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Backgrounds and aims: Low concentrations of plasma HDL-C are associated with the development of
atherosclerotic cardiovascular diseases and type 2 diabetes. Here we aimed to explore the relationship
between the in vivo fractional synthesis of triglycerides (fTG) in subcutaneous (s.q.) abdominal adipose
tissue (AT), HDL-C concentrations and HDL particle size composition in non-diabetic humans.
Methods: The fTG in s.q. abdominal AT was measured in 16 non-diabetic volunteers (7 women, 9 men;
Age: 49 ± 20 years; BMI: 31 ± 5 kg/m; Fasting Plasma Glucose: 90 ± 10 mg/dl) after 2H2O labeling. HDL-C
concentration and subclasses, large (L-HDL), intermediate (I-HDL) and small (S-HDL) were measured.
Results: Linear regression analyses demonstrated significant associations of fTG with plasma concen-
tration of HDL-C (r ¼ 0.625,p ¼ 0.009) and percent contribution of L-HDL (r ¼ 0.798,p < 0.001), I-HDL
(r ¼ �0.765,p < 0.001) and S-HDL (r ¼ �0.629, p ¼ 0.009). When analyses were performed by gender, the
associations remained significant in women (HDL-C: r ¼ 0.822,p ¼ 0.023; L-HDL: r ¼ 0.892,p ¼ 0.007; I-
HDL: r ¼ �0.927,p ¼ 0.003) but not men.
Conclusions: Our study demonstrated an in vivo association between subcutaneous abdominal adipose
tissue lipid dynamics and HDL parameters in humans, but this was true for women not men. Positive
association with L-HDL and negative with I-HDL suggest that subcutaneous abdominal adipose tissue
lipid dynamics may play an important role in production of mature functional HDL particles. Further
studies evaluating the mechanism responsible for these associations and the observed gender differences
are important and warranted to identify potential novel targets of intervention to increase the pro-
duction of atheroprotective subclasses of HDL-Cs and thus decreasing the risks of development of
atherosclerotic conditions.

© 2016 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

A low concentration of plasma high density lipoprotein
cholesterol (HDL-C) is associated with insulin resistance (IR),
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atherosclerotic cardiovascular diseases (CVDs) and type 2 diabetes
mellitus (T2DM) [1e6]. A 15e30% lower concentration of HDL-C has
been observed in patients with T2DM and impaired glucose toler-
ance (IGT) [7,8]. Despite this well-established association, recent
therapeutic interventions to increase plasma concentration of HDL-
C have failed to demonstrate improved outcomes [9e11]. This may
suggest that an increase in the amount of total HDL-C may not be
enough to protect from CVDs; rather, an increase in functional HDL
subclasses or change in HDL metabolism may be more important
[12e16]. HDL particle assembly occurs in liver and intestine;
however, rodent and in vitro studies have demonstrated that
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adipose tissue lipid dynamics appear to play an important role in
the maturation of HDL particles and production of functional HDL
particles [14,15,17]. No human studies have been done, however,
looking for an in vivo association between adipose tissue lipid dy-
namics and HDL metabolism.

The dysfunction of adipose tissue, e.g., the reduced ability to
accumulate excess calorie intake, has been proposed to play a sig-
nificant role in the development of IR, T2DM and CVD [18,19].
Recently, we have shown that the inability of adipose tissue to
synthesize triglycerides (TG) may result in increased spill-over of
FFAs into circulation and contribute to the development of IR and
the metabolic syndrome [20]. Thus, in the current study we eval-
uated the in vivo relationship between a parameter of subcutaneous
(s.q.) abdominal adipose tissue lipid metabolism and plasma con-
centrations of HDL-C in non-diabetic adults. As a parameter of s.q.
abdominal adipose tissue lipid metabolism we measured the frac-
tional TG synthesis (fTG), which is an estimate of a fraction of adi-
pose tissue TGs that have been newly synthesized over the period
of labeling with deuteriumwater (2H2O; 21). Thus we evaluated the
associations of fTG with plasma concentration of HDL-C and also the
percent distribution of HDL subclasses of different sizes, e.g., large
(L-HDLs), intermediate (I-HDLs) and small (S-HDLs). The HDL par-
ticles comprise of a highly heterogeneous group of plasma lipo-
proteins, which differ by their density and the composition of
specific proteins [22]. Although the functions of the different HDL
subclasses remain largely unknown [23], the L-HDLs are generally
known to be atheroprotective [24], while the I-HDLs and S-HDLs
are considered to be lacking this property [25,26]. Finally, given the
well-established gender differences in HDL-C [27,28], we evaluated
gender-related associations as well.

