6,667 research outputs found
Coronary artery endothelial dysfunction is positively correlated with low density lipoprotein and inversely correlated with high density lipoprotein subclass particles measured by nuclear magnetic resonance spectroscopy.
OBJECTIVE: The association between cholesterol and endothelial dysfunction remains controversial. We tested the hypothesis that lipoprotein subclasses are associated with coronary endothelial dysfunction.
METHODS AND RESULTS: Coronary endothelial function was assessed in 490 patients between November 1993 and February 2007. Fasting lipids and nuclear magnetic resonance (NMR) lipoprotein particle subclasses were measured. There were 325 females and 165 males with a mean age of 49.8+/-11.6 years. Coronary endothelial dysfunction (epicardial constriction>20% or increase in coronary blood flow<50% in response to intracoronary acetylcholine) was diagnosed in 273 patients, the majority of whom (64.5%) had microvascular dysfunction. Total cholesterol and LDL-C (low density lipoprotein cholesterol) were not associated with endothelial dysfunction. One-way analysis and multivariate methods adjusting for age, gender, diabetes, hypertension and lipid-lowering agent use were used to determine the correlation between lipoprotein subclasses and coronary endothelial dysfunction. Epicardial endothelial dysfunction was significantly correlated with total (p=0.03) and small LDLp (LDL particles) (p<0.01) and inversely correlated with total and large HDLp (high density lipoprotein particles) (p<0.01).
CONCLUSIONS: Epicardial, but not microvascular, coronary endothelial dysfunction was associated directly with LDL particles and inversely with HDL particles, suggesting location-dependent impact of lipoprotein particles on the coronary circulation
High-density lipoprotein subclass and particle size in coronary heart disease patients with or without diabetes
BACKGROUND: A higher prevalence of coronary heart disease (CHD) in people with diabetes. We investigated the high-density lipoprotein (HDL) subclass profiles and alterations of particle size in CHD patients with diabetes or without diabetes. METHODS: Plasma HDL subclasses were quantified in CHD by 1-dimensional gel electrophoresis coupled with immunodetection. RESULTS: Although the particle size of HDL tend to small, the mean levels of low density lipoprotein cholesterol(LDL-C) and total cholesterol (TC) have achieved normal or desirable for CHD patients with or without diabetes who administered statins therapy. Fasting plasma glucose (FPG), triglyceride (TG), TC, LDL-C concentrations, and HDL(3) (HDL(3b) and (3a)) contents along with Gensini Score were significantly higher; but those of HDL-C, HDL(2b+preβ2), and HDL(2a) were significantly lower in CHD patients with diabetes versus CHD patients without diabetes; The preβ(1)-HDL contents did not differ significantly between these groups. Multivariate regression analysis revealed that Gensini Score was significantly and independently predicted by HDL(2a), and HDL(2b+preβ2). CONCLUSIONS: The abnormality of HDL subpopulations distribution and particle size may contribute to CHD risk in diabetes patients. The HDL subclasses distribution may help in severity of coronary artery and risk stratification, especially in CHD patients with therapeutic LDL, TG and HDL levels
Differences in GlycA and lipoprotein particle parameters may help distinguish acute kawasaki disease from other febrile illnesses in children.
BackgroundGlycosylation patterns of serum proteins, such as α1-acid glycoprotein, are modified during an acute phase reaction. The response of acute Kawasaki disease (KD) patients to IVIG treatment has been linked to sialic acid levels on native IgG, suggesting that protein glycosylation patterns vary during the immune response in acute KD. Additionally, the distribution and function of lipoprotein particles are altered during inflammation. Therefore, the aim of this study was to explore the potential for GlycA, a marker of protein glycosylation, and the lipoprotein particle profile to distinguish pediatric patients with acute KD from those with other febrile illnesses.MethodsNuclear magnetic resonance was used to quantify GlycA and lipoprotein particle classes and subclasses in pediatric subjects with acute KD (n = 75), post-treatment subacute (n = 36) and convalescent (n = 63) KD, as well as febrile controls (n = 48), and age-similar healthy controls (n = 48).ResultsGlycA was elevated in acute KD subjects compared to febrile controls with bacterial or viral infections, IVIG-treated subacute and convalescent KD subjects, and healthy children (P <0.0001). Acute KD subjects had increased total and small low density lipoprotein particle numbers (LDL-P) (P <0.0001) and decreased total high density lipoprotein particle number (HDL-P) (P <0.0001) compared to febrile controls. Consequently, the ratio of LDL-P to HDL-P was higher in acute KD subjects than all groups tested (P <0.0001). While GlycA, CRP, erythrocyte sedimentation rate, LDL-P and LDL-P/HDL-P ratio were able to distinguish patients with KD from those with other febrile illnesses (AUC = 0.789-0.884), the combinations of GlycA and LDL-P (AUC = 0.909) or GlycA and the LDL-P/HDL-P ratio (AUC = 0.910) were best at discerning KD in patients 6-10 days after illness onset.ConclusionsHigh levels of GlycA confirm enhanced protein glycosylation as part of the acute phase response in KD patients. When combined with common laboratory tests and clinical characteristics, GlycA and NMR-measured lipoprotein particle parameters may be useful for distinguishing acute KD from bacterial or viral illnesses in pediatric patients
The secondary structure of apolipoprotein A-I on 9.6-nm reconstituted high-density lipoprotein determined by EPR spectroscopy.
