motivation of studying these outputs is

that they provide a representation of the mechanics of human walking which abstracts

away the complexity of the human locomotor system. The goal is to identify key

outputs associated with successful (human) bipedal locomotion, which will ultimately

provide suggestions on control design for successful (robot) bipedal locomotion.

3.1.3 Simple Behaviors Observed in Human Walking

After further investigation, Dr. Ames found that the data for several human

walking outputs could all be represented by a single candidate function termed the

1Note that x is the “forward” direction for the choice of coordinate system in this thesis, see
Figure 2.1.
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canonical human walking function:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5, (3.3)

which represents the solution to an under-damped mass-spring-damper system. This

becomes apparent by noting that α1 = c0, α2 = ωd, α3 = c1, α4 = ζωn and α5 = ĝ,

where ζ is the damping ratio, ωn is the natural frequency, ωd = ωn
√

1− ζ2 is the

damped natural frequency, c0 and c1 are determined by the initial conditions of the

system, and ĝ is a gravity-related constant.

The human walking outputs relevant to this thesis are given in Table 3.1. The

linearized position of the hip and nonstance slope, δphip and δmnsl, are given by:

δphip(θ) = Lc(−θsa) + Lt(−θsa − θsk) (3.4)

δmnsl(θ) = −θsa − θsk − θsh − θnsh +
Lc

Lc + Lt
θnsk (3.5)

where Lc and Lt are the lengths of the calf and thigh, respectively. The degree to

which the human canonical walking function (3.3) can represent the human walk-

ing data is determined by a least squares fit. Represent the mean human output

Table 3.1: Human walking outputs.

Human Output Description Canonical Function
δphip the linearized x-position of the hip δpdhip(t, v) = vhipt

δmnsl the linearized slope of the non-stance leg δmd
nsl(t, αnsl) = yH(t, αnsl)

θsk the angle of the stance knee θdsk(t, αsk) = yH(t, αsk)
θnsk the angle of the nonstance knee θdnsk(t, αnsk) = yH(t, αnsk)
θtor the absolute sagittal angle of the torso θdtor(t, αtor) = yH(t, αtor)
ϕsa the coronal angle of the stance ankle ϕdsa(t, αsa) = yH(t, αsa)
ϕsh the coronal angle of the stance hip ϕdsh(t, αsh) = yH(t, αsh)
ϕnsh the coronal angle of the nonstance hip ϕdnsh(t, αnsh) = yH(t, αnsh)
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Figure 3.2: “Walking Outputs”, as computed on experimental human locomotion
data, are shown versus (normalized) time for one continuous phase of walking. The
corresponding least-squares fits using the canonical walking function are displayed
in red.

data by yHi [k] and the canonical walking functions by ydi (t, αi) for i ∈ Output =

{nsl, sk, nsk, tor, sa, sh, nsh}; for example, yHsa[k] = ϕHsa[k] and ydsa(t, αsa) = ϕdsa(t, αsa).

Define the following human-data-based cost function:

CostHD(α) =
K∑
k=1

∑
i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2
(3.6)

which is simply the sum of squared residuals. To determine the parameters for the
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human walking functions, we need only solve the optimization problem:

α∗ = argmin
α∈R36

CostHD(α) (3.7)

which yields the least squares fit of the mean human output data with the canonical

walking functions. The parameters given by solving this optimization problem are

stated in Table 3.2. The correlations, as given in the same table, show that the

fitted walking functions very closely model the human output data, i.e., the chosen

human walking functions appear to be, in fact, canonical. Indeed, the coefficients of

correlation are all very high, ranging from 0.8767 to 0.9997. These output functions

are used in the development of robotic walking controllers as discussed in the next

section.

Table 3.2: Parameter values of the canonical walking function obtained via a least
squares fit to the experimental human data.

yd1 = vhipt, yd2 = yH(t, α) given in (3.3)
f. vhip a1 a2 a3 a4 a5 Corr.

δphip 0.2288 — — — — — 0.9984
δmnsl — -0.0065 8.9157 0.1162 -2.2638 0.2750 0.9997
θsk — -0.1600 12.4473 0.0980 3.6061 0.3240 0.9751
θnsk — -0.3322 -10.2168 -0.1109 -0.9345 0.6772 0.9948
θtor — -0.0166 10.4416 -0.0033 3.2976 0.0729 0.8767
ϕsa — 0.0543 -0.0000 0.0137 4.0740 -0.2686 0.9952
ϕsh — 0.0543 -0.0000 0.0137 4.0740 -0.2686 0.9952
ϕnsh — 0.0170 1.1655 -0.0174 -5.9435 -0.2615 0.9896
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3.2 Controller Design

Motivated by the desire to obtain human-like, bipedal robotic locomotion, the

goal is to construct a controller which drives outputs of the robot to the “human

walking outputs” discussed in the previous section. This goal is effected formally

through a control law u : TQR → UR which guarantees that ya(q(t)) → yd(t)

exponentially as t → ∞, where ya : QR → R10 is a vector of kinematics maps on

the robot representing the human outputs and yd : R→ R10 is a vector of canonical

human functions. As the dynamics of the robot model are highly nonlinear, a natural

choice of control method for this system is Input/Output Linearization [35].

The affine control system for the hybrid system model of our robot, (2.25), can

be written as a Multi-Input Multi-Output (MIMO) system of the form, which

ẋ = fR(x) + gR(x)u (3.8)

y = ya(x)− yd(x) (3.9)

with x ∈ R2n, y ∈ Rm and u ∈ Rm (recall that n=m are the number of actuated

degrees of freedom in our model). This system is called “square” as the number

of inputs equals the number of outputs. As discussed above, the objective is to

design a u(x) that ensures y → 0 exponentially fast, resulting in convergence of

actual robot outputs , ya(x), to corresponding desired values, yd(x). The following

section describes how the actual and desired output functions are designed from the

conclusions drawn on human locomotion data. Parameters for the desired output

functions will be determined via optimization, as discussed later in this section.
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3.2.1 Actual and Desired Robot Outputs

The construction of this control law uses the human walking functions considered

in Section 3.1.3. With the goal of controlling the velocity of the robot, define the

relative degree 1 actual output as the velocity of the hip and define the the desired

velocity of the hip:

ya1(q, q̇) = δṗRhip(q, q̇) = dδpRhip(q)q̇, yd1 = vhip. (3.10)

