2,165 research outputs found

    A new model-discriminant training algorithm for hybrid NN-HMM systems

    Get PDF
    This paper describes a hybrid system for continuous speech recognition consisting of a neural network (NN) and a hidden Markov model (HMM). The system is based on a multilayer perceptron, which approximates the a-posteriori probability of a sequence of states, derived from semi-continuous hidden Markov models. The classification is based on a total score for each hybrid model, attained from a Viterbi search on the state probabilities. Due to the unintended discrimination between the states in each model, a new training algorithm for the hybrid neural networks is presented. The utilized error function approximates the misclassification rate of the hybrid system. The discriminance between the correct and the incorrect models is optimized during the training by the "Generalized Probabilistic Descent Algorithm\u27;, resulting in a minimum classification error. No explicit target values for the neural net output nodes are used, as in the usual backpropagation algorithm with a quadratic error function. In basic experiments up to 56% recognition rate were achieved on a vowel classification task and up to 69 % on a consonant cluster classification task

    Lipreading with Long Short-Term Memory

    Full text link
    Lipreading, i.e. speech recognition from visual-only recordings of a speaker's face, can be achieved with a processing pipeline based solely on neural networks, yielding significantly better accuracy than conventional methods. Feed-forward and recurrent neural network layers (namely Long Short-Term Memory; LSTM) are stacked to form a single structure which is trained by back-propagating error gradients through all the layers. The performance of such a stacked network was experimentally evaluated and compared to a standard Support Vector Machine classifier using conventional computer vision features (Eigenlips and Histograms of Oriented Gradients). The evaluation was performed on data from 19 speakers of the publicly available GRID corpus. With 51 different words to classify, we report a best word accuracy on held-out evaluation speakers of 79.6% using the end-to-end neural network-based solution (11.6% improvement over the best feature-based solution evaluated).Comment: Accepted for publication at ICASSP 201

    SVMs for Automatic Speech Recognition: a Survey

    Get PDF
    Hidden Markov Models (HMMs) are, undoubtedly, the most employed core technique for Automatic Speech Recognition (ASR). Nevertheless, we are still far from achieving high-performance ASR systems. Some alternative approaches, most of them based on Artificial Neural Networks (ANNs), were proposed during the late eighties and early nineties. Some of them tackled the ASR problem using predictive ANNs, while others proposed hybrid HMM/ANN systems. However, despite some achievements, nowadays, the preponderance of Markov Models is a fact. During the last decade, however, a new tool appeared in the field of machine learning that has proved to be able to cope with hard classification problems in several fields of application: the Support Vector Machines (SVMs). The SVMs are effective discriminative classifiers with several outstanding characteristics, namely: their solution is that with maximum margin; they are capable to deal with samples of a very higher dimensionality; and their convergence to the minimum of the associated cost function is guaranteed. These characteristics have made SVMs very popular and successful. In this chapter we discuss their strengths and weakness in the ASR context and make a review of the current state-of-the-art techniques. We organize the contributions in two parts: isolated-word recognition and continuous speech recognition. Within the first part we review several techniques to produce the fixed-dimension vectors needed for original SVMs. Afterwards we explore more sophisticated techniques based on the use of kernels capable to deal with sequences of different length. Among them is the DTAK kernel, simple and effective, which rescues an old technique of speech recognition: Dynamic Time Warping (DTW). Within the second part, we describe some recent approaches to tackle more complex tasks like connected digit recognition or continuous speech recognition using SVMs. Finally we draw some conclusions and outline several ongoing lines of research

    A Speech Recognizer based on Multiclass SVMs with HMM-Guided Segmentation

    Get PDF
    Automatic Speech Recognition (ASR) is essentially a problem of pattern classification, however, the time dimension of the speech signal has prevented to pose ASR as a simple static classification problem. Support Vector Machine (SVM) classifiers could provide an appropriate solution, since they are very well adapted to high-dimensional classification problems. Nevertheless, the use of SVMs for ASR is by no means straightforward, mainly because SVM classifiers require an input of fixed-dimension. In this paper we study the use of a HMM-based segmentation as a mean to get the fixed-dimension input vectors required by SVMs, in a problem of isolated-digit recognition. Different configurations for all the parameters involved have been tested. Also, we deal with the problem of multi-class classification (as SVMs are initially binary classifers), studying two of the most popular approaches: 1-vs-all and 1-vs-1
    • …
    corecore