828 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Infinite horizon control and minimax observer design for linear DAEs

    Full text link
    In this paper we construct an infinite horizon minimax state observer for a linear stationary differential-algebraic equation (DAE) with uncertain but bounded input and noisy output. We do not assume regularity or existence of a (unique) solution for any initial state of the DAE. Our approach is based on a generalization of Kalman's duality principle. The latter allows us to transform minimax state estimation problem into a dual control problem for the adjoint DAE: the state estimate in the original problem becomes the control input for the dual problem and the cost function of the latter is, in fact, the worst-case estimation error. Using geometric control theory, we construct an optimal control in the feed-back form and represent it as an output of a stable LTI system. The latter gives the minimax state estimator. In addition, we obtain a solution of infinite-horizon linear quadratic optimal control problem for DAEs.Comment: This is an extended version of the paper which is to appear in the proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, December 10-13, 201

    Zonotopic unknown input observer of discrete-time descriptor systems for state estimation and robust fault detection

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper studies a set-based unknown input observer based on zonotopes for discrete-time descriptor systems affected by uncertainties with application to state estimation and robust fault detection. In this paper, two types of uncertainties are considered: (i) disturbances and noise both bounded by zonotopes; (ii) unknown inputs that can be decoupled. In terms of different applications, the observer gain for state estimation is designed to minimize the effects of unknown-but-bounded disturbances and noise as well as state estimation errors. On the other hand, for robust fault detection, in addition to attenuating uncertainties, the designed observer gain is also expected to be sensitive to faults. To achieve this goal, we propose an iterative algorithm to design the fault detection gain. Finally, some illustrative results in an application example show the effectiveness of the proposed algorithms.Peer ReviewedPostprint (author's final draft

    Robust fault detection and isolation based on zonotopic unknown input observers for discrete-time descriptor systems

    Get PDF
    In this paper, we propose a robust fault detection and isolation (FDI) strategy based on zonotopic unknown input observers (UIOs) for discrete-time descriptor linear time-varying (LTV) systems subject to uncertainties and additive actuator faults. System uncertainties including state disturbances and measurement noise are unknown but bounded by predefined zonotopes. The uncertain state estimations and constructed residuals for robust FDI are propagated in a sequence of zonotopes. Based on a defined performance criterion, the fault detection (FD) observer gain is designed to be robust against uncertainties and meanwhile sensitive to faults. The explicit computational method for the FD observer gain is derived. In addition to include fault isolation, a bank of zonotopic UIOs are employed. Finally, we apply the proposed method into two case studies to show its effectiveness.Peer ReviewedPostprint (published version
    • …
    corecore