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ABSTRACT
Objectives The interleukin-6 receptor (IL-6R) blocker
tocilizumab (TCZ) reduces inflammatory disease activity
in rheumatoid arthritis (RA) but elevates lipid
concentrations in some patients. We aimed to
characterise the impact of IL-6R inhibition on established
and novel risk factors in active RA.
Methods Randomised, multicentre, two-part, phase III
trial (24-week double-blind, 80-week open-label),
MEASURE, evaluated lipid and lipoprotein levels, high-
density lipoprotein (HDL) particle composition, markers
of coagulation, thrombosis and vascular function by
pulse wave velocity (PWV) in 132 patients with RA who
received TCZ or placebo.
Results Median total-cholesterol, low-density
lipoprotein-cholesterol (LDL-C) and triglyceride levels
increased in TCZ versus placebo recipients by week 12
(12.6% vs 1.7%, 28.1% vs 2.2%, 10.6% vs −1.9%,
respectively; all p<0.01). There were no significant
differences in mean small LDL, mean oxidised LDL or
total HDL-C concentrations. However, HDL-associated
serum amyloid A content decreased in TCZ recipients.
TCZ also induced reductions (>30%) in secretory
phospholipase A2-IIA, lipoprotein(a), fibrinogen and D-
dimers and elevation of paraoxonase (all p<0.0001 vs
placebo). The ApoB/ApoA1 ratio remained stable over
time in both groups. PWV decreases were greater with
placebo than TCZ at 12 weeks (adjusted mean difference
0.79 m/s (95% CI 0.22 to 1.35; p=0.0067)).
Conclusions These data provide the first detailed
evidence for the modulation of lipoprotein particles and
other surrogates of vascular risk with IL-6R inhibition.
When compared with placebo, TCZ induced elevations in
LDL-C but altered HDL particles towards an anti-
inflammatory composition and favourably modified most,
but not all, measured vascular risk surrogates. The net
effect of such changes for cardiovascular risk requires
determination.

INTRODUCTION
Rheumatoid arthritis (RA) is a chronic inflammatory
disease associated with clinically important comorbid-
ities, including accelerated cardiovascular risk.1 The
latter is not explained by conventional risk factors (eg,
hypertension, obesity), suggesting that additional
pathways contribute to adverse outcomes. These may
reflect common genetic or environmental aetiological
factors or the impact of chronic inflammation on
underlying atherosclerotic disease burden, operating

through circulating cytokines, immune complexes,
complement factors and acute-phase reactants.2–4

Furthermore, it is recognised that absolute circulating
lipid concentrations are modified in RA, likely reflect-
ing regulatory integration of metabolic and inflamma-
tory molecular networks.5 In general, high-density
lipoprotein-cholesterol (HDL-C) and low-density
lipoprotein-cholesterol (LDL-C) levels are reduced in
active disease6 and may increase on the initiation of
effective therapeutics regardless of modality.7

Moreover, interpretation of lipid particle concentra-
tions may be further complicated by changes in size
and composition associated with inflammation. For
example, small LDL-C particles may confer more
atherogenic risk than larger LDL-C particles.8 In
inflammatory conditions, HDL particles are asso-
ciated with increased serum amyloid A (SAA) content,
representing a potentially proatherogenic phenotype.9

The impact of therapy on subparticle components in
RA has not been well characterised. Similarly, the
effect of therapy on other lipid particles causally asso-
ciated with vascular disease, such as lipoprotein(a) (Lp
[a]),10 and on clotting factors, such as fibrinogen or
markers of activated clotting such as D-dimer,11 is
poorly understood.
Interleukin-6 (IL-6) plays an important role in

various inflammatory effector pathways in RA
through B-cell, fibroblast and osteoclast activation.
Additionally, it mediates systemic manifestations of
disease operating through hepatic and central neuro-
logical pathways.12 Intriguingly, elevated IL-6 levels
are independently associated with increased cardio-
vascular risk, including fatal myocardial infarction
and cerebrovascular accident, in the general popula-
tion.13 14 The mechanisms mediating such epidemio-
logical observations are poorly understood but are
likely to be commensurate with the fundamental role
played by inflammatory pathways in the pathogenesis
of atherosclerosis, the systemic functional activities of
IL-6 conferred by widespread gp130 receptor mem-
brane expression and the existence of soluble IL-6
receptor (IL-6R).15 Moreover, loss-of-function IL-6R
polymorphisms are associated with reduced vascular
risk.16 17