Apolipoprotein A-I (ApoA-I) is the major protein component of high-density lipoprotein (HDL), and is critical for maintenance of cholesterol homeostasis. During reverse cholesterol transport, HDL transitions between an array of subclasses, differing in size and composition. This process requires ApoA-I to adapt to changes in the shape of the HDL particle, transiting from an apolipoprotein to a myriad of HDL subclass-specific conformations. Changes in ApoA-I structure cause alterations in HDL-specific enzyme and receptor-binding properties, and thereby direct the HDL particle through the reverse cholesterol transport pathway. In this study, we used site-directed spin label spectroscopy to examine the conformational details of the ApoA-I central domain on HDL. The motional dynamics and accessibility to hydrophobic/hydrophilic relaxation agents of ApoA-I residues 99-163 on 9.6-nm reconstituted HDL was analyzed by EPR. In previous analyses, we examined residues 6-98 and 164-238 (of ApoA-I's 243 residues), and combining these findings with the current results, we have generated a full-length map of the backbone structure of reconstituted HDL-associated ApoA-I. Remarkably, given that the majority of ApoA-I's length is composed of amphipathic helices, we have identified nonhelical residues, specifically the presence of a β-strand (residues 149-157). The significance of these nonhelical residues is discussed, along with the other features, in the context of ApoA-I function in contrast to recent models derived by other methods
Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study
Objectives The interleukin-6 receptor (IL-6R) blocker tocilizumab (TCZ) reduces inflammatory disease activity in rheumatoid arthritis (RA) but elevates lipid concentrations in some patients. We aimed to characterise the impact of IL-6R inhibition on established and novel risk factors in active RA.
Methods Randomised, multicentre, two-part, phase III trial (24-week double-blind, 80-week open-label), MEASURE, evaluated lipid and lipoprotein levels, high-density lipoprotein (HDL) particle composition, markers of coagulation, thrombosis and vascular function by pulse wave velocity (PWV) in 132 patients with RA who received TCZ or placebo.
Results Median total-cholesterol, low-density lipoprotein-cholesterol (LDL-C) and triglyceride levels increased in TCZ versus placebo recipients by week 12 (12.6% vs 1.7%, 28.1% vs 2.2%, 10.6% vs −1.9%, respectively; all p<0.01). There were no significant differences in mean small LDL, mean oxidised LDL or total HDL-C concentrations. However, HDL-associated serum amyloid A content decreased in TCZ recipients. TCZ also induced reductions (<30%) in secretory phospholipase A2-IIA, lipoprotein(a), fibrinogen and D-dimers and elevation of paraoxonase (all p<0.0001 vs placebo). The ApoB/ApoA1 ratio remained stable over time in both groups. PWV decreases were greater with placebo than TCZ at 12 weeks (adjusted mean difference 0.79 m/s (95% CI 0.22 to 1.35; p=0.0067)).
