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Assessing protein conformational sampling methods 
based on bivariate lag-distributions of backbone angles 

Mehdi Maadooliat, Xin Gao1 and Jianhua Z. Huang1 

 

Abstract 
Despite considerable progress in the past decades, protein structure prediction remains 
one of the major unsolved problems in computational biology. Angular-sampling-based 
methods have been extensively studied recently due to their ability to capture the 
continuous conformational space of protein structures. The literature has focused on 
using a variety of parametric models of the sequential dependencies between angle 
pairs along the protein chains.  

In this paper, we present a thorough review of angular-sampling-based methods by 
assessing three main questions; What is the best distribution type to model the protein 
angles? What is a reasonable number of components in a mixture model that should be 
considered to accurately parameterize the joint distribution of the angles? And what is 
the order of the local sequence-structure dependency that should be considered by a 
prediction method? We assess the model fits for different methods using bivariate lag-
distributions of the dihedral/planar angles. Moreover, the main information across the 
lags can be extracted using a technique called LagSVD, which considers the joint 
distribution of the dihedral/planar angles over different lags using a nonparametric 
approach and monitors the behavior of the lag-distribution of the angles using singular 
value decomposition. As a result, we developed graphical tools and numerical 
measurements to compare and evaluate the performance of different model fits. 
Furthermore, we developed a web-tool (http://www.stat.tamu.edu/~madoliat/LagSVD) that can 
be used to produce informative animations.  
 
Keywords: protein conformational sampling; parametric models; assessment tools; hidden 
Markov models; principal component analysis; dihedral and planar angles    
 

 

Mehdi Maadooliat is postdoctoral fellow in IAMCS-KAUST program. IAMCS-KAUST is a 

joint program between Texas A&M University and King Abdullah University of Science and 

Technology (KAUST) funded by Institute of Applied Mathematics and Computational Science 

(IAMCS). 

Xin Gao is Assistant Professor and head of the Structural and Functional Bioinformatics Group in 

KAUST and is involved in modeling dynamics of complex biological systems and protein 

structure prediction. 

Jianhua Z. Huang is Professor of Statistics in Texas A&M University, investigator of IAMCS 

and is involved in functional data analysis and machine learning techniques. 

http://www.stat.tamu.edu/~madoliat/LagSVD
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php
http://www.stat.tamu.edu/~madoliat/protein_plots.php


 

INTRODUCTION 

Protein structure is the key to the understanding of the life cycle and various genetic 

diseases. Protein structure prediction, one of the most challenging problems remaining in 

computational biology today, has been extensively studied for four decades. Significant 

progress has been achieved [1 - 10] in both template-based modeling methods, which look 

for close or distant homologs in the Protein Data Bank (PDB) [11], and template-free 

modeling methods, which build structures from scratch according to Anfinsen’s 

thermodynamic hypothesis [12]. 

Although template-based modeling, i.e., comparative modeling and threading, is able 

to identify reasonably good templates for approximately 60% of new proteins [13], the 

accuracy of the models is limited by the selected templates as well as the alignments 

between the target protein and the templates. Template-free modeling, on the other hand, 

suffers from infinite conformational space and the inaccuracy of the energy functions. 

Taking into consideration the physical constraints of proteins, such as the almost fixed 

values for bond length, bond angles, and 𝐶𝛼 distances, the degree of freedom can be 

greatly reduced by using angular representations [14 - 18]. Ramachandran showed that 

secondary structure elements have their characteristic torsion angles [14]. Significant 

effort has been expended on identifying the detailed relationship between protein 

sequences and their torsion angles [13, 19 - 46]. 

Fragment assembly methods combine the advantages of template-based modeling and 

template-free modeling by encoding angular preferences through the use of structural 

segments [19 - 23, 29, 31, 33, 47, 48]. The main idea is that most of the local sequence-

structure relationships have already been captured by the solved proteins stored in PDB. 

Thus, instead of attempting to find homologs with similar structures to the query protein, 

fragment assembly methods attempt to find short fragments that are structurally similar to 

the fragments in the query protein and then to assemble them to build complete structures. 

Among all such methods, ROSETTA [23, 49, 50] and Zhang-server [40, 51, 52], are 

two well-performed servers in the recent CASPs (Critical Assessment of Techniques for 

Protein Structure Prediction), the most objective test routine in the protein structure 

prediction community that takes place biannually [1, 3 - 6]. ROSETTA uses fragments of 

fixed lengths, such as 3-mers and 9-mers, as the building blocks, whereas Zhang-server 



 

uses fragments with flexible lengths which are automatically determined by global or 

local threading algorithms. Both methods then assemble the fragments together directed 

by an energy function. However, fragment assembly methods discretize the continuous 

conformational space. Therefore, without the existence of the fragments with the same 

structures to the fragments in the query proteins, the native structures of the query will not 

be in the search space of such methods. Various refinement methods have been developed 

to partially solve this problem [49 - 52]. 