Tocilizumab (TCZ) is a monoclonal antibody tar-
geting IL-6R (membrane-bound and soluble) that
reduces inflammation and articular damage in
patients with RA. In phase II and III trials, moderate
elevations of LDL-C, HDL-C and triglycerides were
apparent in RA patients treated with TCZ.7 The

Open Access
Scan to access more

free content

Clinical and epidemiological research

694 McInnes IB, et al. Ann Rheum Dis 2015;74:694–702. doi:10.1136/annrheumdis-2013-204345

http://dx.doi.org/10.1136/annrheumdis-2013-204345
http://dx.doi.org/10.1136/annrheumdis-2013-204345
http://dx.doi.org/10.1136/annrheumdis-2013-204345
http://crossmark.crossref.org/dialog/?doi=10.1136/annrheumdis-2013-204345&domain=pdf&date_stamp=2013-12-24
http://www.eular.org/
http://ard.bmj.com


atherogenic implications of these changes are unknown. Similarly,
the effect of IL-6R blockade on vascular physiology parameters
(eg, as assessed by pulse wave velocity (PWV)) has been minimally
explored. PWV is a measure of early structural vascular changes
and has been shown to respond within 3 months to changes in vas-
cular inflammation.18 Thus, given its mode of action, TCZ pro-
vides a highly specific molecular intervention with which to dissect
the role of IL-6 in the modulation of lipid particles and the regula-
tion of other vascular risk factors in patients with chronic inflam-
mation. We report herein the results of a placebo-controlled trial
that sought to define the effects of TCZ on a range of vascular risk
surrogates in patients with RA. Our primary hypotheses were that
PWV and small LDL particles would be significantly reduced by
TCZ.

METHODS
Patients
This trial, conducted independently of the pivotal RA trials, was
approved by an independent ethics committee or institutional
review board, and all patients gave written informed consent for
participation in the trial. Adult patients with moderately to
severely active RA (diagnosed per American College of
Rheumatology (ACR) criteria) of more than 6 months’ duration
were recruited. Enrolment criteria included inadequate response
to stable methotrexate (MTX) therapy, exemplified by a swollen
joint count (SJC) ≥6 and a tender joint count (TJC) ≥6, together
with C-reactive protein (CRP) >10 mg/L or erythrocyte sedimen-
tation rate (ESR) >28 mm/h. Patients with inadequate response to
an antitumour necrosis factor-α (aTNF) agent during the
6 months before baseline or to more than two previous aTNF
agents were ineligible. MTX therapy was continued during the
study. Initiation of lipid-lowering, oral antidiabetic or antihyper-
tensive medications or change in dose within 12 weeks of baseline
was prohibited, and glucocorticoid doses (≤10 mg) had to remain
stable. Patients were stratified at randomisation by age (<52 vs
≥52 years), mean arterial blood pressure (<93.3 vs
≥93.3 mmHg) and CRP (<1.66 vs ≥1.66 mg/dL).

Procedures
This two-arm, randomised, multicentre, double-blind, placebo-
controlled, parallel-group, phase III study was conducted in the
USA, Canada and the UK (figure 1) at 34 sites (the MEASURE
study). Patients were randomly assigned using an interactive
voice response system to blinded (patient and treating clinical
team) intravenous treatment with TCZ 8 mg/kg or placebo in a
1:1 ratio, both in combination with oral MTX, every 4 weeks
for 6 months between November 2007 and June 2008. Patients
who, despite scheduled infusions of double-blind study medica-
tion at weeks 8 and 12, did not achieve ≥20% improvement
from baseline in SJC and TJC at week 16 were offered escape
therapy with open-label TCZ 8 mg/kg. At completion of the
24-week randomised treatment period, all patients were offered
open-label treatment with TCZ 8 mg/kg plus MTX.
Assessments during part 1 (randomised phase) of the study were
performed at day 1 and at weeks 1, 2, 4, 8, 12, 16, 20 and 24.
Open-label assessments were performed every 12 weeks to
week 104 (ClinicalTrials.gov number NCT00535782). The
study protocol (version C, 22 June 2009 (original protocol pub-
lished 10 May 2007)) is available as online supplementary
material.