Furthermore, define the linear (relative degree 2) actual outputs of the robot to be

the output functions considered in Section 3.1.3 and the desired outputs to be the

corresponding outputs of the human as represented by the walking functions:

ya2,L(q) =



δmR
nsl(q)

θsk

θnsk

θRtor(q)

ϕsa

ϕsh

ϕnsh



, yd2,L(t, α) =



yH(t, αnsl)

yH(t, αsk)

yH(t, αnsk)

yH(t, αtor)

yH(t, αsa)

yH(t, αsh)

yH(t, αnsh)



, (3.11)

where ya2,L : QR → R7 are the actual linear outputs of the robot, and yd2,L : R×R35 →

R7 are the desired functions for these linear outputs. The actual linear outputs of

the robot, ya2,L(q), are carefully chosen to only depend on the first eight angles of the

system. That is, define q1:8 by:

q1:8 = {ϕsa, θsa, θsk, θsh, ϕsh, ϕnsh, θnsh, θnsk} ⊂ q, (3.12)
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which are all angles except the nonstance ankle angles. Due to the linear form of the

outputs considered, they can be written as:

ya2,L(q) = H q1:8 (3.13)

for H ∈ R7×8 with full row rank (where, for example, the top row of H is obtained

by taking the Jacobian of (3.5)). This linear form is essential in the construction

of the optimization problem of Section 3.3 and is only applicable to the first eight

angles of the system. To complete the set of controller outputs, the final nonlinear

relative degree two outputs from Section 2.2.3 are needed:

ya2,N(q) =

 ψRx

ψRy

 , yd2,N(t, α) =

 yH(t, αψx)

yH(t, αψy)

 . (3.14)

Note that ya2,N(q) depend on all ten angles of the system. Grouping the linear and

nonlinear relative degree two outputs results in:

ya2(q) =

 ya2,L(q)

ya2,N(q)

 , yd2(t, α) =

 yd2,L(t, α)

yd2,N(t, α)

 . (3.15)

The parameters of all of the outputs can be combined to yield a single vector α ∈ R46.

3.2.2 Parameterization of Time

The goal is for the outputs of the robot to agree with the outputs of the human,

motivating the final form of the outputs to be used in feedback linearization:

y1(q, q̇, α) = ya1(q, q̇)− vhip, (3.16)

y2(q, α) = ya2(q)− yd2(τ(q), α), (3.17)
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where

τ(q) =
δpRhip(q)− δpRhip(q+)

vhip
, (3.18)

is a state-based parameterization of time with δpRhip(q+) the linearized position of the

hip of the robot at the beginning of a step. This parameterization is important as it

allows for control over walking speed through the parameter vhip.

3.2.3 Torque Controller via Feedback Linearization

Feedback linearization is used to obtain a linear input-output relationship in the

dynamics of the outputs. Specifically, the first time-derivative of the relative degree

one outputs yields a linear relationship between ẏ1 and u:

ẏ1 =
∂y1
x
fR(x) +

∂y1
x
gR(x)u (3.19)

:= LfRy1(x) + LgRy1(x)u (3.20)

where LfRy1(x) = ∂y1
x
fR(x) and LgRy1(x) = ∂y1

x
gR(x) are called the Lie derivatives

of y1 with respect to fR and gR, respectively. Note that as y1 is a function of the

joint velocities, LgRy1(x) 6= 0, and hence, it is an output of vector relative degree one

[35].

The relative degree two outputs are differentiated twice to yield a linear relation-

ship between ÿ2 and u, with the first derivative calculated via:

ẏ2 =
∂y2
x
fR(x) +

∂y2
x
gR(x)u (3.21)

:= LfRy2(x) +���
���:0

LgRy2(x)u, (3.22)
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and the second derivative given by

ÿ2 =
∂LfRy2
x

fR(x) +
∂LfRy2
x

gR(x)u (3.23)

:= L2
fRy2(x) + LgRLfRy2(x)u. (3.24)

These outputs can be used to define a human-inspired controller:

uα,ε(q, q̇) = (3.25)

−

 LgRy1(q)

LgRLfRy2(q)


−1

 0

L2
fRy2(q, q̇)

+

 LfRy1(q, q̇)

2εLfRy2(q, q̇)

+

 εy1(q, q̇)

ε2y2(q)


 ,

with control gain ε. The pre-multiplied matrix is known as the decoupling matrix

and is non-singular because of the careful choice of output functions, i.e., as discussed

in Section 3.1.3. This control law results in the following dynamics on the outputs:

ẏ1 = −εy1 (3.26)

ÿ2 = −2εẏ2 − ε2y2

and it follows that for a control gain ε > 0, the control law uα,ε : TQR×R46×R+ →

UR renders the output exponentially stable [35]. That is, the human-inspired output

y → 0 exponentially at a rate of ε as t → ∞; in other words, the outputs of the

robot will converge to the canonical human walking functions exponentially quickly.

For the hybrid control system H C R, the human-inspired control law is applied

to obtain the hybrid system

H R
α,ε = (DR, SR,∆R, fRα,ε) (3.27)
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with

fRα,ε(q, q̇) = fR(q, q̇) + gR(q, q̇)uα,ε(q, q̇). (3.28)

The end result of the modeling process is a hybrid system H R
α,ε that depends on the

parameters of the human inspired control α and ε.

3.2.3.1 Zero Dynamics

For the continuous dynamics of the hybrid system H R
(α,ε), the controller renders

the full zero dynamics surface

FZα =
{

(q, q̇) ∈ TQR : y1(q, α) = 0, y2(q, q̇, α) = 09, LfRy2(q, q̇, α) = 09

}
(3.29)

exponentially stable (where 0n is a vector of n zeros). However, enforcing invariance

of this surface through the discrete impacts would be too strong of a requirement since

it would force the system to evolve on a 1-dimensional manifold. Therefore, hybrid

invariance is enforced only for the relative degree 2 outputs. The corresponding

surface is referred to as the partial zero dynamics surface

PZα =
{

(q, q̇) ∈ TQR : y2(q, α) = 09, LfRy2(q, q̇, α) = 09

}
. (3.30)

Since the only output that is not included in the partial zero dynamics surface is

the forward velocity of the hip, enforcing partial hybrid zero dynamics, rather than

full hybrid zero dynamics, means that the velocity of the hip is allowed to drift at

impact; relaxation of the forward velocity output helps mitigate the impulsive effects

induced on the control system through foot-ground impact.
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3.3 Human Inspired Walking Controller Optimization

This section presents the main result of this paper: an optimization problem

which yields parameters for the human-inspired controller, uα,ε, that minimize a

human data-based cost function [5] while simultaneously yielding robotic walking in

simulation and satisfying physical constraints of the actual robot hardware. A novel

method is presented for computing these constraints in closed form (rather than

explicitly integrating the dynamics) through the interplay between full and partial

hybrid zero dynamics.