2. Materials and methods

2.1. Subjects

Men and women with stable diet and weight during the pre-
vious 6 months and stable medications for 90 days were eligible for
the study. Exclusion criteria were any evidence of acute illnesses,
diabetes mellitus (defined as fasting plasma glucose
(FPG) > 126 mg dl�1 or taking medications that lower glucose),
pregnancy or lactation, a history of substance abuse and the
inability to provide informed consent. Two subjects (1 woman and
1 man) were taking metoprolol, otherwise no other subjects re-
ported taking any medications known to affect glucose or lipid
metabolism. All studies and procedures were approved by the
Institutional Review Board at the University of Texas Medical
Branch (UTMB), Galveston, TX, and all participants provided signed
informed consent.

2.2. Experimental protocol

Upon enrollment, subjects received 50 ml of 70% 2H2O (Cam-
bridge Isotopes, Andover, MA, USA), three times a day for one week
and 50 ml twice daily, for the next 11 weeks (total of 12 weeks of
2H2O labeling), as previously described [20,21]. This approach al-
lows measuring the fraction of adipose tissue TGs that were newly
synthesized during the labeling period. Quantitatively, it allows
measurement of the degree of incorporation of 2H into CeH bonds
of a-glycerol phosphate, which is proportional to two factors: the
fraction of labeled hydrogen atoms in tissue water (i.e., the
enrichment of 2H2O in whole body water) and the fraction of CeH
bonds in glycerol that are incorporated from body water. Thus, if
the body water 2H enrichment and the number of CeH bonds in
glycerol that derive from body water are known, the incorporation
of 2H into H atoms in the glycerol moiety of TGs reveals the fraction
of newly synthesized TGs. Thus to measure the body water 2H2O
enrichment the saliva samples were collected weekly throughout
the labeling period. To measure the incorporation of 2H into CeH
bonds of a-glycerol phosphate, adipose tissue biopsy samples were
obtained at the end of the labeling period, as described previously
[20]. Briefly, subcutaneous abdominal periumblical adipose tissue
biopsy samples were obtained under sterile conditions and local
anesthesia with 1% lidocaine. After a small incision, a biopsy needle
(Bard Biopsy Systems, Crawley, UK) was used to obtain tissue
samples. Additionally, blood samples were collected to measure
clinical chemistry parameters and HDL-C values. The subjects also
underwent Dual Energy X-ray Absorptiometry (DEXA, GE Lunar
iDXA, GE Medical Systems Lunar, Madison, WI, USA) to measure
body fat mass.

2.3. Plasma lipid analyses

Fasting blood samples obtained at the end of 12 weeks of 2H2O
labeling were used for the measurement of plasma VLDL-C, TG, TC,
HDL-C and LDL-C; the analyses were done using a Vitros 5600
analyzer (Ortho Clinical Diagnostic, Rochester, NY, USA) in the
Clinical Pathology Laboratory, UTMB.

The HDL subclass analyses were performed in the laboratory of
M.R. and G.M. at the University of Palermo, Italy, in a blinded
manner. Non-denaturing, linear polyacrylamide gel electrophoresis
was used to separate the HDL subclasses and the measurements
were done using the LipoPrinta System (Quantimetrix Corporation,
Redondo Beach, CA, USA) as described below. This method has been
validated against gradient gel electrophoresis and nuclearmagnetic
resonance (reviewed in [29]).