Lipid and biomarker assays
Commercial assays were used to measure cholesterol, triglycer-
ides, apolipoproteins A1 and B (ApoA1 and ApoB), CRP (by

high-sensitivity assay) and ESR (all assays conducted or facili-
tated by Covance Laboratories, Greenfield, Indiana, USA).
Serum lipid subclasses were characterised by nuclear magnetic
resonance (NMR; LipoScience, Raleigh, North Carolina, USA).
Assays for HDL-associated SAA and serum paraoxonase, secre-
tory phospholipase A2-IIA (sPLA2-IIA), oxidised LDL, D-dimer,
fibrinogen, Lp(a) and haptoglobin were performed at Pacific
Biomarkers, Inc. (Seattle, Washington, USA). Specific details are
provided as online supplementary material.

Vascular physiology
Arterial stiffness was assessed by PWV according to the manu-
facturer’s instructions using a pulse wave analysis apparatus
(SphygmoCor; AtCor, San Jose, California, USA).19 Blinded
assessors from all centres underwent training with an expert
assessor, and certification was provided by AtCor. All PWV
scans were reviewed by AtCor, and only those meeting predeter-
mined quality control measures were accepted for analysis
(details in online supplementary material).

Statistical analysis
The primary objective was to investigate the effect of 12 weeks
of treatment with TCZ on PWV and on small LDL particle
number assessed by NMR compared with placebo. The second-
ary objective was to investigate the effect of TCZ compared
with placebo on these measurements at week 24. All other ana-
lyses, including lipid and lipoprotein parameters, were explora-
tory. A sample size of 120 patients (60 per arm), calculated
based on previous results in patients with RA,5 18 was expected
to provide sufficient power to detect a difference at week 12 in
PWV (−1.14 m/s) and small LDL (−5.51 mg/dL (30% reduc-
tion)) in patients treated with TCZ compared with placebo.

The co-primary efficacy end points of change from baseline in
PWV and small LDL particle number were analysed by paramet-
ric analysis of covariance. The 12-week and 24-week efficacy ana-
lyses of primary and secondary end points were performed on
the intent-to-treat (ITT) population using last-observation-
carried-forward to impute missing data at the analysis time point.
Only measurements recorded before escape therapy were carried
forward. All other exploratory end points were summarised for
the ITT population observed cases, without imputation of
missing data and excluding escape data. All laboratory parameter
values were converted to SI units; for lipid parameters, only the
latest fasted values within the time window were included.
Assumptions of normality and homogeneity of the variance were
assessed by inspecting normal probability plots, plots of standar-
dised residual versus predicted values and plots of standardised
residual versus continuous covariates. Primary end points in the
study were analysed based on a normal distribution; however,
because baseline values for several laboratory assessments in this
study demonstrated non-normal distributions, values for explora-
tory serum analytes are presented as medians or median percent-
age changes from baseline. Exploratory analyses, based on
observed cases, were performed using the non-parametric
Kruskal–Wallis test. Hodges–Lehmann estimates of location shift
and 95% CIs are presented. No adjustments for multiplicity were
performed.

RESULTS
Sixty-nine patients were randomly assigned to receive TCZ
+MTX and sixty-three to receive placebo+MTX (figure 1).
Sixty-five and sixty patients, respectively, completed 12 weeks of
therapy. One patient in each arm withdrew because of an adverse
event; one patient on placebo withdrew because of insufficient
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therapeutic response, three patients in the TCZ arm refused treat-
ment and one patient in the TCZ arm was withdrawn because of a
protocol violation. Two patients in the TCZ arm had their
lipid-lowering medications changed; though included in the ITT
analyses, they were excluded from the per-protocol analyses. Of
124 patients who completed blinded treatment, 117 elected to
continue to the open-label phase; 92 completed treatment for
96 weeks. Demographic and baseline disease characteristics
(table 1) were similar to those of the TCZ phase III cohort.20

Moreover, 30% and 39% of the patients in the placebo and TCZ
arms, respectively, had previously received aTNFs. TCZ efficacy,
assessed by change in disease activity score at 28 joints (DAS28) at
weeks 12 and 24 or by ACR 20/50/70 proportional changes at
week 24, was similar to that previously observed and differed sig-
nificantly from that of placebo (see online supplementary figure
S1). Adverse events and serious adverse events occurring during
the trial were similar to those observed in previous TCZ studies
(see online supplementary table S1).

