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Abstract

Geometry-Aware Multi-Task Learning for

Binaural Audio Generation from Video

Rishabh Garg, M.S.Comp.Sci.

The University of Texas at Austin, 2021

Supervisor: Kristen Grauman

Human audio perception is inherently spatial and videos with binaural audio
simulate the spatial experience by delivering different sounds to both ears. However,
videos are typically recorded with mono audio and hence generally do not offer
the rich audio experience of binaural audio. We propose an audio spatialization
method that uses the visual information in videos to convert mono audio to binaural.
We leverage the spatial and geometric information about the audio present in the
visuals of the video to guide the learning process. We learn these geometry aware
features in visuals in a multi-task manner to generate rich binaural audio. We also
generate a large video dataset with binaural audio in photorealistic environments
to better understand and evaluate the task. We demonstrate the efficacy of our
method to generate better binaural audio by learning more spatially coherent visual
tfeatures by extensive evaluation on two datasets.
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Chapter 1

Introduction

Human perception is complex and multi-sensory. We constantly capture sen-
sory data from various sources to understand an environment, of which sight and
sound are the vital components. Our brains continuously use both audio and visual
information in conjunction to help us navigate the world and our surroundings,
as these modalities inherently contain rich spatial information. For example, let’s
say we are in an environment where a person walks by us. Even if we close our
eyes, our brains still use the sounds from the footsteps to give us a fair idea of the
position of the person with respect to us as he walks away. This is possible because
we hear binaural audio from our two ears, which is intrinsically spatial and helps us
navigate in a 3D world and implicitly localize sound.

It is believed that this spatialization can occur because of the Interaural Level
Difference, which is difference in the sound levels for each ear, and the Interaural
Time Difference, which is the difference in time between the sounds reaching each
ear [Rayleigh, 1875]. In addition to this, the shape of the head and pinna filtering
effect can also affect how we perceive sound. In parallel, our visual perception
complements this by locating the person and identifying that the sound we heard is
from that particular source.

In addition to spatial cues that help us in locating the sound sources, audio
also contains cues that provide context of the surroundings and locations. These
are in the form of reflections and reverberations from the environment, helping
us understand the orientation and material of walls and the room we are in. For
example, due to these effects, we can intuitively interpret the difference in sound
if the same audio is heard in a long corridor versus a large room, or a room with
heavy carpets and drapes versus a room with smooth marble surfaces. The sounds
therefore provide information about the geometry of the room and the materials
in the surroundings as it propagates from the sound source at a location to the
receiver.

Videos or other media with binaural audio similarly imitate that rich audio
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Figure 1.1: To generate accurate binaural audio from mono audio, the visuals
provide significant cues that can be learnt jointly with audio prediction. We can
learn to extract information like spatial information that the guitar player is on the
left, geometric consistency of the position of the guitar player over time, and basic
information about the binaural impulse response from the room.

experience for the user and make the media feel more real and immersive. With vir-
tual reality and augmented reality applications becoming more ubiquitous, binaural
audio is becoming more essential for real world applications. However, currently
collecting binaural data is a challenge. Presently, such audio is collected either
using an array of microphones or using dummies that imitate the human ears and
head. The process is therefore less accessible, requiring special equipment, and
more costly, leading to less availability of large amounts of such data. On the other
hand, due to the ubiquity and ease of capture of videos from mobile devices, mono
audio from a single microphone is readily available.

Recent work explores how monaural audio can be upgraded to binaural audio

by leveraging the visual stream in videos [Morgado et al., 2018, Gao and Grauman)

2019a, [Zhou et al., 2020]. Mono audio contains little spatial information on its

own so it is not possible to get spatial information without some context. The
premise in prior work is to provide the context to generate rich binaural audio from
mono sources via visual information from videos, since videos have visual frames
with associated corresponding audio. Just as audio data provides hints about the
physical surroundings, visual data from videos also has vital information about
sound making objects and their locations, as well as the room and environment they



are in and the object configurations. For instance, if we have a video of a person
playing a guitar on the left side of the frame, while the mono audio alone is not
sufficient, using the visual frames we can form a reasonable guess of the audio we
would hear if we were at the camera location, which is that the audio from the
guitar would be more prominent in the left ear. Past efforts have been focused
on using the visual features to implicitly infer some spatial characteristics to lift a
single audio channel to two spatial channels. However, the visuals provide more
context than simple generic visual features.

In this work, we go beyond using basic visual features and guide the binaural-
ization process via multi-task learning to look for geometric cues of the environment
that dictate how a listener receives the sound in the real world.In particular, we
propose three ways to incorporate geometric audio-visual cues: (1) predicting the
impulse response, (2) predicting the visual stream’s coherence with the spatial loca-
tion of the sound, and (3) the consistency in geometry of the objects across time. See
Figure

First, we consider impulse response prediction to regularize learning. An
impulse response (IR) is a concise acoustic description of the environment capturing
the ways in which a sound wave will interact with the room and materials, as it
propagates from a sound source to a listener at a particular location. It encapsulates
all geometric information required for perfect reconstruction of binaural audio. The
visual frames convey a lot of information like the layout of the room and the sound
source with respect to the receiver, which form the basis of the IR. We predict this
IR from a single frame in a multi-task setting with the binauralization task, thereby
encoding this information into a latent geometric code to generate better binaural
audio.

