471 research outputs found

    Improving large vocabulary continuous speech recognition by combining GMM-based and reservoir-based acoustic modeling

    Get PDF
    In earlier work we have shown that good phoneme recognition is possible with a so-called reservoir, a special type of recurrent neural network. In this paper, different architectures based on Reservoir Computing (RC) for large vocabulary continuous speech recognition are investigated. Besides experiments with HMM hybrids, it is shown that a RC-HMM tandem can achieve the same recognition accuracy as a classical HMM, which is a promising result for such a fairly new paradigm. It is also demonstrated that a state-level combination of the scores of the tandem and the baseline HMM leads to a significant improvement over the baseline. A word error rate reduction of the order of 20\% relative is possible

    Cluster-Based Adaptation Using Density Forest for HMM Phone Recognition

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Lisbon, Portugal, 201

    Speaker adaptation and adaptive training for jointly optimised tandem systems

    Get PDF
    Speaker independent (SI) Tandem systems trained by joint optimisation of bottleneck (BN) deep neural networks (DNNs) and Gaussian mixture models (GMMs) have been found to produce similar word error rates (WERs) to Hybrid DNN systems. A key advantage of using GMMs is that existing speaker adaptation methods, such as maximum likelihood linear regression (MLLR), can be used which to account for diverse speaker variations and improve system robustness. This paper investigates speaker adaptation and adaptive training (SAT) schemes for jointly optimised Tandem systems. Adaptation techniques investigated include constrained MLLR (CMLLR) transforms based on BN features for SAT as well as MLLR and parameterised sigmoid functions for unsupervised test-time adaptation. Experiments using English multi-genre broadcast (MGB3) data show that CMLLR SAT yields a 4% relative WER reduction over jointly trained Tandem and Hybrid SI systems, and further reductions in WER are obtained by system combination

    Phoneme and sentence-level ensembles for speech recognition

    Get PDF
    We address the question of whether and how boosting and bagging can be used for speech recognition. In order to do this, we compare two different boosting schemes, one at the phoneme level and one at the utterance level, with a phoneme-level bagging scheme. We control for many parameters and other choices, such as the state inference scheme used. In an unbiased experiment, we clearly show that the gain of boosting methods compared to a single hidden Markov model is in all cases only marginal, while bagging significantly outperforms all other methods. We thus conclude that bagging methods, which have so far been overlooked in favour of boosting, should be examined more closely as a potentially useful ensemble learning technique for speech recognition

    Acoustic Scene Classification

    Get PDF
    This work was supported by the Centre for Digital Music Platform (grant EP/K009559/1) and a Leadership Fellowship (EP/G007144/1) both from the United Kingdom Engineering and Physical Sciences Research Council

    Context-Dependent Acoustic Modelling for Speech Recognition

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore