294 research outputs found

    Improving Developer Profiling and Ranking to Enhance Bug Report Assignment

    Get PDF
    Bug assignment plays a critical role in the bug fixing process. However, bug assignment can be a burden for projects receiving a large number of bug reports. If a bug is assigned to a developer who lacks sufficient expertise to appropriately address it, the software project can be adversely impacted in terms of quality, developer hours, and aggregate cost. An automated strategy that provides a list of developers ranked by suitability based on their development history and the development history of the project can help teams more quickly and more accurately identify the appropriate developer for a bug report, potentially resulting in an increase in productivity. To automate the process of assigning bug reports to the appropriate developer, several studies have employed an approach that combines natural language processing and information retrieval techniques to extract two categories of features: one targeting developers who have fixed similar bugs before and one targeting developers who have worked on source files similar to the description of the bug. As developers document their changes through their commit messages it represents another rich resource for profiling their expertise, as the language used in commit messages typically more closely matches the language used in bug reports. In this study, we have replicated the approach presented in [32] that applies a learning-to-rank technique to rank appropriate developers for each bug report. Additionally, we have extended the study by proposing an additional set of features to better profile a developer through their commit logs and through the API project descriptions referenced in their code changes. Furthermore, we explore the appropriateness of a joint recommendation approach employing a learning-to-rank technique and an ordinal regression technique. To evaluate our model, we have considered more than 10,000 bug reports with their appropriate assignees. The experimental results demonstrate the efficiency of our model in comparison with the state-of-the-art methods in recommending developers for open bug reports

    Evaluating an assistant for creating bug report assignment recommenders

    Get PDF
    Software development projects receive many change requests each day and each report must be examined to decide how the request will be handled by the project. One decision that is frequently made is to which software developer to assign the change request. Efforts have been made toward semi automating this decision,with most approaches using machine learning algorithms. However, using machine learning to create an assignment recommender is a complex process that must be tailored to each individual software development project. The Creation Assistant for Easy Assignment (CASEA) tool leverages a project member’s knowledge for creating an assignment recommender. This paper presents the results of a user study using CASEA. The user study shows that users with limited project knowledge can quickly create accurate bug report assignment recommenders.Ye

    DeCaf: Diagnosing and Triaging Performance Issues in Large-Scale Cloud Services

    Full text link
    Large scale cloud services use Key Performance Indicators (KPIs) for tracking and monitoring performance. They usually have Service Level Objectives (SLOs) baked into the customer agreements which are tied to these KPIs. Dependency failures, code bugs, infrastructure failures, and other problems can cause performance regressions. It is critical to minimize the time and manual effort in diagnosing and triaging such issues to reduce customer impact. Large volume of logs and mixed type of attributes (categorical, continuous) in the logs makes diagnosis of regressions non-trivial. In this paper, we present the design, implementation and experience from building and deploying DeCaf, a system for automated diagnosis and triaging of KPI issues using service logs. It uses machine learning along with pattern mining to help service owners automatically root cause and triage performance issues. We present the learnings and results from case studies on two large scale cloud services in Microsoft where DeCaf successfully diagnosed 10 known and 31 unknown issues. DeCaf also automatically triages the identified issues by leveraging historical data. Our key insights are that for any such diagnosis tool to be effective in practice, it should a) scale to large volumes of service logs and attributes, b) support different types of KPIs and ranking functions, c) be integrated into the DevOps processes.Comment: To be published in the proceedings of ICSE-SEIP '20, Seoul, Republic of Kore

    Supporting Development Decisions with Software Analytics

    Get PDF
    Software practitioners make technical and business decisions based on the understanding they have of their software systems. This understanding is grounded in their own experiences, but can be augmented by studying various kinds of development artifacts, including source code, bug reports, version control meta-data, test cases, usage logs, etc. Unfortunately, the information contained in these artifacts is typically not organized in the way that is immediately useful to developers’ everyday decision making needs. To handle the large volumes of data, many practitioners and researchers have turned to analytics — that is, the use of analysis, data, and systematic reasoning for making decisions. The thesis of this dissertation is that by employing software analytics to various development tasks and activities, we can provide software practitioners better insights into their processes, systems, products, and users, to help them make more informed data-driven decisions. While quantitative analytics can help project managers understand the big picture of their systems, plan for its future, and monitor trends, qualitative analytics can enable developers to perform their daily tasks and activities more quickly by helping them better manage high volumes of information. To support this thesis, we provide three different examples of employing software analytics. First, we show how analysis of real-world usage data can be used to assess user dynamic behaviour and adoption trends of a software system by revealing valuable information on how software systems are used in practice. Second, we have created a lifecycle model that synthesizes knowledge from software development artifacts, such as reported issues, source code, discussions, community contributions, etc. Lifecycle models capture the dynamic nature of how various development artifacts change over time in an annotated graphical form that can be easily understood and communicated. We demonstrate how lifecycle models can be generated and present industrial case studies where we apply these models to assess the code review process of three different projects. Third, we present a developer-centric approach to issue tracking that aims to reduce information overload and improve developers’ situational awareness. Our approach is motivated by a grounded theory study of developer interviews, which suggests that customized views of a project’s repositories that are tailored to developer-specific tasks can help developers better track their progress and understand the surrounding technical context of their working environments. We have created a model of the kinds of information elements that developers feel are essential in completing their daily tasks, and from this model we have developed a prototype tool organized around developer-specific customized dashboards. The results of these three studies show that software analytics can inform evidence-based decisions related to user adoption of a software project, code review processes, and improved developers’ awareness on their daily tasks and activities