Second, we account for audio-visual spatial coherence. The agreement of
audio with the visuals forms a key part of our perception of a video. Hence, we
also want to ensure that the audio predicted by our model understands the relation
between the frames on the one hand, and the left and right channel audio on the
other hand. To achieve this, we constrain the visual features such that they have
spatially coherent information, i.e., they can understand the difference when the
audio is aligned with the visuals and when it is is not.

The third component of the proposed multi-task objective captures geometric



consistency of objects over time. Current methods treat the audio and visual frame
pairs from videos as independent samples. However, since these are videos, objects
do not generally have dramatic instantaneous change in their layout or the geometry
of the scene. This implies that the visual features representing these characteristics
that we utilise for guiding binauralization should have some consistency across
short periods of time. This spatio-temporal consistency means that the geometric
arrangement of the key visual components is fairly consistent across time, and
hence the resulting audio-visuals are too.

In addition to our novel multi-task approach, a secondary contribution of this
work is a large-scale simulated dataset, SimBinaural, to support binauralization
research. Binaural audio and impulse response collection in the real world is
expensive and challenging, requiring special equipment. It is limited by the fact
that it differs for each physical space and source-receiver position pair within that
space. Thus even if it is captured, the variety in the data is severely limited to a
few positions and rooms. To facilitate and understand the relation between the
visuals and the room impulse response for learning better geometric features, we
create a large-scale dataset of simulated videos in photo-realistic 3D indoor scene
environments which resemble real world audio recordings in a room. This dataset
facilitates both learning and quantitative evaluation, and allows us to explore the
impact of particular parameters (e.g., distance of source to receiver in a video) in a
controlled manner.

To recap, the main contributions of this work are as follows. We provide a
novel way to improve binauralization from mono audio using videos by learn-
ing better audio-visual representations. We guide the visual network to encode
information that captures spatial and temporal cues to perform more accurate and
richer sound. Finally, we demonstrate the efficacy of our method by achieving

state-of-the-art results on two datasets.



Chapter 2

Related Work

The joint learning of audio and visual information has been studied for a
variety of different tasks for a long time, and has received more attention recently

with the wide availability of large amounts of video data.

2.1 Audio-Visual Learning

In recent years, researchers have tried to perform cross-modal learning on
different audio-visual tasks, particularly from videos, to understand the natural
synchronisation between visuals and the audio [Aytar et al., 2016, Arandjelovic
and Zisserman, 2017, Owens et al., 2016b]]. Audio-visual data can convey varied
types of information which has been leveraged in a multitude of ways for tasks like
audio-visual navigation [Gan et al., 2020c, |(Chen et al., 2020b, Chen et al., 2020c],
multi-modal action recognition [Kazakos et al., 2019, Gao et al., 2020b, Long et al.,
2018, [Lee et al., 2021, Nagrani et al., 2020], audio-visual speech recognition [Hu
et al., 2016, Chung et al., 2017, Zhou et al., 2019a, Yu et al., 2020], audio-visual
event localisation [Tian et al., 2018) Tian et al., 2020, Wu et al., 2019], self-supervised
representation learning [Owens et al., 2016b, Owens and Efros, 2018, Korbar et al.,
2018, Gao et al., 2020a, Morgado et al., 2020]], audio inpainting [Zhou et al., 2019b]],
and generating sounds from video [Owens et al., 2016a,|Zhou et al., 2018, Gan et al.,
2020a, (Chen et al., 2020d].

The audio-visual source separation task has been well studied. Researchers
have explored audio-visual separation applied to different areas like separation of
speech [Ephrat et al., 2018, Owens and Efros, 2018, Afouras et al., 2018, (Gabbay
et al., 2018, Afouras et al., 2019, Chung et al., 2020], music [Zhao et al., 2018} Zhao
et al., 2019, Xu et al., 2019, |Gan et al., 2020b} (Gao and Grauman, 2019b], and objects
[Gao et al., 2018, Gao and Grauman, 2019b), [Izinis et al., 2021]]. These tasks generally

try to isolate a particular sound from an audio clip with a mixture of sounds, using



cues from visuals and audio. In contrast, we do not isolate particular sounds from a
mixture, but perform a different task to produce binaural two channel audio from a
mono audio clip using the visuals.

There have been several methods which have been proposed to explicitly iden-
tify sound-making regions from visuals and localize the pixels in the image/video
[Kidron et al., 2005, [Hershey and Movellan, 2000, Arandjelovi¢ and Zisserman,
2018| |[Zhao et al., 2018, Senocak et al., 2018, Tian et al., 2018, Hu et al., 2020, Rou-
ditchenko et al., 2019]. Unlike these methods, we do not aim to localise sounds
within a frame but rather ensure that some information about the spatial positioning
is learnt by the visual features.