Angular-sampling-based methods have attracted much attention recently due to the 

ability to model the conformational space continuously [13, 25, 32, 35, 36, 38, 39, 43, 44, 

53]. The main idea is to parameterize the joint angle distribution (either 𝜙 and 𝜓, or 𝜃 and 

𝜏) by a mixture model of particular distributions. Due to the circular nature of these 

angles, several circular analogs of Gaussian distribution have been widely applied, such 

as the 5-parameter Fisher-Bingham (FB5) distribution [13, 35, 44, 54] and the Bivariate 

von Mises distribution [36, 38, 39, 55]. The protein sequence-structure (i.e., sequence-

angle) relationship is then modeled by graphical models in machine learning, such as 

hidden Markov models (HMM) [35, 38], dynamic Bayesian networks [39] and 

conditional random fields [13, 44]. The graphical models predict the most likely 

distribution (i.e., parameters of the particular distribution type) for each residue of the 

target protein based on the observations, such as amino acid and secondary structure 

types, about this residue and its close neighbors. A large number of conformations can 

then be sampled according to the most likely sequence of the distributions. The key 

parameters in such methods are the underlying distribution type, the number of 

distributions to parameterize the joint angular space, and the dependence order of the 

graphical model, i.e., the number of neighbors the model takes into consideration. 

Although the aforementioned models have demonstrated their success in effectively 

learning the sequence-structure relationship, there is an essential need for statistical 

frameworks to evaluate and compare the performance of the proposed models. The 

performance of the existing methods is assessed in the CASP experiments based mainly 

on 3D coordinate-based measurements [56], such as the root mean square distance 

(RMSD), the TM-score [57], and the GDT score [58]. Such measurements, however, are 

not ideal to evaluate protein structure prediction methods that model structures in angular 



 

space. When protein structures are modeled in angular space, certain assumptions must be 

made to reduce the degree of freedom. For instance, to model structures in 𝜙 and 𝜓 

angular-spaces, the lengths of the covalent bonds and the planar angles formed by 

consecutive bonds are assumed to be known constants; to model structures in 𝜃 and 𝜏 

angular-spaces, the 𝐶𝛼 − 𝐶𝛼 distances are assumed to be constant. In real proteins, such 

assumptions are not precise. Therefore, the predicted 3D structures that are built from the 

predicted angles by using the assumed constants are not precise representations of the 

predicted angles. Another issue in coordinate-based measurements is that many prediction 

methods attempt to optimize such measurements. It was found in recent CASPs that some 

methods that got high scores did not predict the details of the structures well [5, 6]. 

Therefore, a systematical and statistical measurement of angles is needed, especially for 

the prediction methods that model structures in angular spaces. 

We note that a protein sequence consists of hundreds, or even thousands, of amino 

acids. The joint distribution of the backbone dihedral angles is therefore very complex 

due to the high dimensionality of the backbone angles. We propose to study the bivariate 

marginal distribution of the backbone angles over different lags in a statistically 

comprehensible framework. The results will demonstrate a systematic relationship 

between the marginal distributions over different lags. We will use this systematic 

behavior to develop a statistical measurement for assessing the model fits based on the 

deviations between the marginal lag-distributions of angles in different models and the 

true one obtained from the PDB. This measurement will provide a unique perspective to 

evaluate protein structure prediction methods. Furthermore, it can be directly applied to 

answer at least partially the following key questions in the field:  

• What is the local sequence-structure dependency order that a prediction method 

should consider?   

• What is the best distribution type to model protein angles?   

• What is a reasonable number of components in a mixture model that should be 

considered to accurately parameterize the joint distribution of the angles?   

We would like to mention that we do not claim that the proposed evaluation technique 

is the best model assessment method; it is, however, enlightening to take a new approach 



 

that considers the lag-distributions of the backbone angles to obtain a sophisticated 

measurement for evaluating the performance of conformational sampling methods for 

proteins. 

 

Figure 1: Schematic representation of the backbone dihedral angles of proteins. The 

positions are numbered, using index i. (a) The 𝐶𝛼 positions, the pseudo-bond angles, 𝜃, 

and the pseudo-dihedral angles, 𝜏, are indicated. (b) The 𝜙, 𝜓 angular degrees of freedom 

in one residue of the protein backbone are represented. 

