32,078 research outputs found

    Audio-Visual Learning for Scene Understanding

    Get PDF
    Multimodal deep learning aims at combining the complementary information of different modalities. Among all modalities, audio and video are the predominant ones that humans use to explore the world. In this thesis, we decided to focus our study on audio-visual deep learning to mimic with our networks how humans perceive the world. Our research includes images, audio signals and acoustic images. The latter provide spatial audio information and are obtained from a planar array of microphones combining their raw audios with the beamforming algorithm. They better mimic human auditory systems, which cannot be replicated using just one microphone, not able alone to give spatial sound cues. However, as microphones arrays are not so widespread, we also study how to handle the missing spatialized audio modality at test time. As a solution, we propose to distill acoustic images content to audio features during the training in order to handle their absence at test time. This is done for supervised audio classification using the generalized distillation framework, which we also extend for self-supervised learning. Next, we devise a method for reconstructing acoustic images given a single microphone and an RGB frame. Therefore, in case we just dispose of a standard video, we are able to synthesize spatial audio, which is useful for many audio-visual tasks, including sound localization. Lastly, as another example of restoring one modality from available ones, we inpaint degraded images providing audio features, to reconstruct the missing region not only to be visually plausible but also semantically consistent with the related sound. This includes also cross-modal generation, in the limit case of completely missing or hidden visual modality: our method naturally deals with it, being able to generate images from sound. In summary we show how audio can help visual learning and vice versa, by transferring knowledge between the two modalities at training time, in order to distill, reconstruct, or restore the missing modality at test time

    Separating Invisible Sounds Toward Universal Audiovisual Scene-Aware Sound Separation

    Full text link
    The audio-visual sound separation field assumes visible sources in videos, but this excludes invisible sounds beyond the camera's view. Current methods struggle with such sounds lacking visible cues. This paper introduces a novel "Audio-Visual Scene-Aware Separation" (AVSA-Sep) framework. It includes a semantic parser for visible and invisible sounds and a separator for scene-informed separation. AVSA-Sep successfully separates both sound types, with joint training and cross-modal alignment enhancing effectiveness.Comment: Accepted at ICCV 2023 - AV4D, 4 figures, 3 table

    Audiovisual Saliency Prediction in Uncategorized Video Sequences based on Audio-Video Correlation

    Full text link
    Substantial research has been done in saliency modeling to develop intelligent machines that can perceive and interpret their surroundings. But existing models treat videos as merely image sequences excluding any audio information, unable to cope with inherently varying content. Based on the hypothesis that an audiovisual saliency model will be an improvement over traditional saliency models for natural uncategorized videos, this work aims to provide a generic audio/video saliency model augmenting a visual saliency map with an audio saliency map computed by synchronizing low-level audio and visual features. The proposed model was evaluated using different criteria against eye fixations data for a publicly available DIEM video dataset. The results show that the model outperformed two state-of-the-art visual saliency models.Comment: 9 pages, 2 figures, 4 table

    High resolution imaging at large telescopes

    Get PDF
    Image recovery at a resolution limited only by diffraction is now possible at large telescopes. The theory of speckle image reconstruction is explained and the current status of a video recording and digitization system for the reconstruction procedure is described. Potential applications of the process when used with very large telescopes are discussed. The constraints on telescope design imposed by these techniques are listed

    Cross-modal Generative Model for Visual-Guided Binaural Stereo Generation

    Full text link
    Binaural stereo audio is recorded by imitating the way the human ear receives sound, which provides people with an immersive listening experience. Existing approaches leverage autoencoders and directly exploit visual spatial information to synthesize binaural stereo, resulting in a limited representation of visual guidance. For the first time, we propose a visually guided generative adversarial approach for generating binaural stereo audio from mono audio. Specifically, we develop a Stereo Audio Generation Model (SAGM), which utilizes shared spatio-temporal visual information to guide the generator and the discriminator to work separately. The shared visual information is updated alternately in the generative adversarial stage, allowing the generator and discriminator to deliver their respective guided knowledge while visually sharing. The proposed method learns bidirectional complementary visual information, which facilitates the expression of visual guidance in generation. In addition, spatial perception is a crucial attribute of binaural stereo audio, and thus the evaluation of stereo spatial perception is essential. However, previous metrics failed to measure the spatial perception of audio. To this end, a metric to measure the spatial perception of audio is proposed for the first time. The proposed metric is capable of measuring the magnitude and direction of spatial perception in the temporal dimension. Further, considering its function, it is feasible to utilize it instead of demanding user studies to some extent. The proposed method achieves state-of-the-art performance on 2 datasets and 5 evaluation metrics. Qualitative experiments and user studies demonstrate that the method generates space-realistic stereo audio
    corecore