2.2 Audio Spatialization

Mono audio by itself does not have enough information for spatialization to
two channel binaural audio, as discussed. To overcome this, recent works have
proposed using video frames to provide a kind of self-supervision to implicitly infer
the relative positions of sound-making objects. They formulate the problem as an
upmixing task from mono to binaural using the visual information. [Morgado et al.,
2018] use 360 videos from YouTube to predict first order ambisonic sound useful
for 360 viewing. [Lu et al., 2019] use a self-supervised audio spatialization network
using visual frames and optical flow. They incorporate a spatial correspondence
classifier as an auxiliary loss by classitying if the visuals correspond to the audio
channels or are swapped, and they test on a YouTube dataset they collected. While
[Morgado et al., 2018] are limited to ambisonics and do not predict binaural audio
or use normal field of view videos, [Lu et al., 2019] use optical flow to help the task.

More closely related to our problem, the first work to generate binaural audio
from video is the 2.5D visual sound work by [Gao and Grauman, 2019a]]. They
collected a binaural video dataset FAIR-Play for the task. They generated binaural
audio using mono audio conditioned on a visual frame. The visual features can
contribute to the audio generation by providing context of objects. The visual
information is added via simple concatenation to the audio feature. This has
inspired a line of similar work. [Zhou et al., 2020] pose the sound source separation
task as an extreme case of creating binaural audio. They propose an associative



pyramid network (APNet) architecture to fuse the modalities and jointly train on
audio spatialization and source separation task. Building on these methods, we
introduce additional supervision to help guide the visual features so that they
encode more spatial and geometric information inherent in videos.

More recently, [Richard et al., 2021]] tackle the problem without using the
visuals. For their method, they render binaural audio waveform output directly
which is conditioned on the ground truth relative position and orientation of the
listener with respect to the source. Different from us, their method is limited to
speech synthesis and requires knowing the actual physical position and orientation
of the source and receiver as opposed to inferring them from video.

Concurrent to our work, [Xu et al., 2021]] proposed to generate binaural audio
for training from mono audio, by using video crops and spherical harmonics to
map audio to specific locations. In contrast to their method, we generate a large
scale realistic video dataset which can provide a large amount of accurate binaural

information which can further improve the results.

2.3 Audio and Geometry/3D Spaces

Recent works have also tried to exploit the complementary nature of audio
and the characteristics of the environment in which it is heard or recorded. [Schissler
et al., 2017] estimate the acoustic properties of materials in a room by adjusting
the materials so that a virtual sound simulation in the environment matches the
actual acoustic impulse response from the room. Similarly [Tang et al., 2020] use
an actual 3D model of a room generated via an app. Using this 3D model and an
audio recording in the room, they estimate reverberation time and equalization of
the room from audio and compute material characteristics for audio rendering in
the room. [Yang et al., 2020] learn audio-visual correspondence by classifying if the
video’s left-right audio channels have been flipped and use this as a pretext task
for other audio-visual downstream tasks. For this objective they also collect the
YouTube-ASMR-300K dataset of ASMR videos from YouTube with spatial audio.

Binaural audio has also been recently used to achieve different objectives and
reason about the 3D environment. [Chen et al., 2020b] introduce the SoundSpaces

audio platform to perform audio-visual navigation in scanned 3D environments,



using binaural audio to guide policy learning. Ongoing work continues to explore
audio-visual navigation models for embodied agents [Gan et al., 2020c, Chen et al.,
2020c, Chen et al., 2020a]. [Christensen et al., 2020] predict depth maps using spatial
audio. They emit short chirps from a speaker and record the echoes using a dummy
ear stereo microphone setup which is then used to infer depth maps. [Gao et al.,
2020a]] perform representation learning of visual information via interaction using
echoes recorded in indoor 3D simulated environments. They demonstrate the utility
of the features learnt in this fashion, and, unlike prior work, do so in the absence of
audio input and for a number of downstream tasks.

In contrast to any of these works, we are interested in a different problem
of generating accurate spatial binaural sound from videos. We do not use it for
navigation or to explicitly estimate information about the environment. Rather, the
output of our model is spatial sound to provide a human listener with an immersive
audio-visual experience.



Chapter 3

Approach

Our objective is to generate binaural audio from videos with mono audio. In
this section, we first describe the overall model and task (Section [3.1)), and then
we present our networks along with the learning framework for the proposed
multi-task setting (Section 3.2).

3.1 Model formulation

Our approach has three main components: the backbone for converting mono
audio to binaural by injecting the visual information, the geometric consistency
module which ensures that we maintain the geometric information consistency
for the features learnt, and an IR prediction module that predicts the room impulse
response directly from the frames.

Primary task Our primary objective is to map a given mono sound and video
to spatial audio. The reason for the spatial effect of sound is the cues in the two-
channel binaural audio: the difference in time when the sound is heard in the
left and right ear (Interaural Time Difference) and the difference in levels of the
sound in the left and right ear (Interaural Level Difference) [Rayleigh, 1875]. These
differences are interpreted to estimate the location of the sound. Therefore when
we have a single-channel audio a!, it does not have any spatial characteristics.
Binaural audio has two channels {a’ , a;} to convey the audio to the left and right
ear separately and provides spatial effects to the listener.