3.3.1 Objective Function

The objective, or cost, function of the proposed optimization is the human-data

based cost function, (3.6), used in Section 3.1.3 to correlate the canonical human

walking function with experimental walking data. Recall that this cost function is the

sum of least squares fits of desired outputs, described by (3.3), to the corresponding

mean human data. Stated again for reference, the human-data based cost (3.6) is

computed via

CostHD(α) =
K∑
k=1

∑
i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2
.

The goal is to minimize this function; as CostHD(α)→ 0, the desired robot behavior

becomes increasingly similar to human behavior – on the level of walking outputs.

Differences in morphology between robot and human locomotor systems – and the

rigorous notion of walking considered here – make it very unlikely that an exact

fit, CostHD(α) = 0, would result in robot walking. That is to say, we expect that

to satisfy constraints on robotic walking, as discussed in the following section, the

optimized robot outputs should slightly deviate from the human output data.
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3.3.2 Equality and Inequality Constraints

Several constraints must be enforced on the optimization problem to ensure that

the optimized controller parameters yield stable walking in simulation and satisfy

the physical modeling limitations of the actual robot hardware, e.g. balanced ground

reaction forces and motor performance specifications. These constraints, however,

require computation of the robot’s state over the course of one step. This could

be done through numeric integration, but this would be computationally expensive.

Therefore, a method of computing the robot’s state, (qs, q̇s), as a function of t and

α is first presented.

3.3.2.1 Partial Hybrid Zero Dynamics Constraints

Following from [3, 4], to compute the constraints needed to ensure partial hybrid

zero dynamics, the outputs and guard functions are used to explicitly solve for the

configuration of the system ϑ(α) ∈ QR on the guard (hR(ϑ(α)) = 0) in terms of the

parameters α. In particular, let

ϑ(α) = q s.t. y2(∆qq) = 09 and hR(q) = 0 (3.31)

where ∆q is the relabeling matrix (2.24). Note that multiple solutions to ϑ(α) exist

because yd2,N(∆qq) and hR(q) are nonlinear functions of all joint angles; however,

restrictions are placed on ϑ(α) such that only one solution corresponds to a valid

configuration. Using ϑ(α) allows for the explicit solution of a point (ϑ(α), ϑ̇(α)) ∈

FZα ∩ SR. In particular, let

Y (q) =

 dδpRhip(q)

dy2(q)

 . (3.32)
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It follows from the definition of y1 and y2 that

 y1(q, q̇)

LfRy2(q, q̇)

 = Y (q)q̇ −

 vhip

09

 . (3.33)

Therefore, define

ϑ̇(α) = Y −1(ϑ(α))

 vhip

09

 , (3.34)

where Y is invertible because of the choice of outputs. Finally, the constraints needed

for partial hybrid zero dynamics can be written:

y2(ϑ(α)) = 09, (3.35)

dy2(∆qϑ(α))∆q̇(ϑ(α))ϑ̇(α) = 09, (3.36)

dhR(ϑ(α))ϑ̇(α) < 0. (3.37)

3.3.2.2 Computing solutions: qs(t, α) and q̇s(t, α) on a PHZD surface

This section utilizes the fact that the human outputs were specifically chosen to

be linear in order to explicitly construct the partial hybrid zero dynamics. Because

of the specific choice of ya2,L, the following representation of the partial zero dynamic

coordinates is employed:

ξ1 = δpRhip(q) =: c q1:8, (3.38)

ξ2 = ya1(q, q̇) = δṗRhip(q, q̇) =: c q̇1:8.
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where c ∈ R1×8 is obtained from (3.4) and recalling that q1:8 ⊂ q is a vector of all

angles of the system except the nonstance ankle angles. By (3.26), the partial zero

dynamics is therefore given by:

ξ̇1 = ξ2, (3.39)

ξ̇2 = −ε(ξ2 − vhip). (3.40)

Moreover, since ξ1 is just the linearized position of the hip, which is used to param-

eterize time, the desired relative degree two outputs can be written yd2,L(τ(q), α) =

yd2,L(ξ1, α). Integrating (3.40) yields a closed form expression for the actual velocity

of the hip at some time t after impact:

ξ2(t) =

∫ t

0+
−ε(ξ2(τ)− vhip)dτ = vhip + (ξ2(0

+)− vhip)e−εt (3.41)

and integrating once more gives the actual position of the hip:

ξ1(t) =

∫ t

0+
vhip + (ξ2(0

+)− vhip)e−ετdτ (3.42)

= ξ1(0
+) + vhipt+

1

ε
(ξ2(0

+)− vhip)(1− e−εt) (3.43)

Using the solution to the inverse kinematics problem, (3.31), an exact expression of

the evolution of the position and velocity of the hip are given by

ξs1(t) := ξ1(∆qϑ(α)) + vhipt+
1

ε
(ξ2(∆qϑ(α),∆q̇(ϑ(α))ϑ̇(α))− vhip)(1− e−εt),

ξs2(t) := vhip + (ξ2(∆qϑ(α))− vhip)e−εt. (3.44)
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These expressions can be used in the partial zero dynamics surface to obtain an exact

solution for the full-order system by picking the coordinates

η1 = ya2,L(q) = H q1:8, (3.45)

η2 = LfRy
a
2,L(q, q̇) = H q̇1:8,

with H ∈ R7×8 as in (3.13), and defining

Φ(ξ1, α) =

 c

H


−1

8×8

 ξ1

yd2,L(ξ1, α)

 , (3.46)