MATERIALS AND METHODS 

Bivariate Lag-Distributions 

For a protein sequence with a fixed number of residues 𝑛, we may define 𝑛 − 3 pairs of 

(𝜃𝑖 , 𝜏𝑖) angles, 𝑖 = 1, ⋯ , 𝑛 − 3 [15], where the 𝜃s are defined as the pseudo-bond planar 

angles of three consecutive 𝐶𝛼 atoms, and 𝜏𝑖s are defined as the pseudo-dihedral angles 



 

of four consecutive 𝐶𝛼 atoms, as it is shown in Figure 1a. Similarly, we may obtain 𝑛 − 2 

pairs of torsion angles (𝜙𝑖, 𝜓𝑖), 𝑖 = 2, ⋯ , 𝑛 − 1, where the (𝜙, 𝜓) angles directly model 

the protein backbone structures at the atomic level. The 𝜙 is the torsion angle around the 

𝑁 − 𝐶𝛼 bond while the 𝜓 is the torsion angle around the 𝐶𝛼 − 𝐶 bond, as shown in 

Figure 1b [39].  

In general, we introduce the following notation. For a fixed protein, 𝑗, we have 𝑛𝑗  

pairs of backbone angles (𝜂𝑖 , 𝜁𝑖), where 𝑖 = 1, ⋯ , 𝑛𝑗 , and (𝜂, 𝜁)s can be considered as 

(𝜃, 𝜏)s, (𝜙, 𝜓)s or any other pairs of angles that construct the protein backbone structure. 

Following this general framework, it is of great interest in protein conformational 

sampling to study the joint distribution of the backbone angles, 

𝑓(𝜂1, 𝜁1, 𝜂2, 𝜁2, ⋯ , 𝜂𝑛𝑗
, 𝜁𝑛𝑗

), which is a multivariate distribution with possibly thousands 

of variables.  

The popular Ramachandran plot focuses on bivariate marginal distributions in the 

angle space and ignores the dependence of the sequence of backbone dihedral angles [14]. 

To come up with more sophisticated procedures that consider the dependency among the 

sequences of the dihedral/planar angles, different methods have been proposed in the past 

decade. Bystroff et al. developed a probabilistic model, HMMSTR, for fragment libraries, 

which can predict local structures given sequence information [25]. However, the discrete 

angles used by HMMSTR cause a loss of accuracy. Later, FB5-HMM, a probabilistic 

model of local protein structures, was proposed by Hamelryck and coworkers to model 

protein geometry in continuous space [35]. FB5-HMM models protein backbone 

conformations as a 𝐶𝛼 trace. Therefore, a backbone structure can be uniquely determined 

and represented by a sequence of (𝜃, 𝜏) angles. FB5-HMM trains an HMM with multiple 

outputs to learn the joint probability of the amino acid sequence, the secondary structure 

sequence, and the unit vector sequence, which together determine the backbone structure. 

The unit vectors are represented by the 5-parameter Fisher-Bingham (FB5) distributions 

[54]. Protein backbone conformations can then be sampled by using Forward-Backward 

sampling [59]. Later, Boomsma et al. developed a continuous probabilistic model by 

considering (𝜙, 𝜓) as the dihedral angles for representing protein backbone structures. A 

dynamic Bayesian network (DBN) is trained and it captures the joint probabilities of 

amino acids, secondary structures, (𝜙, 𝜓) angles, and the cis or trans conformation of the 



 

peptide bond. The (𝜙, 𝜓) angle distributions are parameterized by the cosine model [36], 

which is a Bivariate von Mises distribution. Recently, Lennox and colleagues considered 

the same problem in a nonparametric Bayesian framework [43, 55]. Their models use 

Dirichlet processes to obtain mixtures of Bivariate von Mises distributions for modeling 

the dihedral angles (𝜙, 𝜓) in a fixed position. 

We note that the above-mentioned techniques were developed based on the HMM 

structure, the core of which is the Markov property. The Markov property implies that, for 

a fixed position in the protein backbone, the conditional distribution of the backbone 

angles in the current state depends upon a fixed number of previous states. For instance, a 

first-order HMM property is assumed in [35, 39], whereas a ninth-order HMM property is 

assumed in [13, 38]. In this paper, we investigate non-fixed lag dependence, i.e., the 

dependence at various lags. To this end, we let ℓ = 1, … , 𝐿, denote a lag index, where 𝐿 is 

the maximum number of lags to be considered. For protein 𝑗, the collection of pairs of 

backbone angles {(𝜂1, 𝜁1+ℓ)⊤, (𝜂2, 𝜁2+ℓ)⊤, ⋯ , (𝜂𝑛𝑗−ℓ, 𝜁𝑛𝑗
)⊤} can be viewed as a random 

draw from the lag-ℓ marginal bivariate density, denoted as 𝑓(ℓ)(𝜂, 𝜁). We propose to use 

kernel density estimation [60] with slight modification that considers the angular structure 

of the data to obtain an estimate of this density. Further details can be found in 

Supplementary Materials. 