While the binaural audio provides supervision to recover the two channels
from a',, o', alone contains inadequate information to infer the spatialization.
Hence, we condition the mono audio on the visuals of the video. More specifically,
we transfer the audios into the time-frequency domain using the Short-Time Fourier
Transformation (STFT). We aim to predict the binaural audio spectrogram { A%, A%}

from the input mono spectrogram A, where A%, = STFT(a;). We extract visual
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Figure 3.1: Overall network: The overall network takes the visual frames and
mono audio as input. The Resnet-18 visual features v} are trained in a multi-task
setting. The features v} are used to directly predict the IR via a generator (top
right). The binaural audio, which might have flipped channels, is used to get audio
features, which combined with v}, are used to train a spatial coherence classifier G
(middle right). Two temporally adjacent frames are also used to ensure geometric
consistency (top center). The features v are jointly trained with the backbone
network to predict the final binaural audio.

features v from the video frames to act as the additional cues we need for the task.

Consistency module Having defined the basic task, we next overview the pro-
posed consistency module, which is comprised of two parts: geometric consistency
and spatial coherence.

Geometric consistency: Since the videos are continuous samples over time
rather than individual frames, we want that the visual frames have spatio-temporal
geometric consistency as a regularizer. Since the position of the source of sound
and the position of the camera—as well as the physical environment where the

video is recorded—do not typically change instantaneously in videos, there is a
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natural coherence between the sound in a video observed at two points that are
temporally close. Since visual features are used to condition our binaural prediction,
we encourage our visual features to learn a latent representation that is coherent
across short intervals of time. The visual features v} and v}i‘s should be relatively
similar to each other to produce audio with fairly similar spatial effects. This
enforces temporal consistency on the visuals so that they have similar geometric
effects.

Spatial coherence: Since we are predicting binaural audio, we want to ensure
that the predicted audio understands which channel is left and right with respect
to the visual information. This is crucial to achieve the proper spatial effect while
watching videos, as the audio needs to match the seen visuals. We incorporate
this in our model by using a classifier to identify if the visuals are aligned with the
audio or if the audio does not match. We create misaligned audio by flipping the
two channels in the ground truth audio, so the features learn to find the cues in the
visual frames which dictate where we hear the sound from and identify whether it
is flipped according to the frames.

IR prediction module The third and final component of our multi-task model
trains the visual features to be predictive of the room impulse response (IR). An
impulse response gives a compact description of the initial direct sound, the early
reflections from the surfaces of the room, and a reverberant tail from the subsequent
higher order reflections between the source and receiver. These reverberations can
be characterised by metrics like the reverberation time RT§. This is the time it takes
the energy of the impulse to decay 60dB and can be calculated from the energy
decay curve of the IR [Schroeder, 1965]. Since we want our audio-visual feature
to be a latent representation of the geometry of the room and the source-receiver
position pair, we introduce an auxiliary task to predict the room impulse response
(IR) directly from the visual frames. Given a video feature v}, we use a generator
to directly estimate the corresponding IR spectrogram X} and compare it to the
ground-truth spectrogram X7,. In addition to directly predicting the full IR, we also
calculate the RTy, metrics of the predicted wave to help learn the impulse responses
better.

11



3.2 Networks and Learning Framework

Next we define the neural networks and specific loss functions we use to train
our approach for the objectives described above.

Backbone network The backbone network is used for the baseline task of
converting mono to binaural audio and is based upon the networks used for 2.5D
visual sound [Gao and Grauman, 2019al]. The audio network consists of a U-
Net [Ronneberger et al., 2015] type architecture. It comprises an encoder and a
decoder connected via skip connections. The input audio to the network is the
STFT spectrogram of the mono audio A},. During training, the mono audio is
obtained by taking the mean of the two channels of the ground truth binaural audio
at, = (at, + al;)/2. The visual network consists of a Resnet-18 [He et al., 2016]
to extract visual features v}. These are reduced in dimension, and then tiled and
concatenated with the output of the audio encoder to fuse the information from the
audio and visual streams. This network does not directly predict the two channels,
but instead predicts the difference of the two channels. This helps it reason better
about the distinction of the channels and not collapse to the easy case of predicting
the same output for both channels. Since it is hard to predict the STFT directly, the
output of the backbone network is a complex mask M}, which is then multiplied

by the original audio spectrogram A, to get the predicted difference spectrogram:
Alb(pred) = MtD ’ A§\4

The spectrogram difference of the input A%, is computed as the STFT of a}, — af,. We
minimize the distance between these two spectrogram denoted as

HAtD - AtD(pred) H%

In parallel, we also predict the left and right channels directly via an APNet
network [Zhou et al., 2020]. It consists of a decoder that predicts two complex
masks M} and M}, one for each channel. This decoder fuses the visual features v’
at each layer of the decoder and the two masks are used to obtain the predicted
) and A7

channel spectrograms A7 like above. We again minimize the L2

pred pred)