Twenty five ml of plasma sample was mixed with 300 ml Lip-
oprint Loading Gel and placed upon the upper part of the 3%
polyacrylamide gel. After 30 min of photopolymerisation at room
temperature, electrophoresis was performed for 50 min at 3 mA.
Each electrophoresis chamber involved two quality controls. The
electrophoresed gels were then scanned, using the LipoPrinta Sys-
tem, to determine the relative area of each lipoprotein subfraction.
After scanning, electrophoretic mobility and the area under the
curve were calculated qualitatively and quantitatively. HDL sub-
classes were distributed as ten bands: HDL-1, HDL-2 and HDL-3
were defined as L-HDL; HDL-4, HDL-5, HDL-6 and HDL-7 were
defined as I-HDL; HDL-8, HDL-9 and HDL-10 comprised the S-HDL
fraction [30,31]. The relative area for each subclass or, in other
words, its contribution into total lipoprotein fractionwas expressed
as a percentage (%). This percent contribution of a subclass was
multiplied by the total concentration of plasma HDL-C to yield the
concentration of each subclass in mg dl�1.

2.4. Adipose tissue TG analyses

Adipose tissue lipids were extracted with chloroform:methanol
(2:1) Folch extraction; TG were isolated via thin layer chromatog-
raphy. FA methyl esters were separated from glycerol. The fraction
containing the glycerol was further derivatized to the glycerol
triacetate derivative for GC/MS analysis [20,32]. TG-glycerol iso-
topic enrichments of the glycerol-triacetate derivative were
determined by GC-MS (5971 and 5973 models, Hewlett-Packard,
Palo Alto, CA, USA), using a DB-225 fused silica column, in
methane chemical ionization mode monitoring mass-to-charge
ratios (m/z) of 159, 160, 161 for M0, M1, and M2 as previously
described [20,32].

2.5. Measurement of 2H2O enrichments in body water

Enrichment of 2H2O in body water was measured in saliva
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samples, as previously reported [20]. The integrated (AUC) expo-
sure to heavy water for each subject was calculated as the area
under the water enrichment time course for individual water
enrichment measurements using the trapezoid method.

2.6. Calculations for TG-glycerol synthesis from 2H2O

TG newly synthesized during the 2H2O administration was
calculated as previously described using the following equation:

fTG (%) ¼ EM1[TG-glycerol]/A∞
1[TG-glycerol]

where f is the fraction (%) of newly synthesized TG molecules
present, EM1 is the excess mass isotopomer abundance for M1-
glycerol and A∞

1 is the asymptotic mass isotopomer M1 abundance
of a fully labeled glycerol, and calculated, as described previously
[20,32].

2.7. Statistical analyses and data presentations

Data are presented asmeans± SD. The differences in parameters
between the groups of men and women were evaluated using 2-
tail, unequal distribution variance Student t-test. Relationship an-
alyses were performed using a linear regressionmodel. The p< 0.05
was considered statistically significant.

3. Results

3.1. Age, BMI and metabolic characteristics of study subjects

Sixteen non-diabetic adults (9 men and 7 women) participated
in the study; the characteristics of the subjects are presented in
Table 1 for the entire group and for men and women separately.
There was no change in body weight during the deuterium labeling
period (data not shown). Menwere significantly heavier (p¼ 0.038)
and taller (p ¼ 0.003) than the women; however there were no
differences in either BMI (p ¼ 0.247) or percent body fat mass
(p¼ 0.060) though there was a trend toward greater fat mass in the
women. One female subject had impaired fasting glucose concen-
tration of 122 mg dl�1. Two women were menopausal (73 and 75
Table 1
Metabolic characteristics of study subjects.