Figure 2 shows the perspective plot for the marginal bivariate kernel density estimates 

of the backbone angles for a fixed lag, ℓ = 5 (the details of the dataset will be given in 

the results section). It is known that peaks in lag-zero bivariate distributions, i.e., the 

(𝜙, 𝜓) distribution (the Ramachandran plot) and the (𝜃, 𝜏) distribution, indicate different 

secondary structure types [14, 35]. The peaks in lag-distributions also correspond to 

different secondary structures. For instance, the highest peaks in both Figures 2a and 2b 

represent alpha-helices. More details can be found in Supplementary Materials.  



 

 
Figure 2: A perspective plot of the bivariate marginal backbone angles for a fixed lag, ℓ =
5. (a) The 𝜙𝑖, 𝜓𝑖+ℓ angular degrees of freedom. (b) The pseudo-bond angles 𝜃𝑖s and the 

pseudo-dihedral angles 𝜏𝑖+ℓ𝑠. 

 

Visualization Tools and Measurement Scores 

Here, we present some measurement tools for comparing and deriving the characteristics 

and features of the 𝐿 estimated marginal lag-distributions. First, we use Kullback-Leibler 

(KL) divergence to find the informative distributions among the pool of 𝐿 marginal lag-

distributions that we have obtained before. Next, we use the singular value decomposition 

(SVD) to detect, extract and clarify the signals from the lag-distributions. 

Kullback-Leibler Divergence of the Lag-Distribution 

The KL divergence is a non-symmetric measurement of the difference between two 

distributions. We denote the KL divergence between 𝑓(ℓ) and 𝑓(ℓ′) as  

𝐷𝐾𝐿(𝑓(ℓ)||𝑓(ℓ′)) = ∬ 𝑓(ℓ) (𝜂, 𝜁) ln 
𝑓(ℓ)(𝜂, 𝜁)

𝑓(ℓ′)(𝜂, 𝜁)
d𝜂d𝜁. 

Here, we may symmetrize the divergence to obtain the following:  

 𝐷𝐾𝐿(𝑓(ℓ), 𝑓(ℓ′)) = 𝐷𝐾𝐿(𝑓(ℓ)||𝑓(ℓ′)) + 𝐷𝐾𝐿(𝑓(ℓ′)||𝑓(ℓ)). (1) 

We use the symmetrized KL divergence to explore which lag-distributions have 

distinguishing features that are not common across different lags. We expect to see that 



 

the similar lag-distributions have small divergences and the lag-distributions with 

significant differences in features have higher magnitudes of KL divergence. 

Singular Value Decomposition of the Lag-Distributions (LagSVD) 

It is possible to obtain an informative and comprehensive measurement for evaluating the 

𝐿 estimated marginal bivariate lag-distributions together, in lower dimensions. The 

intuition is to factorize each bivariate distribution by the sum of 𝑚 multiplicative 

univariate densities (𝑢1
(ℓ)

, ⋯ , 𝑢𝑚
(ℓ)

) and (𝑣1
(ℓ)

, ⋯ , 𝑣𝑚
(ℓ)

) as  

𝑓(ℓ)(𝜂, 𝜁) = ∑ 𝜎𝑘

𝑚

𝑘=1

𝑢𝑘
(ℓ)(𝜂)𝑣𝑘

(ℓ)(𝜁) + 𝜖. 

Later, we focus on (𝑢𝑘
(1)

, ⋯ , 𝑢𝑘
(𝐿)

) and (𝑣𝑘
(1)

, ⋯ , 𝑣𝑘
(𝐿)

) for each 𝑘 (𝑘 = 1, ⋯ , 𝑚), and we 

track the behavior of the backbone angles across different lags. This idea can be 

thoroughly justified by introducing the low-rank approximation of the marginal bivariate 

densities 𝐹̂(ℓ), where 𝐹̂(ℓ) is a 𝑑 × 𝑑 matrix that contains the magnitudes of the joint 

density (𝑑 is the number of grid points in the directions associated to 𝜂 and 𝜁). 

We note that the SVD of 𝐹̂(ℓ) is directly connected to the principal component 

analysis (PCA) of 𝐹̂(𝑙) and (𝐹̂(ℓ))
⊤

. Moreover, the dimension reduction tool (SVD or 

PCA) that has been used here to reduce the dimensionality of the 𝐿 different bivariate 

densities is a sensible quantity, and it should not be mistaken by using plain PCA on a 

sequence of backbone angles, which is definitely not the correct measurement for angular 

data. More details are given in Supplementary Materials. 