Figure 1 Study design. MTX, methotrexate; TCZ, tocilizumab. (A) *Patients who did not achieve ≥20% improvement from baseline in swollen and
tender joint counts at week 16 were offered escape therapy with open-label TCZ 8 mg/kg. †60 placebo+MTX and 65 TCZ+MTX patients completed
12 weeks. ‡59 placebo+MTX and 65 TCZ+MTX patients completed 24 weeks. (B) *TCZ 8 mg/kg every 4 weeks+background MTX (7.5–25 mg
weekly). †Escape therapy, open-label TCZ (8 mg/kg every 4 weeks+background MTX). ‡Patients who received at least one dose of TCZ (double-blind
or open-label).
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Consistent with results from TCZ phase III clinical trials,
median total cholesterol and LDL-C levels increased in TCZ reci-
pients but did not change in placebo patients (table 2). In contrast,

no statistically significant difference in the co-primary outcome of
concentration of small LDL particles was observed at either week
12 (adjusted mean difference −0.0 (95% CI −115.0 to
115.0) nmol/L) or week 24 (adjusted mean difference 11.2 (95%
CI −106.7 to 129.1) nmol/L) after treatment with TCZ compared
with placebo (figure 2A). Oxidised LDL exhibited a 7% increase
on TCZ treatment that was not significantly different from the
increase observed with placebo and did not persist at week 24
(figure 2B). By contrast, Lp(a) was reduced (by 37%) in TCZ reci-
pients (figure 2C) compared with controls.

Measurement of change in PWV (second co-primary outcome)
over 12 weeks revealed a significant difference between groups
(adjusted mean difference 0.79 m/s (95% CI 0.22 to 1.35;
p=0.0067)), constituting a greater relative reduction in PWV in
placebo compared with TCZ-treated patients (−0.99 vs
−0.21 m/s). The group difference was not sustained to week 24
(−0.47 vs −0.17 m/s; adjusted mean difference 0.30 m/s (95% CI
−0.27 to 0.87; p=0.30)) (table 3). Technical challenges across sites
were recorded in a substantial number of case report forms. There
was no evidence of change in blood pressure by treatment arm
before or after infusions (data available on request). Ten (17.5%)
patients who received placebo and nine (15.5%) who received
TCZ did not meet the quality control standards established for all
measured PWV parameters.

No statistically significant changes occurred in total serum
HDL-C levels in the study. NMR evaluation of HDL, however,
revealed differential effects of TCZ versus placebo across particle

Table 1 Demographic and disease factors at baseline

Placebo+MTX
(n=63)*

TCZ+MTX
(n=69)

Female, n (%) 47 (75) 57 (83)
Age, years 57.0 (50.0–64.0) 57.0 (49.0–62.0)
Weight, kg 82.0 (65.0–92.1) 77.4 (67.0–86.5)
BMI, kg/m2, median (range) 29.2 (18.5–49.6) 29.2 (19.4–57.3)
Current smoker, n (%) 14 (22) 19 (28)
History of diabetes, n (%) 4 (6) 6 (9)
Duration of RA, years 6.8 (2.4–9.9) 7.0 (2.0–16.2)
DAS28 6.6 (5.8–7.3) 6.8 (5.9–7.4)
CRP, mg/dL 0.88 (0.39–1.86) 0.94 (0.52–2.65)
Statin use, n (%) 10 (16) 10 (14)
Previous aTNF, n (%) 19 (30) 27 (39)
Oral steroid use, n (%) 17 (27) 20 (29)
Baseline MTX dose, mg/week 15.0 (15.0–20.0) 15.0 (15.0–20.0)

Data are presented as median (IQR) unless otherwise indicated.
*One patient randomly assigned to placebo+MTX actually received one dose of TCZ
and was therefore included in the TCZ group for the safety analyses.
aTNF, anti-tumour necrosis factor α; BMI, body mass index; CRP, C-reactive protein;
DAS28, disease activity score at 28 joints; MTX, methotrexate; RA, rheumatoid
arthritis; TCZ, tocilizumab.