Parameters All (n ¼ 16)

Age (years) 49 ± 20
Racial distribution
African American 3
Caucasian 13

Body weight (kg)
Height (cm)
Body mass index (kg m�2) 31 ± 5
% Body fat mass (%) 39 ± 6
Fasting glucose (mg dl�1) 90 ± 10
Plasma triglyceride (mg dl�1) 109 ± 70
Plasma VLDL triglyceride (mg dl�1) 22 ± 14
Plasma total cholesterol (mg dl�1) 180 ± 34
Plasma LDL cholesterol (mg dl�1) 104 ± 28
Plasma HDL cholesterol (mg dl�1) 55 ± 14
L-HDL subclass (%) 31 ± 10
I-HDL subclass (%) 48 ± 4
S-HDL subclass (%) 21 ± 7
L-HDL subclass (mg dl�1) 18 ± 9
I-HDL subclass (mg dl�1) 26 ± 6
S-HDL subclass (mg dl�1) 11 ± 4

Data are presented as Mean ± SD. The differences between the groups were evaluated
statistically significant.
VLDL, very low density lipoprotein; LDL, low density lipoprotein; HDL, high-density lipo
years old) with plasma HDL concentrations of 72 and 42 mg dl�1,
respectively.

The plasma concentrations of glucose, lipids and HDL sub-
classes, as well as the % contribution and concentrations of HDL
subclasses, are also presented in Table 1.

There were no differences in fasting plasma glucose, TG, VLDL,
LDL, total or HDL cholesterols. Interestingly, the percent contribu-
tions of S-HDL subclasses were significantly higher (p ¼ 0.004) in
men when compared to women, whereas L-HDL was lower
(p¼ 0.004) and I-HDLwas similar (p¼ 0.094; Table 1). The absolute
concentration of L-HDL was also significantly higher in women
than in men (p ¼ 0.013), however no differences in concentrations
of I-HDL and S-HDL between the groups were observed (Table 1).

3.2. Adipose TG kinetics

The 2H2O body water enrichment was stable over the course of
the 12 week labeling protocol for individual subjects with an
average enrichment of 1.6 ± 0.4%. The average fractional synthesis
of TG (fTG) was 17 ± 6% and there was a non-significant trend to-
wards higher synthesis in women as compared to men (20 ± 6% vs.
14 ± 5%, p ¼ 0.057).

3.3. Association between the HDL parameters and fTG

First, we conducted association analyses for the whole group,
including bothmen andwomen. Linear regression analyses showed
that s.q. abdominal adipose tissue fTG significantly and positively
correlated with the plasma concentration of total HDL (r ¼ 0.627,
p ¼ 0.009) and L-HDL (r ¼ 0.936, p < 0.001). However, no associ-
ation was seen with the concentrations of I-HDL (r ¼ 0.362,
p ¼ 0.168) or S-HDL (r ¼ 0.205, p ¼ 0.445). fTG also correlated
positively with the % contribution of the L-HDL subclass (r ¼ 0.797,
p < 0.001), but negatively with the % contribution of the I-HDL
(r ¼ �0.763, p < 0.001) and S-HDL (r ¼ �0.628, p ¼ 0.009)
subclasses.

We then conducted association analyses for men and women
separately and the results are depicted in Fig. 1. In women, fTG
significantly and positively correlated with the plasma concentra-
tion of total HDL (Fig. 1A; p ¼ 0.016) and % of L-HDL subclass
Women (n ¼ 7) Men (n ¼ 9) p value

48 ± 18 50 ± 22 0.898

1 2 e

6 7 e

77 ± 19 98 ± 17 0.038
160 ± 6 172 ± 7 0.003
30 ± 6 33 ± 3 0.247
42 ± 7 36 ± 5 0.060
92 ± 14 88 ± 6 0.440
81 ± 40 131 ± 83 0.171
16 ± 8 26 ± 17 0.168
186 ± 32 176 ± 36 0.571
109 ± 25 99 ± 30 0.509
61 ± 14 50 ± 14 0.156
38 ± 9 25 ± 3 0.004
46 ± 5 50 ± 3 0.094
16 ± 6 25 ± 5 0.004
24 ± 10 13 ± 5 0.013
27 ± 4 25 ± 7 0.448
10 ± 4 12 ± 3 0.152

using 2-tail, unequal distribution variance Student t-test. p < 0.05 was considered

protein; L-HDL, large HDL; I-HDL, intermediate HDL; S-HDL, small HDL.