Conclusions These data provide the first detailed evidence for the modulation of lipoprotein particles and other surrogates of vascular risk with IL-6R inhibition. When compared with placebo, TCZ induced elevations in LDL-C but altered HDL particles towards an anti-inflammatory composition and favourably modified most, but not all, measured vascular risk surrogates. The net effect of such changes for cardiovascular risk requires determination.</p
Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase
Background Statins are first-line therapy for cardiovascular disease prevention, but their systemic effects across lipoprotein subclasses, fatty acids, and circulating metabolites remain incompletely characterized. Objectives This study sought to determine the molecular effects of statin therapy on multiple metabolic pathways. Methods Metabolic profiles based on serum nuclear magnetic resonance metabolomics were quantified at 2 time points in 4 population-based cohorts from the United Kingdom and Finland (N = 5,590; 2.5 to 23.0 years of follow-up). Concentration changes in 80 lipid and metabolite measures during follow-up were compared between 716 individuals who started statin therapy and 4,874 persistent nonusers. To further understand the pharmacological effects of statins, we used Mendelian randomization to assess associations of a genetic variant known to mimic inhibition of HMG-CoA reductase (the intended drug target) with the same lipids and metabolites for 27,914 individuals from 8 population-based cohorts. Results Starting statin therapy was associated with numerous lipoprotein and fatty acid changes, including substantial lowering of remnant cholesterol (80% relative to low-density lipoprotein cholesterol [LDL-C]), but only modest lowering of triglycerides (25% relative to LDL-C). Among fatty acids, omega-6 levels decreased the most (68% relative to LDL-C); other fatty acids were only modestly affected. No robust changes were observed for circulating amino acids, ketones, or glycolysis-related metabolites. The intricate metabolic changes associated with statin use closely matched the association pattern with rs12916 in the HMGCR gene (R2 = 0.94, slope 1.00 ± 0.03). Conclusions Statin use leads to extensive lipid changes beyond LDL-C and appears efficacious for lowering remnant cholesterol. Metabolomic profiling, however, suggested minimal effects on amino acids. The results exemplify how detailed metabolic characterization of genetic proxies for drug targets can inform indications, pleiotropic effects, and pharmacological mechanisms
Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration
10.1194/jlr.M073684Journal of Lipid Research5891785-179
In vivo triglyceride synthesis in subcutaneous adipose tissue of humans correlates with plasma HDL parameters
Backgrounds and aims: Low concentrations of plasma HDL-C are associated with the development of atherosclerotic cardiovascular diseases and type 2 diabetes. Here we aimed to explore the relationship between the in vivo fractional synthesis of triglycerides (fTG) in subcutaneous (s.q.) abdominal adipose tissue (AT), HDL-C concentrations and HDL particle size composition in non-diabetic humans. Methods: The fTG in s.q. abdominal AT was measured in 16 non-diabetic volunteers (7 women, 9 men; Age: 49 ± 20 years; BMI: 31 ± 5 kg/m; Fasting Plasma Glucose: 90 ± 10 mg/dl) after 2H2O labeling. HDL-C concentration and subclasses, large (L-HDL), intermediate (I-HDL) and small (S-HDL) were measured. Results: Linear regression analyses demonstrated significant associations of fTG with plasma concentration of HDL-C (r = 0.625,p = 0.009) and percent contribution of L-HDL (r = 0.798,p < 0.001), I-HDL (r = -0.765,p < 0.001) and S-HDL (r = -0.629, p = 0.009). When analyses were performed by gender, the associations remained significant in women (HDL-C: r = 0.822,p = 0.023; L-HDL: r = 0.892,p = 0.007; I-HDL: r = -0.927,p = 0.003) but not men. Conclusions: Our study demonstrated an in vivo association between subcutaneous abdominal adipose tissue lipid dynamics and HDL parameters in humans, but this was true for women not men. Positive association with L-HDL and negative with I-HDL suggest that subcutaneous abdominal adipose tissue lipid dynamics may play an important role in production of mature functional HDL particles. Further studies evaluating the mechanism responsible for these associations and the observed gender differences are important and warranted to identify potential novel targets of intervention to increase the production of atheroprotective subclasses of HDL-Cs and thus decreasing the risks of development of atherosclerotic conditions
Lipid Metabolism and Comparative Genomics
Unilever asked the Study Group to focus on two problems. The first concerned dysregulated lipid metabolism which is a feature of many diseases including metabolic syndrome, obesity and coronary heart disease. The Study Group was asked to develop a model of the kinetics of lipoprotein metabolism between healthy and obese states incorporating the activities of key enzymes.
The second concerned the use of comparative genomics in understanding and comparing metabolic networks in bacterium. Comparative genomics is a method to make inferences on the genome of a new organism using information of a previously charaterised organism. The first mathematical question is how one would quantify such a metabolic map in a statistical sense, in particular, where there are different levels of confidence for presense of different parts of the map. The next and most important question is how one can design a measurement strategy to maximise the confidence in the accuracy of the metabolic map
- …