Figure 3a shows the behavior of the first left singular vectors (𝑢1
(1)

, ⋯ , 𝑢1
(𝐿)

) colored 

red and gray, and the first right singular vectors (𝑣1
(1)

, ⋯ , 𝑣1
(𝐿)

) colored light and dark 

blue, for the benchmark dataset that will be introduced in the next section. It is possible to 

see that the underlying structure of the first singular vectors follows the same pattern with 

some changes in the scale over different lags. It is interesting that the general pattern for 

the first SVD components remains unaffected by the lag changes. Considering the general 

association of the estimated density function and histogram, we may expect some 

similarity between count data and the density estimates. This may suggest that the 



 

changes in the variance could be proportional to the changes in the mean, which is 

expected from a Poisson family distribution. To overcome this effect, it is common to 

consider the square root transformation of the data. We therefore denote 𝐹̃(ℓ) to be the 

element-wise square root of 𝐹̂(ℓ). From this point onward, we deal with the SVD (or 

PCA) of 𝐹̃(ℓ), which is presented in Figure 3b, demonstrating the stability of the first 

principal components (PC1) regardless of the lag differences. 

 

 
Figure 3: First singular vectors for the bivariate lag-densities of 𝜙𝒊 and 𝜓𝒊+𝓵. (a) 

Associated with the marginal bivariate density over different lags. (b) Associated with the 

element-wise square root of the marginal bivariate density over different lags. 

 

RESULTS 

In this section, we start by presenting some findings about the behavior of the marginal 

lag-distributions of the backbone angles of different lags, and subsequently we discuss 

how we may use these tractable behaviors to develop an assessment tool for evaluating 

different conformational sampling methods for proteins. Also, we use the CASP9 datasets 

to demonstrate the applicability of using the marginal lag-distributions over different lags 

for quality assessment of general protein prediction methods in terms of preserving the 

angular structure.  

We focus on the (𝜃, 𝜏) description in this section, but similar results can be obtained 

for the representation of the dihedral angles (𝜙, 𝜓), which we skip for brevity of the 



 

contents. Also, for consistency, we fix 𝐿 = 50, since it is reasonable to assume the 

independence between 𝜃s and 𝜏s with lag differences beyond 50.  

Evaluating Conformational Sampling Methods 

We implemented our method using 1,428 protein domains from the SABmark dataset, 

version 1.65. This dataset has been used before in the FB5-HMM model [35]. To 

demonstrate the applicability of the proposed tools, we implemented a web interface 

(http://www.stat.tamu.edu/~madoliat/LagSVD) that illustrates the behaviors of marginal 

lag-distributions in animations that cannot be easily presented in text. 

First, we fitted the 𝑓(ℓ)(𝜃, 𝜏) using the modified kernel density estimation technique 

for ℓ = 1, ⋯ , 𝐿. Next, we obtained all of the possible pairwise symmetrized KL 

divergences for the 𝐿 estimated marginal bivariate lag-distributions by Equation (1). 

Figure 4 demonstrates the KL divergence measurement across the top 50 different lag-

distributions using heat and perspective plots. Although there is no clear boundary, we 

choose an upper bound of ℓ = 9. The large area in the top right of the heat plot 

partitioned by the two lines in Figure 4a indicates the small divergence between the lag-

distributions when the lags are greater than the upper bound, which implies similarity 

between the large lag-distributions, and is reasonable due to the expected independent 

behavior of the lag-distributions for such large lags (ℓ, ℓ′ > 9). Also, it is clear that 

𝐷𝐾𝐿(𝑓(ℓ), 𝑓(ℓ′)) becomes large when either the target or reference lag is small (ℓ or ℓ′ <

9), and the KL divergence becomes even larger if one of the target or reference lags is 

small and the other is large (i.e., ℓ < 9 and ℓ′ > 9). Therefore, the overall pattern implies 

that, at most the first 9 lag-distributions are more informative and contain dynamic 

features but the lag-distributions with larger lags (ℓ > 9) approximately follow an 

independent steady-state structure. That is, the order of dependency of (𝜃, 𝜏) angles is at 

most 9. We note that this conclusion is drawn from a statistical point of view. For a 

specific protein or a specific region of a protein, such as a beta sheet, the order of 

dependency can go beyond 9. This finding validates the widely used fragment length size 

of 9 in the fragment assembly methods [23, 49, 50] and angular-sampling-based methods 

[13, 38]. 