Fig. 1. Association analyses between adipose tissue lipid kinetics and parameters of HDL-C metabolism. Association analyses between fractional triglyceride synthesis (fTG) in
s.q. abdominal adipose tissue and plasma concentration of total HDL, the percent contribution of large, intermediate and small HDL (L-HDL, I-HDL and S-HDL, respectively)
subclasses in men and womenwere performed using linear regression model. The p < 0.05 was considered statistically significant. (A) fTG significantly and positively associated with
the concentrations of plasma total HDL, (B) and percent contribution of L-HDL subclass, and (C) negatively with percent contribution of I-HDL subclass in women, (E, F, G) but not in
men. (D, H) No significant correlations were observed between fTG and the percent contribution of S-HDL in either group.
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(Fig. 1B; p¼ 0.004), but negatively with % of I-HDL subclass (Fig. 1C;
p ¼ 0.002). No association was observed with % of S-HDL subclass
(Fig. 1D; p ¼ 0.146). Interestingly, no significant correlations be-
tween fTG and plasma concentration of HDL or % contribution of
HDL subclasses were observed in the men (Fig. 1EeH).
4. Discussion

Our results, for the first time, demonstrate an in vivo association
between s.q. abdominal adipose tissue TG synthesis, a marker of
adipose tissue lipid dynamics, and HDL-C metabolism in humans.
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We also report a gender difference in this association, which sug-
gests a possible link between gender diversity in adipose tissue and
HDL metabolism.

Given the atheroprotective effect of HDL, a large body of work
has been produced regarding possible mechanisms responsible for
decreased plasma HDL-C concentrations in conditions associated
with high cardiovascular risk, such as obesity. Although incom-
plete, the current literature supports two important mechanisms
involved in determining low HDL-C [33]. The first suggests that
with increased plasma TG-rich particles there is increased ex-
change of TGs for cholesterol esters in HDL and LDL particles. Thus
HDL particles become highly TG-enriched and are more easily
degradable [34,35]. This mechanism suggests an indirect associa-
tion between HDL metabolism and adipose tissue lipid dynamics.
When adipose tissue is unable to efficiently store TGs there is
increased FFA efflux from adipose tissue [18e20] and, subse-
quently, an increase in plasma TG-rich particles. The second pro-
posed mechanism suggests that due to decreased efflux of
cholesterol from adipose tissue, the lipidation process of HDL par-
ticles is inadequate and, thus, the HDL particles are unable to
mature resulting in particles which are catabolized at higher rates
[14,15,17,36e38]. ATP-binding cassette transporter A1 (ABCA1) and
Scavenger receptor class B member 1 (SR-B1) have been shown to
play a significant role in this process of HDL lipidation [14,15,17].
People with Tangier disease have mutation in ABCA1 and have
extremely low levels of HDL-C and apoA-1 due to high rapid
catabolism of the apolipoprotein as a result of its being poorly
lapidated [39,40]. Genetic studies have shown that some rare al-
leles of ABCA1 associate with low levels of HDL-C and decreased
efflux from monocyte-derived macrophages [41]. These data
demonstrate the significance of HDL-C lipidation and the role of
ABCA1 and SR-B1 in this process. Our results and the published data
[14,15,17,36e38] suggest a direct association between HDL meta-
bolism and adipose tissue lipid dynamics. Though our study did not
address the potential mechanisms involved, this is the first human
in vivo support for an association between HDL metabolism and
adipose tissue lipid dynamics in non-diabetic humans, indepen-
dent of triglyceride elevation.