12



distance to each channel denoted as
AL — tL(pred)H% + || AR — AtR(pred)H3~
This gives us the overall backbone loss:
£5 = 4 = Abgrea i + { 1L = ALpren I3+ 4% = Anre I3} B1)

For generating audio during test time, the spectrogram A7, ., is then used

red
to obtain the predicted difference signal aj, ., via an inverse Shf)rt-Time Fourier
Transformation (ISTFT) operation. The two-channel audio {a},al} is recovered
using input mono audio aj, as af, = (ay, + Ap,eq)/2 and ai = (a5, — aprea))/2-
Consistency module For the spatial consistency loss, to ensure that the visual
features v% and vﬁcﬂ are relatively similar, we use an L2 loss directly on the video

features with a margin to allow some leeway:
Ls = max(||v} — v;ﬂH —a,0), (3.2)

where « is the margin we want to allow between two visual features. This ensures
that similar visuals should be represented with similar features and the margin
allows room for dissimilarity for the changes due to time. This serves to act as a reg-
ularizer since visual features guide the learning of the final audio. If the underlying
visual features are similar, the predicted audio is conditioned by coherent visuals
and therefore more spatially consistent.

We further encourage the visual features to have geometric understanding of
the relative positions of the sound source and receiver. To achieve this, we predict if
the visual frame and the audio features are aligned or not. We build a classifier G
which takes the binaural audio as input A r = { A%, AL} and combines it with the
visual features v, to classify if the audio heard matches the visuals seen. To misalign
the visuals and the audio during training, we simply flip the two audio channels
with 50% probability to get Ag, = { A%, A’ }. To recognise if the audio is flipped,
the visual features are forced to reason about information of the relative positions
of the sound sources. For the audio we use an encoder similar to the backbone
network, and after combining the features, reduce the feature dimensions followed

13



by a fully connected layer to predict an indicator variable ¢ which denotes if the
audio is flipped or not. We then calculate the binary cross entropy (BCE) loss on the
classifier’s prediction of whether the audio is flipped or not ¢ = G(Ar,v}) and the

actual indicator ¢, yielding the geometric consistency loss:
L = BCE(G(ALkr, U}); ¢). (3.3)

IR prediction module An impulse response is a binaural signal that captures
the acoustic response of an environment to an audio stimulus. We predict it directly
from the visual frames. We convert the impulse response {7, 7z} to the frequency
domain using the STFT and obtain magnitude spectrograms X, for each channel.
The IR prediction network consists of a decoder which takes the computed features
v from the visual frame as input and performs upconvolutions to obtain a predicted
magnitude spectrogram X/, ,. We want to minimize the difference between the
predicted IR X(tpre 4 and the ground truth X, v Therefore we minimize the L2 loss
between the two spectrograms. In addition, using the predicted spectrogram we
obtain the original IR waveform using the Griffin-Lim algorithm [Griffin and Lim,
1984, Perraudin et al., 2013] and compute the RT§(preq) from X(tpre a0 We compute
the L1 distance between the RT§ of the predicted IR RT§g(peq), and the ground
truth IR RT§ (). Thus the overall IR prediction loss is:

Lp =X reay — Xoill3 + [RTs0preay — RTs0(g1)]- (3.4)

Overall objective: Therefore the overall multi-task loss is a combination of
these losses:
L=XgLlp+ AsLs+ AgLg+ ApLp (3.5)

where \p, Ag, A\ and \p are the scalar weights used to determine the effect of each
loss during training.

14



Chapter 4

Experimental Setup

In this section, we first describe the datasets we use and give details of the
dataset generated (Section and then we discuss the implementation details for
the training and testing (Section [4.2).

4.1 Datasets

FAIR-Play: This dataset was collected by [Gao and Grauman, 2019a] for the
purpose of this task. It consists of video recordings of people playing various
instruments in a music room captured with a binaural microphone rig. The dataset
consists of 1,871 10-second clips, and the split into train/val/test is provided by the
authors. We follow the same protocols provided for our method as well.

SimBinaural: Binaural audio and impulse response collection in the real
world is expensive and challenging, requiring special equipment. IR collection is
also limited by the fact that it differs for each physical space and source-receiver
position pair within that space. Thus even if an IR is captured, the variety in the data
is severely limited to a few positions and rooms. To facilitate and understand the
relation between the visuals and the audio for learning better geometric features, we
create a dataset called SimBinaural of simulated videos in photo-realistic 3D indoor
scene environments. The generated videos resemble real-world audio recordings
sampled from 1,020 distinct rooms in 80 distinct environments (each environment
is a multi-room home).

Using the SoundSpaces audio simulations [Chen et al., 2020b] together with
the Habitat simulator [Savva et al., 2019], we created realistic videos with binaural
sounds for publicly available 3D environments in Matterport3D [Chang et al., 2017].
Habitat is an open-source 3D simulator that allows fast rendering for multiple
datasets including Matterport3D and Replica [Straub et al., 2019]. For our data,

we use 80 environments comprised of diverse indoor environments including real-
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Figure 4.1: The first row displays example frames from videos in FAIR-Play
and Grauman, 2019al] while the second row shows examples from the newly intro-
duced SimBinaural dataset.