Ψ(ξ1, α) =

 c

H


−1

8×8

 1

∂yd2,L(ξ1,α)

∂ξ1

 . (3.47)

These yield solutions of the first eight angles and corresponding velocities of the

system:

qs1:8(t, α) = Φ(ξs1(t), α), (3.48)

q̇s1:8(t, α) = Ψ(ξs1(t), α)ξs2(t). (3.49)

Denote the remaining two angles of the system by q9:10 := {θnsa, ϕnsa} ⊂ q, such that

(q1:8 ∪ q9:10) = q. Solutions of the final four states of the system qs9:10 and q̇s9:10 are

computed under the assumption that the nonstance foot remains flat throughout the

gait (achieved via control). Specifically, let Rnsf
0 (q) be a rotation matrix describing

the orientation of the nonstance foot in the world frame. Note that Rnsf
0 (q) can

be represented as the product of intermediate rotation matrices, Rnsa
0 (q1:8) which

describes the orientation of a frame attached to the nonstance ankle with respect
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to the world frame, and Rnsf
nsa(q9:10) which describes the orientation of the nonstance

foot frame with respect to the nonstance ankle frame:

Rnsf
0 (q) = Rnsa

0 (q1:8)R
nsf
nsa(q9:10), (3.50)

where Rnsa
0 (qs1:8) is known via the solution to (3.48) for the first eight angles of the

system. To solve for the last two angles of the system, the following equation will be

used:

Rnsf
nsa(q9:10) = [Rnsa

0 (q1:8)]
−1Rnsf

0 (q), (3.51)

and this will be accomplished by leveraging standard properties of rotation matrices

to extract an equation for θsa and an equation for ϕsa. Specifically, Rnsf
0 (q) – and

any rotation matrix – can be also represented by a set of three Euler angles [36],

θX , θY , θZ :

Rnsf
0 (q) = R(θX)R(θY )R(θZ), (3.52)

where θX , θY , θZ describe rotations about the world frame X, Y, Z axes, respectively.

Due to the flat nonstance foot assumption, θX = θY = 0, and thus, Rnsf
0 (q) can be

described by a matrix whose elements are functions of θZ :

Rnsf
0 (q) =


cos(θZ) − sin(θZ) 0

sin(θZ) cos(θZ) 0

0 0 1

 (3.53)
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Additionally, we know – by definition of the robot joint axes in Section 2.1.2 – that

Rnsf
nsa(q9:10) is a rotation matrix whose elements are given by:

Rnsf
nsa(q9:10) =


cos(θsa) sin(θsa) sin(ϕsa) sin(θsa) cos(ϕsa)

0 cos(ϕsa) − sin(ϕsa)

− sin(θsa) cos(θsa) sin(ϕsa) cos(θsa) cos(ϕsa)

 (3.54)

With these properties, we are now ready to solve for θsa and ϕsa. Denote the element

in the ith row of the jth column in [Rnsa
0 (q1:8)]

−1 by rij, and use (3.53) so that (3.51)

can be rewritten:

Rnsf
nsa(q9:10) =


r11 r12 r13

r21 r22 r23

r31 r32 r33




cos(θZ) − sin(θZ) 0

sin(θZ) cos(θZ) 0

0 0 1

 , (3.55)

where the value of each rij is known through qs1:8. Equating the third columns of

(3.54) and (3.55) yields


sin(θsa) cos(ϕsa)

− sin(ϕsa)

cos(θsa) cos(ϕsa)

 =


r13

r23

r33

 , (3.56)

from which we obtain equations for the final two angles of the system, θsa and ϕsa:

θsa(t, α) = tan−1
(
r13
r33

)
(3.57)

ϕsa(t, α) = tan−1
(
−r23 cos(θsa)

r33

)
. (3.58)

It follows that (qs, q̇s) ∈ PZα.
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3.3.2.3 Model Constraints

To ensure that the stance foot remains flat as the human-inspired controller is

applied to the robot, the ground reaction inequalities from Section 2.2.3 are computed

over the course of one step through the approximation to the solution. Specifically,

the elements of Fst are all functions of the torque provided to the system. Therefore,

equations (2.14)-(2.15) can be rearranged and stated in terms of inequalities of the

form Ci(u) < 0 for i ∈ {1, . . . , 4}. Moreover, using the solution to the robot states,

(qs(t, α), q̇s(t, α)), the torque is computed at each time, t, over the course of a step:

usα,ε(t) :=uα,ε(q
s(t, α), q̇s(t, α)). (3.59)

Therefore, the ZMP constraints on the stance foot can be stated as the constraint:

max
i∈{1,...,4}

max
t∈[0,τ(ϑ(α))]

Ci(u
s
α,ε(t)) < 0, (3.60)

where τ(ϑ(α)) is the duration of a step.

The nonstance foot is controlled to be parallel to the ground through the following

constraints on α:

αψx = 01×5, αψy = 01×5. (3.61)

These constraints on αψx and αψy reduce the size of the optimization search space

to R36. Through input/output linearization and this choice of parameters, the ori-

entation of the nonstance foot is exponentially driven to be parallel with respect to

the ground plane.
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3.3.3 Optimization Problem Statement

The goal of human-inspired PHZD optimization is to find parameters α∗ which

solve the following constrained optimization problem:

α∗ = argmin
α∈R46

CostHD(α) (3.62)

s.t. (3.35), (3.36), (3.37), (3.60), (3.61)

with CostHD the cost given in (3.6). The main result of this paper is established by

combining the constructions and results of this section with Theorem 2 of [4]. It par-

ticular, it establishes that solving this optimization problem results in a exponentially

stable periodic orbit for H R
α∗,ε.