 

http://www.stat.tamu.edu/~madoliat/LagSVD


 

 
Figure 4: The KL divergence for the first 50 lags. (a) The heat plot for the KL divergence 

between different lags. The indices on the two axes indicate two lag values, one for the 

reference and one for the target. For instance, the color corresponding to position (5, 20) 

represents the KL divergence between the two bivariate distributions, i.e., (𝜃𝒊, 𝜏𝒊+𝟓) and 

(𝜃𝒊, 𝜏𝒊+𝟐𝟎). The two lines partition the plot into four regions, two of which have small KL 

divergences and two of which have large divergences. (b) The perspective plot of (a). 

 

To understand further the SVD of the lag-distributions, we recorded the square root of 

the lag-densities in a 𝑑 × 𝑑 matrix 𝐹̃(ℓ) (where 𝑑 is the number of grid points in each 

direction and is considered to be 90 in this example) for ℓ = 1, ⋯ ,50. Now, we can use 

the LagSVD technique presented above to explore the dynamics of the information in the 

top lag-distributions. Figure 5a shows the first left singular vectors for the top 50 lags 

(𝑢1
(1)

, ⋯ , 𝑢1
(50)

), colored gray and red, and the first right singular vectors (𝑣1
(1)

, ⋯ , 𝑣1
(50)

), 

colored light and dark blue. Interestingly, the behavior of PC1 is almost the same across 

the different lags (the vectors for different lags almost overlap). Figure 5b shows the same 

plot for the second singular vectors. It is easy to see that the variation in the second 

principal component (PC2) across different lags is higher. 

To investigate the structure of the variations, we considered the principal scores (the 

squares of the singular values), which express the relative energy in each principal 

components. Figure 5c is a type of scree plot, which demonstrates the relative energy of 

the PCs of the square root of the top 50 lag-distributions. The red circles indicate the 

percentage of variation in the first PCs for the top 50 lags. Similarly, the blue circles 



 

indicate the percentage of variation in the second PCs, and the green circles indicate the 

percentage of variation in the remaining PCs (see Supplementary Materials for more 

details). Obviously, beyond the second PCs, the cumulative information in the remaining 

PCs is negligible. Moreover, the information in the second PCs, which seems to be related 

to the dependency structure, decreases with the increment of the lags, and it almost 

vanishes beyond the 9th lag. This further confirms that, statistically, little information can 

be gained beyond a dependency order of nine. Next, we integrated the energy associated 

with each PC by multiplying the singular vectors with the associated singular values to 

obtain scaled singular vectors. The pattern for the scaled PC1 is very similar to the pattern 

in Figure 5a, which we do not discuss for brevity. The scaled PC2 is shown in Figure 5d, 

however. It indicated how smoothly the structure of the dependency vanishes in the first 9 

lags. The animations presented at http://www.stat.tamu.edu/∼madoliat/LagSVD are 

helpful in depicting the associated behaviors.  

We further came up with some measurements for model assessment based on 

symmetrized KL divergences. For demonstration purposes, we focused on two commonly 

used HMM models and one baseline method. In all three methods, an HMM is considered 

to have three observations, the joint probability of the amino acid sequence, the secondary 

structure sequence, and the quantity of interest in this paper, which is the distribution of 

the dihedral/planar angles in the backbone structure. The three methods are (a) FB5-

HMM: This parametric protein conformation sampling technique was introduced in [35]. 

Since 0 < 𝜃 < 𝜋 is a planar angle and −𝜋 < 𝜏 < 𝜋 is a dihedral angle, they used the 

Fisher-Bingham distribution with 5 parameters (FB5), which is defined on a sphere for 

modeling (𝜃, 𝜏) angles. (b) BVM-HMM: Boomsma et al. used the Bivariate von Mises 

(BVM) distribution to model dihedral angles −𝜋 < 𝜙, 𝜓 < 𝜋 on a torus [39]. Here, we 

adopted their HMM model for (𝜃, 𝜏) representation. Clearly, the density of (𝜃, 𝜏) will be 

zero on half of  the  torus  where −𝜋 < 𝜃 < 0,  but  this  will not be problematic  for  

http://www.stat.tamu.edu/~madoliat/LagSVD/


 

 
Figure 5: The first two singular vectors for the bivariate lag-densities of 𝜃𝒊 and 𝜏𝒊+𝓵 with a 

scree plot. (a) Non-scaled first singular vectors for different lags. The vectors almost 

overlap, suggesting that the first lag is very conserved. (b) Non-scaled second singular 

vectors for different lags. (c) A scree plot of the relative energy of the SVD components 

corresponding to the square root of the top 50 lag-distributions. (d) Scaled second singular 

vectors with respect to the associated singular values. 