Table 2 Percentage change from baseline to week 12 in lipid parameters and lipid particles* (observed cases), ITT population

Placebo+MTX
(n=63)

TCZ 8 mg/kg+MTX
(n=69)

Estimate* (95% CI)
p for difference
at week 12

Actual values Change from baseline (%) Actual values Change from baseline (%)

n Median IQR n† Median IQR n Median IQR n† Median IQR

Total cholesterol (mmol/L)
Baseline 58 4.8 4.3–5.5 55 – – 64 4.7 4.2–5.3 56 – –

Week 12 60 4.8 4.4–5.8 55 1.7 –9.0–11.6 60 5.3 4.6–6.1 56 12.6 –0.5–23.9 10.4 (4.8 to 16.9)
p=0.0004

LDL-C (mmol/L)
Baseline 55 3.1 2.5–3.5 50 – – 56 2.8 2.4–3.4 48 – –

Week 12 56 3.1 2.5–3.8 50 –1.9 –8.7–12.7 57 3.1 2.5–3.8 48 10.6 1.0–28.9 11.0(3.8 to 18.6)
p=0.0076

HDL-C (mmol/L)
Baseline 58 1.3 1.1–1.6 54 – – 62 1.3 1.1–1.6 53 – –

Week 12 60 1.4 1.1–1.6 54 2.4 –10.2–9.3 60 1.5 1.2–1.6 53 3.1 –6.6–12.7 3.0 (–2.4 to 8.6)
p=0.2753

Triglycerides (mmol/L)
Baseline 58 1.3 1.1–1.9 55 – – 64 1.2 1.0–1.8 56 – –

Week 12 60 1.2 1.1–1.7 55 2.2 –18.7–18.7 60 1.5 1.1–2.3 56 28.1 –1.7–63.5 25.4 (10.1 to 40.8)
p=0.0011

Total cholesterol/HDL (ratio)
Baseline 58 3.8 3.2–4.4 55 – – 62 3.6 2.8–4.5 54 – –

Week 12 60 3.9 3.2–4.8 55 0.9 –7.5–7.9 60 3.9 3.1–4.4 54 11.3 2.0–19.4 9.7 (4.3 to 14.5)
p=0.0008

ApoB/ApoA1 (ratio)
Baseline 58 0.67 0.57–0.77 55 – – 64 0.68 0.49–0.80 56 – –

Week 12 60 0.70 0.56–0.79 55 2.5 –7.8–11.0 60 0.67 0.52–0.75 56 4.7 –4.2–15.8 2.1(–4.1 to 7.9)
p=0.5108

Large VLDL/chylomicrons (nmol/L)
Baseline 59 1.1 0.5–2.8 53 – – 63 1.3 0.20–4.30 51 – –

Week 12 60 1.2 0.3–4.1 53 0.0 –50.0–67.5 59 3.7 1.30–7.40 51 205.6 0.0–700.0 167.5 (68.5 to 280.6)
p<0.0001

Continued
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sizes, with observed elevations in small HDL concentration and
reductions in medium HDL (table 2). A significant reduction (by
78%) was observed in the TCZ arm for HDL-associated SAA. In
contrast, a significant increase (by 16%) was noted in the antioxi-
dative enzyme paraoxonase I, which is almost exclusively carried
in serum HDL (figure 2D–F). sPLA2-IIAwas reduced (by 61%) in
TCZ recipients. No changes were observed in the control popula-
tion in these biomarkers. Alterations occurred rapidly (by week 2)
and were sustained throughout therapy.