    Large Language Models for Software Engineering: A Systematic Literature Review

    Full text link
    Large Language Models (LLMs) have significantly impacted numerous domains, notably including Software Engineering (SE). Nevertheless, a well-rounded understanding of the application, effects, and possible limitations of LLMs within SE is still in its early stages. To bridge this gap, our systematic literature review takes a deep dive into the intersection of LLMs and SE, with a particular focus on understanding how LLMs can be exploited in SE to optimize processes and outcomes. Through a comprehensive review approach, we collect and analyze a total of 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize and provide a comparative analysis of different LLMs that have been employed in SE tasks, laying out their distinctive features and uses. For RQ2, we detail the methods involved in data collection, preprocessing, and application in this realm, shedding light on the critical role of robust, well-curated datasets for successful LLM implementation. RQ3 allows us to examine the specific SE tasks where LLMs have shown remarkable success, illuminating their practical contributions to the field. Finally, RQ4 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE, as well as the common techniques related to prompt optimization. Armed with insights drawn from addressing the aforementioned RQs, we sketch a picture of the current state-of-the-art, pinpointing trends, identifying gaps in existing research, and flagging promising areas for future study

    Finding Cross-rule Optimization Bugs in Datalog Engines

    Full text link
    Datalog is a popular and widely-used declarative logic programming language. Datalog engines apply many cross-rule optimizations; bugs in them can cause incorrect results. To detect such optimization bugs, we propose an automated testing approach called Incremental Rule Evaluation (IRE), which synergistically tackles the test oracle and test case generation problem. The core idea behind the test oracle is to compare the results of an optimized program and a program without cross-rule optimization; any difference indicates a bug in the Datalog engine. Our core insight is that, for an optimized, incrementally-generated Datalog program, we can evaluate all rules individually by constructing a reference program to disable the optimizations that are performed among multiple rules. Incrementally generating test cases not only allows us to apply the test oracle for every new rule generated-we also can ensure that every newly added rule generates a non-empty result with a given probability and eschew recomputing already-known facts. We implemented IRE as a tool named Deopt, and evaluated Deopt on four mature Datalog engines, namely Souffl\'e, CozoDB, ÎĽ\muZ, and DDlog, and discovered a total of 30 bugs. Of these, 13 were logic bugs, while the remaining were crash and error bugs. Deopt can detect all bugs found by queryFuzz, a state-of-the-art approach. Out of the bugs identified by Deopt, queryFuzz might be unable to detect 5. Our incremental test case generation approach is efficient; for example, for test cases containing 60 rules, our incremental approach can produce 1.17Ă—\times (for DDlog) to 31.02Ă—\times (for Souffl\'e) as many valid test cases with non-empty results as the naive random method. We believe that the simplicity and the generality of the approach will lead to its wide adoption in practice.Comment: The ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Applications (2024), Pasadena, California, United State

    A market for trading software issues

    Get PDF
    The security of software is becoming increasingly important. Open source software forms much of our digital infrastructure. It, however, contains vulnerabilities which have been exploited, attracted public attention, and caused large financial damages. This article proposes a solution to shortcomings in the current economic situation of open source software development. The main idea is to introduce price signals into the peer production of software. This is achieved through a trading market for futures contracts on the status of software issues. Users, who value secure software, gain the possibility to predict outcomes and incentivize work, strengthening collaboration and information sharing in open source software development. The design of such a trading market is discussed and a prototype introduced. The feasibility of the trading market design is corroborated in a proof-of-concept implementation and simulation. Preliminary results show that the implementation works and can be used for future experiments. Several directions for future research result from this article, which contributes to peer production, software development practices, and incentives design
    • …
    corecore