Our study also suggests a gender-specific association between
the lipid dynamics in s.q. abdominal adipose tissue and HDL pa-
rameters (Fig. 1). Women have higher plasma HDL-C concentra-
tions compared to men, and specifically have elevated levels of
large apoA-I particles [26e28,42,43]. In our study, we did not
observe differences in plasma concentration of total HDL-C be-
tween men and women, which may be explained by small sample
size (Table 1). However, as previously shown [42], we did observe
that the percent distribution of L-HDL particles is higher in women
when compared to men, whereas that of S-HDL particles is higher
in men (Table 1). We also observed that the percent distribution of
L-HDLs positively correlated with s.q. abdominal adipose tissue TG
synthesis in women (Fig. 1B), but not men (Fig 1F). If adipose tissue
lipid dynamics are associated with HDL metabolism (e.g., produc-
tion of functional HDL particles) this gender specific difference in
these associations raises several questions: 1) how does hormonal
status affect this interaction; and 2) how do different fat depots
affect this interaction [43e45], e.g., abdominal vs. gluteal? Our
current study does not answer these questions; however they
deserve attention in future studies.

To evaluate the function of adipose tissue, we measured its
ability to synthesize TGs. In our previous report on TG synthesis
[20] we reported the fTG data from ten subjects presented here and
we demonstrated that fTG associated positively with tissue insulin
sensitivity, but negatively with plasma levels of FFAs. We hypoth-
esized that the inability of adipose to accumulate excess calorie
intake, or the inability of adipocytes to mature, may result in
increased efflux of FFAs into circulation, which ultimately may
result in ectopic fat deposition and the development of tissue in-
sulin resistance [18e20]. Thus fTG may represent a kinetic marker of
adipose tissue lipid dynamics. Interestingly, in vitro studies
demonstrated that stimulation of adipose tissue lipolysis results in
increased efflux of both glycerol, a marker of lipolysis, and
cholesterol [17,43,44,46,47]. Our study subjects maintained stable
body weight during the deuterium labeling and in the steady state
TG synthesis should equal the TG lipolysis. Thus subjects with
higher fTG should have had higher TG lipolysis and higher choles-
terol efflux from adipocytes. The impairment in adipocyte lipid
dynamics may associate with both impaired TG turnover and
cholesterol efflux/metabolism. If this hypothesis is true, it can
partially explain low concentration of plasma HDL-C in metaboli-
cally compromised subjects, such as the obese and insulin resistant.

There are several limitations of this study. First, we have a
relatively small sample size, which may explain the lack of differ-
ence in HDL concentrations between men and women. Second, we
include pre and post-menopausal women. While it is well estab-
lished post-menopausal women have on average a lower HDL-C
[48], the two postmenopausal women (age: 73 and 75 years old)
in our study had plasma HDL-C concentrations of 72 and
42 mg dl�1, respectively, which may suggest that, at least in this
small study and especially in the group of women, there was no
effect of age or hormonal status on the results and conclusions.
Third, and perhaps most importantly, this is a cross-sectional study
which does not reveal cause and effect relationships but rather is
hypothesis generating for future mechanistic investigations.

In conclusion, our study for the first time demonstrated an
in vivo association between s.q. abdominal adipose tissue lipid
dynamics (e.g., fTG) and HDL parameters (e.g., plasma concentration
of total HDL-C and relative contributions of HDL subtypes) in
women but not men. Positive association with L-HDL and a nega-
tive association with I-HDL suggest that s.q. abdominal adipose
tissue lipid dynamics may be important for the production of
mature functional HDL particles and may provide new targets for
developing therapeutic strategies to decrease cardiovascular risks.
Further studies evaluating the mechanism responsible for these
associations and the observed gender differences are important
and warranted.
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