Dataset \ #Videos Length (hrs) #Rooms IR
FAIR-Play [Gao and Grauman, 2019a] | 1,871 5.2 1 No
SimBinaural 107,280 903.7 1,020  Yes

Table 4.1: A comparison of the data in FAIR-Play and the large scale data we
generated.

world homes with 3D meshes and image scans. SoundSpaces [Chen et al., 2020b] is

a dataset with precomputed room impulse responses obtained with geometrical
acoustic simulations for the two 3D datasets (Matterport3D and Replica). They aug-
ment Habitat to allow insertion of arbitrary sound sources in an array of real-world
scanned environments by providing impulse responses for source and receiver
position pairs. These impulse responses are provided for position pairs that are
densely sampled from the environment.

We want the videos we generate to have audio emitting from plausible sound-
making objects visible in the video. Since the simulator does not have objects that
emit sound, we explicitly insert different 3D models of various instruments like
guitar, violin, flute etc. and other sound-making objects into the scene. Each kind
of object has multiple different models of that class for diversity, so it does not
associate a sound with a particular 3D model only. We placed more than 30 objects
from 13 classes roughly evenly.

To generate realistic binaural sound in the environment, we use the SoundSpaces

[Chen et al., 2020b] room impulse responses, which are a function of room geometry,

materials, and the sound source location. We choose a sound source location to
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place a 3D object, and a receiver (camera+microphone) location where the sound
is heard. Using the IR for the appropriate position at which we place the object
and the receiver, we convolve it with an audio waveform that is plausible from the
source location (e.g., a guitar playing for an inserted guitar 3D object). This results
in binaural audio for the receiver as if it is coming from the source object. We use
sounds recorded in anechoic environments so that there is no existing reverber-
ations to affect the data. The sounds are obtained from a copyright-free internet
source [fre, 2021] and OpenAIR data [Murphy and Shelley, 2010] to form a set of
127 different sound clips spanning the 13 distinct object categories.

Finally we want to capture videos with visuals and audio just like in the real
world. We place an agent equipped with a camera and binaural microphone at the
receiver location from above. The source and receiver locations are chosen so that
they are in the same room. Additionally, we use ray tracing to ensure that the object
is in view of the agent and turn the camera towards the object. The source positions
are densely sampled from the environment to have all possible source positions in
all the 3D environments.

Using this setting for generating audio-visuals, we create videos by moving
the agent, and therefore the camera and microphones, around the room in different
trajectories for each video. For a particular video and trajectory, we use a fixed
source position and the agent traverses a random path. It is important to note that
while the source is fixed, the trajectories and camera orientations are chosen such
that they source is always in view, and there are no obstacles. This also means
that the view of the object is not the same throughout the video; it changes as the
camera moves and rotates, so we get diverse orientations of the object and positions
within a video frame, for each video. For each position that the camera moves to,
we compute the audio heard at that location using the IR.

The agent remains at one position for 5 seconds before moving to the next
location smoothly. We generate the videos at 5 frames per second and the length
of the trajectories vary from 2 to 40 across different videos. At each position in
the trajectory, there is a small translational motion of the camera as well. The
average length of the videos in the dataset is 30.3s and the median length is 20s. We
generated over 100K videos, of which a subset (about 20%) is used for training and

testing.
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4.2 Implementation details

All the networks for training were written in PyTorch [Paszke et al., 2019].
For preprocessing both datasets, we followed the standard preprocessing steps
from [Gao and Grauman, 2019a]. We resampled all the audio to 16kHz and com-
puted the STFT using a FFT size of 512, window size of 400, and hop length of
160. For training the backbone, we use 0.63s clips of the 10s audio and use the
corresponding frame. The frames are extracted from the videos at 10fps. The visual
frames are randomly cropped to 448 x 224. For testing, we use a sliding window of
0.1s to compute the binaural audio for all methods.

The backbone networks are same as [Gao and Grauman, 2019al] and [Zhou
et al., 2020]. The U-Net consists of 5 convolution layers for downsampling and 5
upconvolution layers in the upsampling network. They include skip connections
for the layers with the same feature size. The APNet consists of 3 upsampling
layers which combine the visual feature v} with the upconvolution layers of the
U-Net. The visual network is a ResNet-18 [He et al., 2016] with the pooling and
tully connected layers removed. The encoder for spatial coherence follows the
same architecture as the encoder of the U-Net for the audio feature extraction. The
classifier combines the audio and visual features and has a fully connected layer
to predict the outcome. The generator network is adapted from GANSynth [Engel
et al., 2019]], modified to fit the required dimensions of the audio spectrogram.

For training, all baselines are evaluated with the same parameters for fairness.
We use the Adam optimizer [Kingma and Ba, 2015] and a batch size of 64. The
initial learning rates are 0.001 for the audio and fusion networks, and 0.0001 for all
other networks. We trained the FAIR-Play dataset for 1000 epochs and SimBinaural
for 100 epochs. The 4 for choice of frame is set to 1s and the \’s used are set based

on validation set performance to Ag = 10, A\s = 1, A\¢ = 0.01, A\p = 1.
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Chapter 5

Results

In this section we present the results of our proposed method. We evaluate the
performance using two standard metrics as used by [Gao and Grauman, 2019a, Mor+
gado et al., 2018| Zhou et al., 2020].

STFT Distance: This metric is the Euclidean distance of the predicted STFT spec-
trograms of the left and the right channel to the ground truth spectrograms.

DSTFT — || AL — AtL(pred)H2 + || A% — A%(pred)”Q-

This directly measures how good a spectrogram we produce, which is the objective
we are training on.

Envelope Distance: While the previous metric measures the similarity of
the spectrograms, we would like to measure similarity of raw audio. However,
comparing raw audio waveforms directly may not be informative about the actual
perceptual similarity of the audio. Hence, following prior work, we measure the
Euclidean distance between the envelopes of the predict signal and the ground
truth for each channel by calculating envelopes of the audio signal. Let the envelope

of a signal a}, be E!, then the metric is given by

DENV — ||Et — Ei(pmd)HQ + || E% — Ef?(pred)HQ.

5.1 Evaluation results

In this section, we first present a case study on the IR prediction module (Sec-

tion|5.1.1). We then describe the baselines we compare to (Section 5.1.2), followed
by result of experimental evaluations on the SimBinaural dataset (Section 5.1.3) and
the FAIR-Play dataset (Section [5.1.4).
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Input frame Ground Truth IR Predicted IR Ground Truth Spec. Predicted Spec.

Figure 5.1: IR Prediction: The first column is the input frame to the encoder. The
second column depicts the ground truth IR for the frame and the fourth column
is the corresponding spectrogram of this IR. The third and fifth columns show the
predicted IR waveform and spectrogram, respectively. This predicted IR waveform
is estimated from the spectrogram generated by our network.

5.1.1 IR Prediction Case Study

First we perform a case study on the task of predicting the binaural IR directly
from a single visual frame. We train separately on this task to see the feasibility of
learning the IR directly from the visual frame alone. The visual frames have some
information about the acoustic environment which we predict by looking at one
snapshot of the scene. We predict the magnitude spectrogram of the IR for the two
channels as we work on the binaural task. We also obtain the actual waveform of
the IR. Since the predicted spectrogram A{, , is a magnitude spectrogram instead
of a complex one, we cannot directly do ISTFT. Therefore, we use the Griffin-

Lim algorithm [Griffin and Lim, 1984] to generated the predicted IR. We present

qualitative examples of predictions from the test set in Figure[5.1 We can see that
we can get a fairly accurate general idea of the IR, and the difference between the
response in each channel is also captured well.

To evaluate if we capture the materials and geometry effectively, we also train
another task to predict the reverberation time RTj, of the IR from the visual frame.

A more accurate prediction of RTg, means that our network understands how the



wave will interact with the room and materials and whether it takes more or less
time to decay. We formulate this as a classification task. We discretize the range of
the RTy, number into 10 bins or classes such that they each have roughly the same
number of samples based on the training set. We then use a classifier to predict this
range class of RTy, using only the visual frame as input. The classifier consists of a
ResNet-18 with 10 classes as the last layer and takes the video frame as input. The
classifier has a test accuracy of 61.5% which demonstrates the networks ability to
estimate the RT§, range quite well (a random classifier has 10% accuracy).

5.1.2 Baselines

We compare our method to the following baselines to demonstrate that our
model learns desirable information.
Flipped-Visual: In this baseline, we flip the visual frame’s pixels from left to
right while testing to evaluate if the features actually learn the spatial geometric
information. Since this baseline uses incorrect visual information, it ought to be at a
disadvantage if the visual frame is significant for our results.
Audio Only: In this setting, we do not provide the visual frames to the network
in order to to verify if the visual information is essential to learning. Therefore we
only evaluate the performance of the backbone network with mono audio as input
while other configurations are the same.
Mono-Mono: In this baseline, both channels have the same input mono audio
repeated as the two-channel output. It helps verify if we are actually distinguishing
between the channels.
Mono2Binaural [Gao and Grauman, 2019af|: A state-of-the-art model for this task.
APNet [Zhou et al., 2020]]: A state-of-the-art model that handles binauralization
and audio source separation. We use the APNet network from their method and
train only on binaural data for stereo audio.

For the existing methods, we reproduce the results carefully using the code
provided by the authors. For our model, we perform multi-task training using the
auxiliary losses simultaneously with the baseline network.
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Scene-Split  Position-Split
STFT ENV STFT ENV

Mono-Mono 1.334 0.159 1.315 0.161

Audio-Only 0.872 0.127 0.857 0.127
Flipped-Visual 1.082 0.142 1.075 0.141
Mono2Binaural[Gao and Grauman, 2019a] 0.824 0.123 0.803 0.123
APNet [Zhou et al., 2020] 0.816 0.122 0.777 0.122
Backbone+IR Pred 0.803 0.122 0.745 0.120
Backbone+Spatial 0.807 0.121 0.750 0.119
Backbone+Geom 0.812 0.122 0.744 0.118

Full Model 0.777 0.118 0.719 0.117

Table 5.1: Quantitative results of binaural audio prediction on SimBinaural. For
both the metrics, lower is better.

5.1.3 Experiments on SimBinaural

We evaluate our model on two different splits of our data: Scene-Split and
Position-Split. In the Scene-Split, the train/test/val splits do not have any over-
lapping scenes from the Matterport3D [Chang et al., 2017] dataset and hence the
model has never seen the room of the video. In this respect, it is therefore a harder
task compared to FAIR-Play, which is recorded in one room. The Position-Split
may have the same Matterport3D scene in the split, with each scene consisting of
several rooms, but the exact configuration of the source object and receiver position
is not seen before. Therefore, during training, the model might have seen the room
from a different perspective with the sound-making object in some other position,
but it still is quite different from the test data.

Table 5.1 shows the results of our experiments on SimBinaural. The backbone
model is also trained only using Equation 3.1) without any of our additional losses.
We provide an ablation and demonstrate the effect of each loss on the model
individually and then present our full model that uses all the proposed losses. For
both splits, our model outperforms all the baselines, including the two state-of-the-
art prior methods.

First, we can see from Table 5.1 that the Scene-Split is a fundamentally harder
task to solve. This is because we must predict the sound, as well as other charac-
teristics like the IR, from visuals that we have not observed before. This forces the

model to try to generalize its encoding to generic visual properties (wall orienta-
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STFT ENV

Mono-Mono 1.215 0.157

Audio-Only 1.102 0.145
Flipped-Visual 1.134 0.152
Mono2Binaural|Gao and Grauman, 2019a] 0.947 0.142
APNet [Zhou et al., 2020] 0.904 0.138
Backbone+Spatial 0.873 0.134
Backbone+Geom 0.874 0.135

Full Model 0.869 0.134

Table 5.2: Quantitative results of binaural audio prediction on the FAIR-Play dataset.
For both the metrics, lower is better.

tions, major furniture, etc.) that have intra-class variations and geometry changes
compared to the training scenes.

Second, the ablations shed light on the impact of each of the proposed losses in
our multi-task framework. The Backbone+IR Pred model, trained by adding Equa-
tion 3.4 which uses the IR, provides a significant improvement over the baseline
across both splits. This indicates that with the availability of the IR during training,
the visual features can learn to extract information relevant for more accurate predic-
tion. Note that the true IR is never provided at test time, consistent with real-world
applications where this would not be measurable directly by the system (but, as
our results show, could be predicted). The Backbone+Spatial denotes adding only
the loss from Equation while Backbone+Geom denotes adding only the loss
from Equation 3.3|to the backbone network. Both the losses individually perform
better than the state-of-the-art indicating that there is some geometry inferred as
desired. The full model uses all the losses as in Equation This outperforms
other methods significantly on both splits. It also outperforms using each of the
losses individually, which demonstrates the losses can combine to jointly learn

better visual features for generating spatial audio.

514 Experiments on FAIR-Play

Table [5.2| shows the results of our experiments on the FAIR-Play real video
dataset.
For our method, since we do not have the ground truth impulse responses for
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Input frame

Figure 5.2: Qualitative visualization of the activation maps of the visual features
from the APNet [Zhou et al., 2020]] baseline and our model. While their method
produces more diffuse maps, our method localizes the object better within the
image. This indicates that the visual features in our method is better at identifying
the regions which might be emitting sound to generate more accurate binaural
audio.

the FAIR-Play dataset, we omit the IR prediction network. The Backbone+Spatial
denotes adding only the loss from Equation [3.2} while Backbone+Geom denotes
adding only the loss from Equation 3.3|to the backbone network. We can observe
that both variants of our method outperforms the state-of-the-art. Therefore, en-
forcing the geometric and spatial constraints is beneficial to the binaural audio
generation task. We get the best results when we combine both the losses highlight-
ing that both contribute together to improve the predictions.

Figure[5.2visualizes the activation maps of the visual features when the visual
frame is passed through the ResNet. We can see that while the activation maps
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for APNet [Zhou et al., 2020] are diffused and focusing on non essential parts
like objects in the background, our method focuses more on the object/region
producing the sound and its location. This shows that we can learn better visual
features which can more accurately capture the important aspects required by the

backbone networks for binaural audio generation.
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Chapter 6

Conclusion

We presented a multi-task setting to learn geometry-aware visual features for
mono to binaural audio conversion in videos. Our method exploits the inherent
room and object geometry and spatial information encoded in the visual frames to
generate rich binaural audio. We also generated a large-scale video dataset with
binaural audio in photo-realistic environments to better understand and learn the
relation between visuals and binaural audio. This dataset will be made publicly
available to support further research in this direction. Our state-of-the-art results
on two datasets demonstrate the efficacy of our proposed formulation.

The simulated data allows for a numerous possibilities for learning different
tasks and then applying them for other real world challenges. In the future, we
plan to better harness the vast amounts of data for learning and generalizing to
other videos. We can also explore improving the binaural sound generation by
better using the IR and transferring the IR knowledge to infer characteristics in real

videos.
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