 

interpretation. (c) BVN-HMM: Although it seems not reasonable to use a Bivariate 

normal (BVN) for modeling backbone angles because BVN does not consider the correct 

boundary conditions, we used it as a baseline method to check its performance against the 

other two commonly used models. 



 

For the training and simulation purposes we used Mocapy++ [42], which is a freely 

available toolkit for parameter learning in dynamic Bayesian networks (DBN). It supports 

a wide range of DBN architectures and probability distributions, including distributions 

from directional statistics. In training the three HMM models, we considered four 

different numbers of hidden nodes, 𝐻 = {25,50,75,100}, and five different initial seeds. 

We therefore ended up with 60 trained models, and we simulated 100 protein structures 

for each trained model, each with 100 amino acids. 

The idea was to train each model (or use the trained models provided in the 

corresponding works), sample a set of protein structures accordingly, and then compare 

the statistical characteristics of the sampled set with the training set at different lags. For 

each simulation, (𝑚 = 1, ⋯ ,60), and lag, ℓ (ℓ = 1, ⋯ ,50), we therefore considered the 

symmetrized KL divergence (SKLD) as  

SKLD𝑚
(ℓ)

= 𝐷𝐾𝐿(𝑓𝑟
(ℓ)

, 𝑓𝑚
(ℓ)

), 

where 𝑓𝑟
(ℓ)

 is the nonparametric estimation of the marginal bivariate lag-distribution at lag 

ℓ for the benchmark dataset, and 𝑓𝑚
(ℓ)

 is the same quantity for the simulated data, 𝑚. 

First, we considered three bivariate distributions (FB5, BVN and BVM) that have 

been used to model dihedral/planar angles with 25 hidden nodes in the HMM, and we 

averaged over the initial seeds. Figure 6a shows the differences in SKLD for these three 

models at different lags. Surprisingly, the BVN obtained a better fit compared with the 

FB5, a circular analog of the BVN, in terms of KL divergence. On the other hand, BVM 

seemed to be the best choice for modeling the backbone angles. 

Figure 6b compares the three HMM models (FB5, BVN and BVM) with 75 hidden 

nodes plus the Hamelryck results (FB5-HMM) that is given in [35]. The closeness in 

performance of BVM and FB5 models, which outperform BVN, is expected. Although 

the results in [35] should be similar to those of FB5, its SKLD is larger than that of the 

FB5 model, especially for the first 3 lags. A possible explanation could be the technical 

improvements in the Mocapy++ software [42] in recent years. 

Next, we focused on the simulation runs obtained from the FB5 fits, averaged over the 

initial seeds. Figure 6c compares the SKLD among four numbers of hidden nodes (𝐻 =

25,50,75,100), in the structure of the FB5-HMM model. The improvement in the 

performance of the FB5-HMM model by increasing the number of hidden nodes from 25 



 

to 75 is clear, and also the performance of the HMM model with 75 hidden nodes is close 

to that of the model with 100 hidden nodes in terms of SKLD. This is consistent with the 

conclusion drawn in [35], where they used the integrated completed likelihood criterion 

(ICL). Figure 6d demonstrates the same comparison for the BVM-HMM models. It is 

clear that the BVM-HMM with 25 and 100 nodes performs almost the same, and the 

variation of BVM-HMM fits with respect to the number of hidden nodes is much less 

than FB5-HMM fits. 

To obtain a numerical quantity for comparing different model fits, we averaged out 

the different lags of 𝑆𝐾𝐿𝐷𝑚
(ℓ)

 to obtain 𝑆𝐾𝐿𝐷𝑚. We prefer the models with smaller 

𝑆𝐾𝐿𝐷𝑚. Here, we integrated out the lags and initial seeds to obtain 12 estimates for 

𝑆𝐾𝐿𝐷𝑚 with respect to three angular distributions (FB5, BVN, BVM) and four numbers 

of hidden nodes (𝐻 = 25,50,75,100). As shown in Table 1, the BVM model achieves the 

best performance for different numbers of hidden nodes, whereas the FB5-HMM with 25 

hidden nodes has the largest 𝑆𝐾𝐿𝐷𝑚. It seems that, by increasing the number of hidden 

nodes, the performance of the FB5-HMM and BVM-HMM becomes closer. Also, the 

FB5 model with 75 hidden nodes and the BVM model with 25 hidden nodes are the most 

robust models over different initial seeds and lags. 