Results of NMR subfractionation of other lipoprotein sub-
classes are shown in table 2. In patients treated with TCZ,
changes in very low-density lipoprotein (VLDL) subclasses
were elevated compared with placebo, with changes in the
largest components of the VLDL subclasses most notable,
though they constituted a small proportion of the total VLDL
particles. Similarly, no significant changes in the concentra-
tions of intermediate, buoyant particles (large LDL and
intermediate-density lipoprotein) occurred in TCZ-treated
patients compared with placebo patients. Median triglyceride
levels increased in TCZ-treated patients but did not change in
placebo patients.

Markers of inflammation, including CRP and haptoglobin,
were elevated at baseline and markedly reduced within the first

week of TCZ treatment (figure 3). Similarly, rapid and sustained
reductions in fibrinogen (by 47% from baseline) and D-dimer
(by 62% from baseline) were observed in recipients of TCZ,
whereas no changes were observed in the control arm (figure 3).
All changes remained stable throughout TCZ treatment. Finally,
the ApoB/ApoA1 ratio did not change throughout the study in
either group (table 2).

DISCUSSION
We herein tested the primary hypotheses that TCZ in compari-
son to placebo would significantly lower PWV and the amount
of small, dense LDL. However, neither hypothesis was sup-
ported. There was no change in the amount of small, dense
LDL, and though PWV declined in both groups it did so more
in placebo recipients. We also performed extensive additional
analyses to investigate the wider impact of IL-6R inhibition on a
range of vascular risk factors. Thus, we report that TCZ did
modulate lipid particle levels (LDL, HDL, VLDL) and compos-
ition (HDL-associated SAA), together with a number of other
inflammatory (CRP, paraoxonase) and vascular (Lp(a), D-dimer,
fibrinogen) risk factors, suggesting potential modulation of the
net atherogenic risk profile.

Table 2 Continued

Placebo+MTX
(n=63)

TCZ 8 mg/kg+MTX
(n=69)

Estimate* (95% CI)
p for difference
at week 12

Actual values Change from baseline (%) Actual values Change from baseline (%)

n Median IQR n† Median IQR n Median IQR n† Median IQR

Medium VLDL/chylomicrons (nmol/L)
Baseline 59 22.1 12.0–38.3 56 – – 63 22.0 11.0–32.7 55 – –

Week 12 60 21.9 12.1–30.5 56 –2.1 –31.8–56.0 59 28.2 17.2–47.4 55 57.7 –19.1–123.6 41.3(9.2 to 77.5)
p=0.0088

Small VLDL/chylomicrons (nmol/L)
Baseline 59 35.6 29.1–48.1 56 – – 63 30.4 18.7–40.0 55 – –

Week 12 60 36.2 26.2–46.2 56 –6.1 –25.1–17.9 59 40.1 26.5–57.2 55 31.4 10.2–91.5 42.3 (24.1 to 60.5)
p<0.0001

IDL particles (nmol/L)
Baseline 59 33.0 9.0–57.0 51 – – 63 31.0 7.0–71.0 46 – –

Week 12 60 36.0 9.0–59.5 51 –9.4 –49.6–133.3 59 39.0 11.0–92.0 46 33.5 –60.9–222.6 14.3 (–37.3 to 70.0)
p=0.5853

Large LDL particles (nmol/L)
Baseline 59 396.0 261.0–508.0 56 – – 63 405.0 253.0–535.0 55 – –

Week 12 60 479.5 331.5–544.5 56 13.2 –9.4–35.3 59 495.0 306.0–605.0 55 18.6 –18.6–46.9 –0.16 (–17.9 to 17.2)
p=0.9718

Large HDL particles (mmol/L)
Baseline 59 6.9 4.7–9.9 56 – – 63 7.0 4.6–10.6 55 – –

Week 12 60 7.8 5.5–11.0 56 1.8 –15.5–13.4 59 8.4 5.3–11.6 55 5.6 –8.6–23.7 4.8 (–5.9 to 15.1)
p=0.4140

Medium HDL particles (mmol/L)

Baseline 59 3.0 0.5–6.4 46 – – 63 4.8 1.9–7.6 52 – –

Week 12 60 3.2 1.5–7.4 46 2.0 –30.4–56.5 59 4.2 1.2–7.5 52 –25.0 –71.5–25.8 –30.7 (–61.3 to –0.23)
p=0.0454

