3,656 research outputs found

    A passivity approach to controller-observer design for robots

    Get PDF
    Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Transparency in Port-Hamiltonian-Based Telemanipulation

    Get PDF
    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of packet switching scattering-based communication channels

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator

    Full text link
    The European Proximity Operation Simulator (EPOS) of the DLR-German Aerospace Center is a robotics-based simulator that aims at validating and verifying a satellite docking phase. The generic concept features a robotics tracking system working in closed loop with a force/torque feedback signal. Inherent delays in the tracking system combined with typical high stiffness at contact challenge the stability of the closed-loop system. The proposed concept of operations is hybrid: the feedback signal is a superposition of a measured value and of a virtual value that can be tuned in order to guarantee a desired behavior. This paper is concerned with an analytical study of the system's closed-loop stability, and with an experimental validation of the hybrid concept of operations in one dimension (1D). The robotics simulator is modeled as a second-order loop-delay system and closed-form expressions for the critical delay and associated frequency are derived as a function of the satellites' mass and the contact dynamics stiffness and damping parameters. A numerical illustration sheds light on the impact of the parameters on the stability regions. A first-order Pade approximation provides additional means of stability investigation. Experiments were performed and tests results are described for varying values of the mass and the damping coefficients. The empirical determination of instability is based on the coefficient of restitution and on the observed energy. There is a very good agreement between the critical damping values predicted by the analysis and observed during the tests...Comment: 16 page

    Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops

    Full text link
    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. Although common practice in designing nested control systems is to maximize the bandwidth of the inner loop to improve tracking performance, it may not be the most suitable approach when a certain range of impedance parameters has to be rendered. In particular, it turns out that the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g. a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016
    corecore