 

Number of  Model Distribution 
hidden nodes  FB5 BVN BVM 

H=25  0.08473 0.05220 0.03140 
  (0.00944) (0.00598) (0.00158) 

H=50  0.04884 0.05106 0.03890 

  (0.00340) (0.00749) (0.00566) 

H=75  0.03796 0.04928 0.03661 

  (0.00159) (0.00486) (0.00551) 

H=100  0.03152 0.04571 0.03090 

  (0.00281) (0.00509) (0.00281) 

 

Table 1: Comparisons of SKLD between the HMM models with FB5, BVN, and BVM 

angular distributions for different numbers of hidden nodes. The values within the 

parenthesis are the associated standard errors. 



 

 
Figure 6: Model assessment and visualization. (a) Comparison of SKLD for the three HMM 

models, i.e., Bivariate Normal, FB5 and Bivariate von Mises with 25 hidden nodes. (b) 

Comparison of SKLD for the three HMM models and the FB5-HMM fit of [35] with 75 hidden 

nodes. (c) Comparison of SKLD for the FB5 model with different numbers of hidden nodes. (d) 

Comparison of SKLD for the BVM model with different numbers of hidden nodes. 

 

Quality Assessment for General Structure Prediction Methods 

The marginal lag-distributions of angles can also be straightforwardly applied to extract 

information from any given set of protein structures, and thus can be used as a quality 

assessment tool for any protein structure prediction method. To explore this technique in 

general, we considered 115 target proteins presented in the recent CASP9, which were 



 

mostly predicted by the major protein structure prediction servers. Similar to the previous 

experiments, we obtained the marginal lag-distributions 𝑓(ℓ)(𝜃, 𝜏) for the native structure 

pool that was specified in the CASP9 website, and four well-performed servers 

“HHpredA” [34, 61], “RaptorX” [62], “Rosetta Server” [23, 49, 50] and “Zhang Server” 

[40, 51, 52]. 

We used the 𝑆𝐾𝐿𝐷𝑚
ℓ  measurement to assess the quality of predictions for each of the 

four servers by comparing to the native structure pool of the 115 target proteins. Figure 7 

compares the 𝑆𝐾𝐿𝐷𝑚
ℓ  across the first 50 lags of bivariate-marginal lag-distributions for 

each of the four servers. As shown in the figure, “Rosetta Server” outperforms all other 

servers over all the lags. This is expected because “Rosetta Server” is the only method 

among the four that directly models protein structures in angular space. When assessed by 

coordinate-based measurements, such as RMSD, TM-score and the GDT score, “Zhang 

Server” was ranked the best among the four [6]. The different assessment results imply 

that although the “Rosetta Server” predicted angles more accurately, it lost accuracy in 

building the 3D structural models because of the use of the ideal values of bond length 

and bond angles.   
 

 
Figure 7: Model assessment and visualization for comparing the SKLD among four well-

performed servers, “HHpredA”, “RaptorX”, “Rosetta Server” and “Zhang Server”, versus the 

native structure pool. 



 

DISCUSSION 

A common belief is that angular sampling methods could be considered as potential aids 

in solving the protein structure prediction problem, especially in discovering the new-fold 

protein targets. Different modeling techniques for established angular sampling methods 

have therefore been proposed in the literature over the past decade, but there is no 

systematic method to evaluate the accuracy of the proposed models. Marginal bivariate 

lag-distributions can be used as an assessment measure for protein conformational 

sampling methods. Furthermore, LagSVD can be straightforwardly applied to provide a 

statistical evaluation of any protein structure prediction method. Traditional quality 

assessment methods have bottlenecks. For example, coordinate-based measurements can 

be biased by the use of expected bond and angle constants, and single structure-based 

measurements can also be biased by special cases. By directly and systematically 

measuring the structure prediction methods in angular space, LagSVD can provide the 

research community with an alternative measure and perspective. 

Our findings on a benchmark protein structure dataset show that little information is 

contained beyond a dependency order of nine. This suggests that future graphical models 

for angular sampling methods, such as hidden Markov models and conditional random 

fields, need not use very large window sizes, even if inference algorithms are available for 

such high-order models. Long-range contacts, which are known to play essential roles in 

protein folding, could be modeled in a specific protein-dependent manner. 

We found that the FB5 distribution did not perform as expected in modeling (𝜃, 𝜏) 

angles. In fact, the FB5-HMM with a small number of hidden nodes performed worse 

than the bivariate normal distribution, which does not take the circular nature of angles 

into consideration. The Bivariate von Mises models performed the best among the three 

angular distribution models we considered for (𝜃, 𝜏) angles. 

SUPPLEMENTARY DATA 

Supplementary materials are available online at http://bib.oxfordjournals.org. 

Also, to illustrate the results and provide service to the community, we have developed a 

webserver at http://www.stat.tamu.edu/∼madoliat/LagSVD. 

http://bib.oxfordjournals.org/
http://www.stat.tamu.edu/∼madoliat/LagSVD
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