Theorem 1 Let α∗ be parameters solving (3.62). If τ(ϑ(α)) > 0 then there exists a

constant ε > 0 such that for all ε > ε the hybrid system H R
α∗,ε has an exponentially

stable periodic orbit. Moreover, for (q∗ε , q̇
∗
ε) the fixed point of this orbit, and Tε the

period, the following properties are satisfied:

lim
ε→∞

Tε = τ(ϑ(α∗)) (3.63)

lim
ε→∞

(q∗ε , q̇
∗
ε) = (ϑ(α∗), ϑ̇(α∗)) (3.64)

This theorem was proved by Dr. Ames in [4]; and as a result of the theorem, if we

can solve the optimization problem, (3.62), then we will have obtained a set of pa-

rameters corresponding to bipedal robotic walking controllers along a stable periodic

orbit. In the next section, we describe the application of this optimization method

for the two walking robots of this study, and we show results from implementation

of the resulting control laws in simulation and on hardware.
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4. WALKING CONTROLLER IMPLEMENTATION

This section describes the results from implementation of the Human-Inspired

Walking control design method in simulation and hardware demonstrations with

two robot systems: the Leg Testbed robot at NASA Johnson Space Center (JSC)

and the NAO robot in the AMBER Lab at Texas A&M. For each robot, we pose and

solve the Human-Inspired Optimization to obtain controller parameters correspond-

ing to stable, periodic walking in rigid-body dynamics simulation – results from these

simulations are provided in the form of figures showing periodic orbits, states and

torques, and kinematics of the walking. Additionally, we present the results from

successful implementation of the control method on the two robot hardware systems.

Figure 4.1: The Leg Testbed prototype biped robot.
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4.1 JSC Leg Testbed Robot

As part of NASA’s Graduate Student Research Fellowship program, we are for-

tunate to have the opportunity to implement our robot walking control method on

a prototype biped robot which was built by engineers at NASA’s Johnson Space

Center and is referred to as the “Leg Testbed” robot. This prototype is a meter tall

and weighs approximately 70 kilograms. The Leg Testbed, shown in Figure 4.1, uses

technology similar to that of Robonaut 2 [2] – the first humanoid robot in space.

Specifically, all joints on the Leg Testbed – except the ankles – are driven by series

elastic actuators and the motor control system consists of twelve physically distinct

motor drivers – one for each motor.

The rigid-body modeling process, as described in Section 2, is used to obtain a

hybrid system model of the Leg Testbed (in the form of MATLAB code); inertial

and length properties of the Leg Testbed, as used to compute the kinematics and

the Lagrangian, are obtained through classified ProE CAD models. To simplify the

mathematical model, the series elastic actuators are assumed to be perfect torque

sources. Furthermore, the yaw joints are assumed to be fixed. Thus, the Leg Testbed

is treated as a rigid, 10 degrees of freedom (DOF) system with the same ordering of

Table 4.1: Optimized control parameter values for the Leg Testbed robot model.

f. vhip a1 a2 a3 a4 a5
phipL 0.2073 * * * * *
mnsL * 0.0334 6.8777 0.0283 -1.3716 -0.0739
qsk * -0.0052 16.2863 0.0518 6.6773 0.7624
qnsk * -0.2667 -10.1798 -0.0088 -0.0566 1.0290

thetatorso * 0.0004 7.2555 -0.0076 4.8858 0.0081
qsar * 0.1443 -2.3936 0.1930 0.6970 0.0859
qshr * -0.0790 11.8453 -0.0173 1.3527 0.1108
qnshr * -0.1331 10.9139 -0.0191 0.7723 0.0527
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joint axes as those described in the model of Section 2. The Leg Testbed dynamics are

computed using Spatial Vector Algebra (SVA) [12]; we adapted the publicly available

SVA MATLAB code [11] to compute the specific dynamics of the Leg Testbed.

4.1.1 Optimization

Using the modeled dynamics for the Leg Testbed, the optimization of Section 3.3

is developed and solved in MATLAB code which invokes the fmincon nonlinear

constrained optimization routine. The original best fit to the human data – given

in Table 3.2 – is used as an initial guess of the parameter matrix α0. Constraints

are added to the human-inspired optimization to ensure that the resulting gait is

physically realizable by the Leg Testbed hardware. Specifically, the maximum torque

is constrained to be less than 300 Newton-meters, joint velocities are constrained to

be less than five radians per second and the feet are not allowed to self collide. The

control parameters obtained by solving the optimization for the Leg Testbed are

given in Table 4.1.

4.1.2 Simulation

MATLAB’s ode45 numerical integration function is used to simulate the hybrid

control system, H L
α∗,ε, modeling the Leg Testbed (hence the superscript L); in this

simulation, the robot starts on the point on the guard, (ϑ(α∗), ϑ̇(α∗)), and is con-

trolled via the human-inspired control law, uα∗,ε with parameters α∗ obtained through

optimization and ε = 10 as the control gain. Selected frames from one step of the

simulated walking are shown in Figure 4.2; this figure portrays the aesthetics of the

optimized walking gait, where it can be seen that the stride-length of this gait is rel-

atively short. The conservative stride-length is intended to increase the probability

of success when the controller is translated to implementation on the hardware.

The resulting periodic orbits for the pitch angles and roll angles of the system
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Figure 4.2: Snapshots from the Leg Testbed rigid body dynamics and human-inspired
control walking simulation; here, we show a three-dimensional view (top) and a
saggital plane view (bottom) for the simulated walking behavior.

are given in Figure 4.3a and Figure 4.3b. As seen in these figures, the optimization

successfully limited the maximum joint velocity to be under three radians per second

while still achieving closed periodic orbits. Similarly, through the use of constraints

on the optimized control parameters, the maximum joint torque in simulation of this

walking gait is less than 150 Newton-meters – which is well within the limitations of

the Leg Testbed’s motors. The simulated joint torques are shown in Figure 4.3c and

Figure 4.3d. Perhaps the most remarkable aspect of the simulation of the control

method is that the robot achieves these velocity and torque constraints while satis-

fying ZMP conditions, as see in Figure 4.3e and Figure 4.3f. Indeed, in the solving of

the Human Inspired Optimization for the Leg Testbed, the most difficult constraints

to satisfy is often the ZMP constraints; however, as they are satisfied for the gait of

study, the resulting hardware implementation is much more robust.
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Figure 4.3: This figure presents results from simulation of the Leg Testbed robot
model. The top row shows periodic orbits for the simulated behavior of the Leg
Testbed, showing pitch angles (a) and roll angles (b). The middle row shows stance
torques (c) and nonstance torques (d) from simulation. The bottom row shows that
the simulated gait satisfies pitch (e) and roll (f) ZMP constraints.
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4.1.3 Starting from Rest

The optimization problem yields control parameters corresponding to a periodic

walking gait; however, to realize this walking on the physical hardware system, we

need a control method for starting to walk from rest, i.e. a state with zero joint ve-

locities. This problem motivated the development of “Motion Transitions”, in which

we use control to effect an additional partial hybrid zero dynamics surface which con-

nects the at-rest-state to the periodic walking gait. In particular, we construct an

additional control law for the first step of walking with the Leg Testbed; the primary

goal of this controller is to transition the robot from a resting state to continuous

walking – without falling over. Most of the ground work for “Motion Transitions”

was established to solve the problem of starting from rest with NASA’s Leg Testbed

system; this work was later expanded upon, yielding novel methods for walking speed

control [29], and multi-contact walking [21].