Small HDL particles (mmol/L)
Baseline 59 19.9 14.9–24.0 56 – – 63 17.4 13.0–21.1 55 – –

Week 12 60 20.7 13.1–23.1 56 2.8 –10.8–21.9 59 20.9 18.2–25.7 55 23.0 0.0–55.4 20.3 (7.9 to 34.0)
p=0.0012

Data were missing at time points (including baseline) for some parameters. All values have been converted to SI units. No imputation was used for missing values. Only the latest
fasted values within the time window are included.
*Hodges–Lehmann estimate of location shift (pseudo-median). p was calculated from Kruskal–Wallis test.
†Percentage change from baseline values includes only patients with both baseline and 12-week values.
Apo, apolipoprotein; C, cholesterol; HDL, high-density lipoprotein; IDL, intermediate-density lipoprotein; ITT, intent-to-treat; LDL, low-density lipoprotein; MTX, methotrexate; TCZ,
tocilizumab; VLDL, very low-density lipoprotein.
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Consistent with results from other TCZ phase III clinical
trials, total cholesterol, LDL-C and triglyceride levels increased
in TCZ-treated patients but were minimally changed in placebo
patients. In contrast, small LDL particle concentrations, consid-
ered proatherogenic, remained similar in TCZ-treated and
placebo patients. Moreover, we observed a decrease (>30%) in
Lp(a), a risk factor independently associated with vascular
events.10 NMR assessment of lipoprotein subclasses revealed
clear and sizeable changes in all classes of VLDL particles, the
functional significance of which is yet unclear.

By contrast, we did not see a reduction in PWV with TCZ
but rather a significant reduction in the placebo group at
12 weeks relative to TCZ recipients, though this pattern was
not sustained to the 24-week measurement. This finding, there-
fore, contradicts our original hypothesis. It should be noted,
however, that technical challenges during the conduct of this

multicentre trial led to approximately 15% of the measurements
being substandard. Because of the severity of disease in study
participants who had reduced mobility, contractures and joint
pain, the procedure proved more difficult than anticipated.
Nevertheless, it appears that PWV is not necessarily reduced
with TCZ, though further studies with other vascular function
measures not influenced by limited mobility (eg, peripheral
arterial tonometry as a measure of endothelial function) would
be useful. Our findings contrast with those of Kume et al,21

who observed similar reductions in cardio-ankle vascular index
and aortic augmentation index for patients treated with TCZ,
adalimumab or etanercept. Speculatively, it remains possible that
disease-related vascular changes in patients in the present study
(in which mean DAS28 was high) were much more progressed
(and, thus, less reversible) than in patients studied in other
trials.18 21

Figure 2 (A–F) Effects on lipoproteins (TCZ vs placebo). HDL, high-density lipoprotein; LDL, low-density lipoprotein; MTX, methotrexate; SAA,
serum amyloid A; sPLA2-IIA, secretory phospholipase A2-IIA; TCZ, tocilizumab. *p<0.0001 (TCZ vs placebo).
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Increases in HDL particle number, measured by NMR, occurred
primarily in small particles. Our demonstration of a significant
increase in the concentration of small HDL particles with TCZ
treatment is consistent with a potential ‘normalisation’ of small
HDL particle levels. Small HDL particle numbers, measured by
NMR, in two independent studies were lower in RA patients than
in controls despite similar HDL-C concentrations.5 6 Furthermore,
the observed significant reduction in medium HDL and HDL-SAA
concentrations, along with the increase in paraoxonase, an antioxi-
dant enzyme associated with HDL, suggests remodelling of HDL
particles from a pro-inflammatory to an anti-inflammatory

phenotype in response to TCZ treatment. Overall, such changes in
HDL particle composition with TCZ are consistent with the
results of a recent study of aTNFs in patients with ankylosing
spondylitis.22 Although it is unclear to what extent small HDL par-
ticles measured by NMR corroborate with those measured by
other methods, small HDL particles may be more active in choles-
terol efflux and anti-inflammatory functions,23 though this obser-
vation remains debated.

