592 research outputs found

    Paradigm Completion for Derivational Morphology

    Full text link
    The generation of complex derived word forms has been an overlooked problem in NLP; we fill this gap by applying neural sequence-to-sequence models to the task. We overview the theoretical motivation for a paradigmatic treatment of derivational morphology, and introduce the task of derivational paradigm completion as a parallel to inflectional paradigm completion. State-of-the-art neural models, adapted from the inflection task, are able to learn a range of derivation patterns, and outperform a non-neural baseline by 16.4%. However, due to semantic, historical, and lexical considerations involved in derivational morphology, future work will be needed to achieve performance parity with inflection-generating systems.Comment: EMNLP 201

    Robust Tuning Datasets for Statistical Machine Translation

    Full text link
    We explore the idea of automatically crafting a tuning dataset for Statistical Machine Translation (SMT) that makes the hyper-parameters of the SMT system more robust with respect to some specific deficiencies of the parameter tuning algorithms. This is an under-explored research direction, which can allow better parameter tuning. In this paper, we achieve this goal by selecting a subset of the available sentence pairs, which are more suitable for specific combinations of optimizers, objective functions, and evaluation measures. We demonstrate the potential of the idea with the pairwise ranking optimization (PRO) optimizer, which is known to yield too short translations. We show that the learning problem can be alleviated by tuning on a subset of the development set, selected based on sentence length. In particular, using the longest 50% of the tuning sentences, we achieve two-fold tuning speedup, and improvements in BLEU score that rival those of alternatives, which fix BLEU+1's smoothing instead.Comment: RANLP-201

    Monte Carlo inference and maximization for phrase-based translation

    Get PDF
    Recent advances in statistical machine translation have used beam search for approximate NP-complete inference within probabilistic translation models. We present an alternative approach of sampling from the posterior distribution defined by a translation model. We define a novel Gibbs sampler for sampling translations given a source sentence and show that it effectively explores this posterior distribution. In doing so we overcome the limitations of heuristic beam search and obtain theoretically sound solutions to inference problems such as finding the maximum probability translation and minimum expected risk training and decoding.

    Statistical Machine Translation Features with Multitask Tensor Networks

    Full text link
    We present a three-pronged approach to improving Statistical Machine Translation (SMT), building on recent success in the application of neural networks to SMT. First, we propose new features based on neural networks to model various non-local translation phenomena. Second, we augment the architecture of the neural network with tensor layers that capture important higher-order interaction among the network units. Third, we apply multitask learning to estimate the neural network parameters jointly. Each of our proposed methods results in significant improvements that are complementary. The overall improvement is +2.7 and +1.8 BLEU points for Arabic-English and Chinese-English translation over a state-of-the-art system that already includes neural network features.Comment: 11 pages (9 content + 2 references), 2 figures, accepted to ACL 2015 as a long pape
    • …
    corecore