17,628 research outputs found

    Assessing Protein Conformational Sampling Methods Based on Bivariate Lag-Distributions of Backbone Angles

    Get PDF
    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence–structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu.edu/∼madoliat/LagSVD) that can be used to produce informative animations

    LSTM Deep Neural Networks Postfiltering for Improving the Quality of Synthetic Voices

    Full text link
    Recent developments in speech synthesis have produced systems capable of outcome intelligible speech, but now researchers strive to create models that more accurately mimic human voices. One such development is the incorporation of multiple linguistic styles in various languages and accents. HMM-based Speech Synthesis is of great interest to many researchers, due to its ability to produce sophisticated features with small footprint. Despite such progress, its quality has not yet reached the level of the predominant unit-selection approaches that choose and concatenate recordings of real speech. Recent efforts have been made in the direction of improving these systems. In this paper we present the application of Long-Short Term Memory Deep Neural Networks as a Postfiltering step of HMM-based speech synthesis, in order to obtain closer spectral characteristics to those of natural speech. The results show how HMM-voices could be improved using this approach.Comment: 5 pages, 5 figure

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Extraction and Classification of Self-consumable Sport Video Highlights

    Get PDF
    This paper aims to automatically extract and classify self-consumable sport video highlights. For this purpose, we will emphasize the benefits of using play-break sequences as the effective inputs for HMM-based classifier. HMM is used to model the stochastic pattern of high-level states during specific sport highlights which correspond to the sequence of generic audio-visual measurements extracted from raw video data. This paper uses soccer as the domain study, focusing on the extraction and classification of goal, shot and foul highlights. The experiment work which uses183 play-break sequences from 6 soccer matches will be presented to demonstrate the performance of our proposed scheme
    • …
    corecore