4.1.3.1 Extended Canonical Walking Function

It was found in [30] that to describe more complex walking motions, such as going

up and down stairs, the canonical walking function must be augmented to account

for the role that the environment plays on this system. Specifically, the extended

canonical walking function (ECWF) is given by the time solution to a linear mass-

spring-damper system subject to sinusoidal excitation:

yeH(t, αei ) =e−α
e
i,4t
(
αei,1 cos(αei,2t) + αei,3 sin(αei,2t)

)
+ αei,5 cos(αei,6t) + κ(α) sin(αei,6t) + αei,7, (4.1)
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where κ(αei ) = (2αei,4α
e
i,5α

e
i,6)/((α

e
i,4)

2 + (αei,2)
2 − (αei,6)

2) and i ∈ Outputs. Note that

due to the linearity of the parameters αei,1, α
e
i,3, α

e
i,5 and αei,7 in (4.1), we can write

yeH(t, αei ) = Y e
H(t, αei,2, α

e
i,4, α

e
i,6)



αei,1

αei,3

αei,5

αei,7


(4.2)

where Y e
H(t, αei ) ∈ R1×4 only depends on the parameters αei,2, α

e
i,4, α

e
i,6. The CWF can

naturally be written as a special case of the ECWF by, given parameters αi ∈ R5

for the CWF (3.3), defining ιe(αi) := (αi, 0, 0). Through this embedding, we can

therefore consider the same human-inspired controller that was considered for the

CWF by replacing the CWF with the ECWF in (3.17). Similarly, we can consider

the PHZD surface for the ECWF which we denote by: PZαe . Finally, we note that

since ξ1 is just the linearized position of the hip, which is used to parameterize time,

we can write the parameterized ECWF as yeH(ξ1, ξ
0
1 , vhip, α

e
i ) := yeH(

ξ1−ξ01
vhip

, αei ), which

is now viewed as a function of ξ1.

4.1.3.2 Motion Transitions

The advantage to the ECWF is that any two PHZD surfaces can be connected

with the ECWF to ensure that partial hybrid zero dynamics is maintained, i.e.,

the ECWF can “glue” together any two PHZD surfaces; this is not possible with

the CWF as there are not enough parameters present. To see this, let (q(0), q̇(0))

be an at-rest state on an “at-rest PHZD surface”, and let αl be the parameters

of the CWF associated with continuous walking as obtained through optimization.

Associated with these parameters are the position of the hip at the beginning and

end of a step: ξ0,l1 = δphip(∆qϑ(αl)) and ξf,l1 = δphip(ϑ(αl)) and the position of the
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hip in the at-rest state, ξ0,l−11 . To construct a surface connecting the at-rest state

to continuous walking, consider actual outputs associated with the at-rest state and

the ECWF at the end of a step associated with αl:

y0i = yeH(ξ0,l−11 , ξ0,l−11 , v∗hip, α
e
i )) (4.3)

ẏ0i =
d

dξ1
yeH(ξ1, ξ

0,l−1
1 , v∗hip, α

e
i )

∣∣∣∣
ξ1=ξ

0,l−1
1

(4.4)

yfi = yeH(ξf,∗1 , ξ0,∗1 , v∗hip, ιe(α
∗
i )) (4.5)

ẏfi =
d

dξ1
yeH(ξ1, ξ

0,∗
1 , v∗hip, ιe(α

∗
i ))

∣∣∣∣
ξ1=ξ

f,∗
1

(4.6)

for i ∈ Outputs. The goal is to find a parameters, αei , for the ECWF such that

ιe(α
∗
i ) can be replaced by αei in (4.5)-(4.6). To achieve the goal of determining the

parameters αei , we utilize (4.2) to form the following matrix:

Y =



Y e
H(ξ0,l−11 , ξ0,l−11 , vlhip, α

e
i,2, α

e
i,4, α

e
i,6)

d
dξ1
Y e
H(ξ1, ξ

0,l−1
1 , vlhip, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

0,l−1
1

Y e
H(ξf,l1 , ξ0,l1 , v

l
hip, α

e
i,2, α

e
i,4, α

e
i,6)

d
dξ1
Y e
H(ξ1, ξ

0,l
1 , v

l
hip, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

f,l
1


It is easy to verify that picking αei,2 = αli,2, α

e
i,4 = αli,4 and αei,6 > 0 results in Y

being nonsingular. Therefore, the final four parameters of αei can be determined by

picking: 

αei,1

αei,3

αei,5

αei,7


= Y−1



y0i

ẏ0i

yfi

ẏfi


The end result of solving for αe in this manner is that when started from the
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Figure 4.4: This figure presents results from simulation of the Leg Testbed robot
model starting from rest, showing joint velocities for the stance leg (left) and the
nonstance leg (right) over the course of five steps. The controller applied in this
simulation uses a Motion Transition to successfully move the robot from an at-rest
state (zero velocity) to the periodic walking orbit obtained through optimization.

specified initial rest-state, (q(0), q̇(0)), the controller will drive the robot along the

PHZD surface for the Motion Transition, PZαe , which intersects the continuous

walking gait PHZD surface, PZαl , at the guard (nonstance foot strike). In other

words, we will have connected the initial state,(q(0), q̇(0)), and PZαl through PZαe ,

which then allows us to test (on the robot hardware) the continuous walking gaits

that result from solving the primary optimization problem discussed in this thesis.

Figure 4.4a and Figure 4.4b show results from simulation of a Motion Transition for

the Leg Testbed.

4.1.4 Experimental Implementation

Using the Motion Transition to control the robot from a rest state to our op-

timized walking gait, we successfully achieved multiple steps on the Leg Testbed

platform. Snapshots from an experimental walking gait are shown in Figure 4.5. To

implement the proposed control method for walking on the Leg Testbed hardware,
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Figure 4.5: Snapshots from a Leg Testbed walking experiment.

we interfaced with the preexisting Leg Testbed control code for sending position

commands to the Leg Testbed’s motor drivers. While the Leg Testbed is capable of

a variety of control modes – position, torque, voltage and impedance control – for

the scope of this thesis, and based on the constrained time-line for implementation

over the course of two 10-week internships, we selected to use only the position con-

trol functionality. As used in the Summer 2012 walking experiments at NASA JSC,

this control scheme consisted primarily of a slow (200 Hz) position command loop

termed the “high-level control” – running on the (off-board) operator computer –

used to communicate desired positions to the twelve motor controllers on the Leg

Testbed, which themselves run fast “low-level” (10000 Hz) PD controllers on the

error in measured and commanded position. For the walking gaits considered, the

10 kHz position controllers showed excellent performance, tracking our desired tra-

jectories with a maximum error of 0.01 radians, a point to which we will return in

the following sections.

4.1.4.1 ROS C++ Position Control Scheme and LUA Operator Interface

The high-level control framework uses a combination of the Robot Operating Sys-

tem (ROS) [31] and Open Robot Control Software (OROCOS) [25] to generate and

communicate commands, which are sent to the motor drivers using a custom protocol
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termed “robonet.” We interfaced with this system via a C++ implementation of a

ROS node which publishes joint position commands at 200 Hz. Specifically, we used

the angle reconstruction method from the optimization to compute desired position

commands, corresponding to the optimized periodic orbit with parameters α∗ and

fixed point (ϑ(α∗), ϑ̇(α∗)), to be published on rostopics (which ultimately commu-

nicate motor position commands) at intervals of 0.005 seconds. For operating and

performing experiments on testbeds, one method the Robonaut software architecture

used was a LUA script which invokes ROS and OROCOS nodes. We interfaced with

this system through the creation of a set of LUA functions to execute our C++ ROS

walking node. The LUA script was also used for initialization, calibration, tuning,

and debugging the 10 kHz turbo driver position controllers.

4.1.4.2 Implementation

After calibrating the joints and tuning the position control gains, we implemented

the walking gait obtained from the human-inspired control method for a total of seven

steps (limited by lab space). The initial rest configuration was determined through

heuristics, in which the robot’s COM was placed over the left foot via modification

of the robot’s roll angles. To begin walking, we implemented a Motion Transition –

which connects the initial rest state to the continuous walking gait from optimization

– through joint trajectory tracking. After the first step, the control scheme switched

to the continuous walking gait which resulted from optimization.

The experiment was repeatable; in the few unsuccessful trials, our method failed

due to lack of robustness in the very first step of the gait (this is a major point of

consideration for future work). Commanded (PosCom) and measured (APS1 and

APS2) motor positions from one experiment are shown versus time in Figure 4.7

and Figure 4.8; observe that the Leg Testbed motor controller performance was
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exceptional – the maximum error in position tracking during these experiments was

less than 0.02 radians. The success of these walking experiments with the Leg Testbed

hardware shows that the proposed bipedal robotic walking control method can be

used to generate physically realizable walking gaits. To the best of our knowledge,

these experiments were the first in which the Leg Testbed robot successfully walked

forward multiple steps. Snapshots of the walking experiments – taken from different

viewpoints – are shown in Figure 4.6.

Figure 4.6: Snapshots from two Leg Testbed walking experiments.
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Figure 4.7: Commanded (PosCom) and measured (APS1) positions during one Leg
Testbed walking experiment are given, showing the first three joints – hip pitch (J1),
yaw (J2) and roll(J3) – on the left (LL) and right (RL) legs, and also showing the
measurements of the output of the springs (APS2).
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Figure 4.8: Commanded (PosCom) and measured (APS1) positions during one Leg
Testbed walking experiment are given, showing the last three joints – knee(J4) and
both ankle motors (J5 and J6) – on the left (LL) and right (J2) legs. Note that
the ankle joints are not driven by series elastic actuators, and therefore, do not have
APS2s.
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Figure 4.9: NAO humanoid robot

4.2 NAO Robot

We also implemented the proposed method in the design of walking controllers

for the NAO [1] robot – a 573 millimeter tall humanoid biped which weighs 5.2 kilo-

grams. NAO’s lower body consists of 10 actuated degrees of freedom, with joint axes

which map one-to-one to those in the robot model (see Figure 4.9). For modeling

purposes, the 15 joints in NAO’s upper body are treated as fixed, such that the

entire upper body is treated as one rigid link with constant mass and inertia prop-

erties computed from the composite masses and inertia of the limbs in the upper

body. The mass and length properties of NAO are obtained from the specifications

sheet given on Aldebaran’s website [1] – these properties are used in the develop-

ment of Mathematica (ported to MATLAB .m functions) and MATLAB code which

computes kinematics and dynamics as described in Section 2 and the Feedback lin-
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earization controller proposed in Section 3. The dynamics were first calculated using

the Mathematica modules available at [22]; we later switched to a custom MATLAB

numeric implementation of the dynamics, expanding on suggestions and code from

Jessy Grizzle and Ryan Sinnet [13], to improve execution speed.

4.2.1 Optimization

Using the modeled dynamics for NAO, the optimization of Section 3.3 is devel-

oped and solved in MATLAB code which invokes the fmincon nonlinear constrained

optimization routine. The original best fit to the human data – given in 3.2 – is used

as an initial guess of the parameter matrix α0. Constraints are added to ensure that

the resulting gait is physically realizable by the NAO hardware: joint velocities must

be less than 3.5 radians per second, knee angles must be greater than zero (cannot

hyper-extend), and to avoid self collision, the feet are not allowed to come closer than

1 cm to each other (laterally). The optimized parameters, α∗, are given in Table 4.2.