Previous studies have demonstrated lower levels of LDL-C in
patients with active RA than in controls.6 Such decreases may
result from increased catabolism (including by scavenger

Table 3 Change from baseline in PWV (LOCF), ITT population

Placebo+MTX
(n=63)

TCZ 8 mg/kg+MTX
(n=69) 95% CI (p) for difference

Baseline
n 59 69
Mean (SD) PWV, m/s 9.0 (2.5) 9.0 (2.0)

Week 12
n 62 69
Mean (SD) PWV, m/s 8.4 (1.8) 8.9 (2.5)
Mean change from baseline in PWV, m/s –0.99 –0.21 0.22 to 1.35 (p=0.0067)

Week 24
n 62 69
Mean (SD) PWV, m/s 8.9 (2.0) 9.0 (2.3)
Mean change from baseline in PWV, m/s –0.47 –0.17 –0.27 to 0.87 (p=0.3042)

LOCF was used for missing values. Only postbaseline and pre-escape therapy scores were carried forward. All assessments were set to missing from the time of escape therapy. Mean
change from baseline was adjusted for baseline age, C-reactive protein level and mean arterial pressure.
ITT, intent-to-treat; LOCF, last-observation-carried-forward; MTX, methotrexate; PWV, pulse wave velocity; TCZ, tocilizumab.

Figure 3 (A–D) Effects on inflammatory and thrombotic markers (TCZ vs placebo). hs-CRP, high-sensitivity C-reactive protein; MTX, methotrexate;
TCZ, tocilizumab. *p<0.0001 (TCZ vs placebo).
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receptors), increased particle retention in tissue, or both, rather
than from decreased lipid production. Increased cholesterol
retention under conditions of elevated IL-6/IL-6R levels have
been hypothesised to result from increased surface density on
multiple tissues of LDL receptor, VLDL receptor and scavenger
receptors, leading to excess internalisation of VLDL and
LDL.24–26 Furthermore, sPLA2-IIA expression, augmented by
IL-6, leads to phospholipid hydrolysis of LDL and increases
LDL uptake in tissues.27 Consistent with our results and the
TCZ phase III programme,7 the TCZ-based IL-6 signal inhib-
ition may reduce various receptor surface levels and sPLA2-IIA
levels, leading to both decreased LDL and VLDL tissue reten-
tion and elevated circulating levels.

Decreased thrombotic potential in TCZ-treated RA patients is
indicated by declines in circulating fibrinogen and D-dimer
levels. Although the reduction in fibrinogen, an acute-phase
protein, with TCZ is predictable, the reduction of D-dimer is of
particular interest because it represents the most widely used
clinical marker of activated blood coagulation. Moreover,
several prospective studies28 29 have linked elevated D-dimer
levels to heightened risk for vascular events independently of
established risk factors. Similarly, the sizeable reduction in Lp(a)
observed with TCZ is of considerable interest because recent
genetic and epidemiological evidence suggests Lp(a) is causally
linked to cardiovascular events in the general population.10 30

Our Lp(a) observations also extend findings from an earlier ran-
domised, placebo-controlled study linking aTNF blockade to
dose-dependent reductions in Lp(a) in patients with psoriatic
arthritis.31 Collectively, these changes suggest a reduction in
thrombotic potential with TCZ in patients with active RA. Of
course, the net effect of TCZ-induced changes to vascular out-
comes can be robustly tested only in the context of vascular out-
comes in prospective studies.

In summary, the results of this randomised, placebo-controlled
study suggest that IL-6R blockade with TCZ in patients with active
RA not only reduces markers of inflammation but also affects
quantitative and qualitative changes in lipids and lipoproteins.
Such changes include a global increase in LDL-C concentration, in
line with findings from other biological studies,7 and apparently
favourable changes to HDL particle composition, rendering them
less pro-inflammatory. In addition, marked reductions in haemo-
static and Lp(a) markers were observed, though PWV did not
change favourably. Future determination of the net vascular effect
of such changes in RA patients—and potentially other groups of
patients— is of major interest, particularly given the recent data
from large-scale (>130 000 subjects, >25 000 coronary heart
disease cases) genome-wide association studies16 17 that suggest a
potentially detrimental effect of IL-6R signalling on the risk for
coronary heart disease.
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