8 research outputs found

    Guarded-Based Disjunctive Tuple-Generating Dependencies

    Get PDF
    We perform an in-depth complexity analysis of query answering under guarded-based classes of disjunctive tuple-generating dependencies (DTGDs), focusing on (unions of) conjunctive queries ((U)CQs). We show that the problem under investigation is very hard, namely 2E xp T ime -complete, even for fixed sets of dependencies of a very restricted form. This is a surprising lower bound that demonstrates the enormous impact of disjunction on query answering under guarded-based tuple-generating dependencies, and also reveals the source of complexity for expressive logics such as the guarded fragment of first-order logic. We then proceed to investigate whether prominent subclasses of (U)CQs (i.e., queries of bounded treewidth and hypertree-width, and acyclic queries) have a positive impact on the complexity of the problem under consideration. We show that queries of bounded treewidth and bounded hypertree-width do not reduce the complexity of our problem, even if we focus on predicates of bounded arity or on fixed sets of DTGDs. Regarding acyclic queries, although the problem remains 2E xp T ime -complete in general, in some relevant settings the complexity reduces to E xp T ime -complete. Finally, with the aim of identifying tractable cases, we focus our attention on atomic queries. We show that atomic queries do not make the query answering problem easier under classes of guarded-based DTGDs that allow more than one atom to occur in the body of the dependencies. However, the complexity significantly decreases in the case of dependencies that can have only one atom in the body. In particular, we obtain a P time -completeness if we focus on predicates of bounded arity, and AC 0 -membership when the set of dependencies and the query are fixed. Interestingly, our results can be used as a generic tool for establishing complexity results for query answering under various description logics. </jats:p

    First-Order Rewritability and Complexity of Two-Dimensional Temporal Ontology-Mediated Queries

    Get PDF
    Aiming at ontology-based data access to temporal data, we design two-dimensional temporal ontology and query languages by combining logics from the (extended) DL-Lite family with linear temporal logic LTL over discrete time (Z,<). Our main concern is first-order rewritability of ontology-mediated queries (OMQs) that consist of a 2D ontology and a positive temporal instance query. Our target languages for FO-rewritings are two-sorted FO(<) - first-order logic with sorts for time instants ordered by the built-in precedence relation < and for the domain of individuals - its extension FOE with the standard congruence predicates t \equiv 0 mod n, for any fixed n > 1, and FO(RPR) that admits relational primitive recursion. In terms of circuit complexity, FOE- and FO(RPR)-rewritability guarantee answering OMQs in uniform AC0 and NC1, respectively. We proceed in three steps. First, we define a hierarchy of 2D DL-Lite/LTL ontology languages and investigate the FO-rewritability of OMQs with atomic queries by constructing projections onto 1D LTL OMQs and employing recent results on the FO-rewritability of propositional LTL OMQs. As the projections involve deciding consistency of ontologies and data, we also consider the consistency problem for our languages. While the undecidability of consistency for 2D ontology languages with expressive Boolean role inclusions might be expected, we also show that, rather surprisingly, the restriction to Krom and Horn role inclusions leads to decidability (and ExpSpace-completeness), even if one admits full Booleans on concepts. As a final step, we lift some of the rewritability results for atomic OMQs to OMQs with expressive positive temporal instance queries. The lifting results are based on an in-depth study of the canonical models and only concern Horn ontologies
    corecore