4.2.2 Simulation

After determining optimal control parameters for NAO walking, MATLAB’s

ode45 numerical integration function is used to simulate the hybrid control sys-

Table 4.2: Optimized control parameter values for the NAO robot model.

f. vhip a1 a2 a3 a4 a5
phipL 0.1432 * * * * *
mnsL * 0.0594 10.7146 0.0388 -3.0263 0.1410
qsk * -0.0002 16.9486 -0.0001 -15.8735 0.9581
qnsk * -0.2180 -15.8541 0.1290 1.0987 1.0777

thetatorso * -0.0001 4.6137 0.0000 -4.6512 0.1000
qsar * 0.0373 -0.0027 -4.4946 0.2393 -0.0516
qshr * -0.1441 -3.9159 0.1176 0.10440 0.1475
qnshr * -0.0905 18.2141 -0.0272 0.6090 0.0663
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Figure 4.10: Comparison of snapshots from the actual (top) and simulated (bottom)
walking with the NAO robot using the proposed control method.

tem, H N
α∗,ε, modeling the NAO robot (hence the superscript N); in this simulation,

the robot starts on the point on the guard, (ϑ(α∗), ϑ̇(α∗)), and is controlled via the

human-inspired control law, uα∗,ε with parameters α∗ obtained through optimization

and ε = 10 as the control gain. Selected frames from one step of the simulated

walking are shown in Figure 4.10. The resulting periodic orbits for the pitch angles

and roll angles of the system are given in Figure 4.11a and Figure 4.11b respec-

tively. Notice that the nonstance knee joint reaches 3.5 radians per second, which

is the upper bound on allowable joint velocities enforced via a constraint in the

human-inspired optimization for NAO; velocities of the other joints do not exceed

three radians per second. Furthermore, as shown in Figure 4.11e and Figure 4.11f,

the torque commands generated by our human-inspired control law are all less than

three Newton-meters – well within NAO’s limits.

4.2.3 Experimental Implementation

The human inspired control approach is implemented experimentally on the ac-

tual NAO robot via open-loop trajectory tracking. Specifically, NAO’s built-in PID
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controller is used to track the q(t) trajectories from a simulation in which the robot

takes 10 steps. These trajectories were communicated to NAO’s on-board computer

via a custom set of C++ functions which were written by fellow AMBER lab re-

searchers, Eric Cousineau, Wenlong Ma, Ayongga Hereid and Ryan Sinnet. Using

this experimental configuration, the NAO robot successfully completed 10 steps re-

peatably over several trials. The relative degree 2, actual control outputs, ya2 , are

computed from both simulation and experiment data for one trial and compared

against one another in Figure 4.12 and Figure 4.13. Note that the experimental

outputs agree closely with the simulated outputs (with minor discrepancies in θsk,

θtor and ϕsa, which are a result of the open-loop controller). Snapshots of the ex-

perimental walking are given with the simulated gait on the previous page; where

again, the experiment and simulation match very closely. A video of the walking

achieved on NAO is available online [28]. Our walking results with NAO were well

received during presentation at the 2013 IEEE International Conference on Robotics

and Automation (ICRA) in Germany [29].
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Figure 4.11: This figure presents results from simulation of the NAO robot model.
The top row shows periodic orbits for the simulated behavior of NAO, showing pitch
angles (a) and roll angles (b). The middle row shows optimized desired and corre-
sponding simulated (actual) walking sagittal outputs (c) and coronal and nonstance
foot outputs (d). The bottom row shows stance torques (e) and nonstance torques
(f) from simulation.
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Figure 4.12: Simulated and experimental values for the relative degree two actual
sagittal outputs, ya2 , are shown over the course of 10 steps in NAO walking with the
proposed control method.
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Figure 4.13: Simulated and experimental values for the relative degree two actual
roll outputs, ya2 , are shown over the course of 10 steps in NAO walking with the
proposed control method.
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5. CONCLUSION

In this thesis, we present a method for the construction of control laws corre-

sponding to stable, periodic bipedal robotic walking in a hybrid system model of an

actual robot hardware platform. The hybrid system model estimates the relationship

between control command and resulting motion in the real robot; we show how to

construct this model through the computation of the Euler-Lagrange equations of

motion to predict the behavior of the system during leg swing and through the com-

putation of impact equations to predict the behavior of the robot during foot-ground

collision. Motivated to achieve stable walking with robot hardware, we equate stable

walking with stable, periodic orbits in the hybrid system model of the robot and

seek to construct control laws corresponding to stable, periodic orbits in our hybrid

control system.

Our control approach begins with the analysis of experimental human walking

data. Through examination of the data, we find that all nine test subjects display

universal behaviors while walking forward on a level surface. Specifically, we observe

that certain kinematic functions, or outputs, on the walking data can be represented,

with high correlation, by the time solution to under-damped, second order system

– termed the canonical walking function. We leverage this insight to frame param-

eterized control laws for our hybrid system model of the robot. Using feedback

linearization, these torque controllers drive the actual robot outputs to desired val-

ues of these outputs as determined by parameterized canonical walking functions.

The main contribution of this thesis is an optimization problem which determines

control parameters which result in stable, periodic orbits in the hybrid system model

of the robot while simultaneously satisfying constraints on the system, e.g. velocity
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and torque limits, as dictated by the limitations of the robot hardware.

The control parameter optimization expands upon the Human-Inspired Control

method for achieving walking in a planar, point-foot model of the robot. In both

optimizations, realization of a partial hybrid zero dynamics is encoded via closed-form

computation of equality constraints. Novel to this thesis is extension of the method

to unsupported, three-dimensional walking with feet and the addition of constraints

necessary to achieve walking with actual robot hardware. These constraints (ZMP,

torque bounds, etc.) are encoded via inequality constraints, which are computed in

closed form via calculation of the robot’s state in closed form over the course of the

step.

The method was implemented on two robot hardware platforms: the NAO robot

walking in the AMBER Lab at Texas A&M and the Leg Testbed robot walking in the

Robonaut Lab at NASA JSC. Results from simulation of the hybrid system model

for each system show the closed, periodic orbits achieved by the proposed control law

and corresponding torques and outputs. As part of larger motivations for this work,

we also implemented the method on the actual robot hardware systems via motor

position control on trajectories from the stable periodic orbits. Both robots took

several steps in multiple walking experiments; in other words, the proposed method

resulted in repeatable experimental walking with two robots! Future work will entail

expanding the method to include other locomotion behaviors, e.g. turning, heel-toe

walking, standing and crouching.
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