12 research outputs found

    Fixed-Points for Quantitative Equational Logics

    Get PDF
    We develop a fixed-point extension of quantitative equational logic and give semantics in one-bounded complete quantitative algebras. Unlike previous related work about fixed-points in metric spaces, we are working with the notion of approximate equality rather than exact equality. The result is a novel theory of fixed points which can not only provide solutions to the traditional fixed-point equations but we can also define the rate of convergence to the fixed point. We show that such a theory is the quantitative analogue of a Conway theory and also of an iteration theory; and it reflects the metric coinduction principle. We study the Bellman equation for a Markov decision process as an illustrative example

    Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

    Get PDF
    We introduce a new notion of "guarded Elgot monad", that is a monad equipped with a form of iteration. It requires every guarded morphism to have a specified fixpoint, and classical equational laws of iteration to be satisfied. This notion includes Elgot monads, but also further examples of partial non-unique iteration, emerging in the semantics of processes under infinite trace equivalence. We recall the construction of the "coinductive resumption monad" from a monad and endofunctor, that is used for modelling programs up to bisimilarity. We characterize this construction via a universal property: if the given monad is guarded Elgot, then the coinductive resumption monad is the guarded Elgot monad that freely extends it by the given endofunctor

    A Semantics for Hybrid Iteration

    Get PDF
    The recently introduced notions of guarded traced (monoidal) category and guarded (pre-)iterative monad aim at unifying different instances of partial iteration whilst keeping in touch with the established theory of total iteration and preserving its merits. In this paper we use these notions and the corresponding stock of results to examine different types of iteration for hybrid computations. As a starting point we use an available notion of hybrid monad restricted to the category of sets, and modify it in order to obtain a suitable notion of guarded iteration with guardedness interpreted as progressiveness in time - we motivate this modification by our intention to capture Zeno behaviour in an arguably general and feasible way. We illustrate our results with a simple programming language for hybrid computations and interpret it over the developed semantic foundations

    Representing Guardedness in Call-By-Value

    Get PDF
    Like the notion of computation via (strong) monads serves to classify various flavours of impurity, including exceptions, non-determinism, probability, local and global store, the notion of guardedness classifies well-behavedness of cycles in various settings. In its most general form, the guardedness discipline applies to general symmetric monoidal categories and further specializes to Cartesian and co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here, even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but in order to represent effectful function spaces, such a category must canonically arise from a strong monad. We generalize this fact by showing that representing guarded effectful function spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of guardedness as an intrinsic categorical property of programs, complementing the existing description of guardedness as a predicate on a category

    Shades of Iteration: from Elgot to Kleene

    Full text link
    Notions of iteration range from the arguably most general Elgot iteration to a very specific Kleene iteration. The fundamental nature of Elgot iteration has been extensively explored by Bloom and Esik in the form of iteration theories, while Kleene iteration became extremely popular as an integral part of (untyped) formalisms, such as automata theory, regular expressions and Kleene algebra. Here, we establish a formal connection between Elgot iteration and Kleene iteration in the form of Elgot monads and Kleene monads, respectively. We also introduce a novel class of while-monads, which like Kleene monads admit a relatively simple description in algebraic terms. Like Elgot monads, while-monads cover a large variety of models that meaningfully support while-loops, but may fail the Kleene algebra laws, or even fail to support a Kleen iteration operator altogether.Comment: Extended version of the accepted one for "Recent Trends in Algebraic Development Techniques - 26th IFIP WG 1.3 International Workshop, WADT 2022

    Coinduction in Flow: The Later Modality in Fibrations

    Get PDF
    This paper provides a construction on fibrations that gives access to the so-called later modality, which allows for a controlled form of recursion in coinductive proofs and programs. The construction is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary fibrations. As a result, we obtain a framework that allows the addition of a recursion principle for coinduction to rather arbitrary logics and programming languages. The main interest of using recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This enables easily understandable coinductive proofs and programs, and fosters automatic proof search. Part of the framework are also various results that enable a wide range of applications: transportation of (co)limits, exponentials, fibred adjunctions and first-order connectives from the initial fibration to the one constructed through the framework. This means that the framework extends any first-order logic with the later modality. Moreover, we obtain soundness and completeness results, and can use up-to techniques as proof rules. Since the construction works for a wide variety of fibrations, we will be able to use the recursion offered by the later modality in various context. For instance, we will show how recursive proofs can be obtained for arbitrary (syntactic) first-order logics, for coinductive set-predicates, and for the probabilistic modal mu-calculus. Finally, we use the same construction to obtain a novel language for probabilistic productive coinductive programming. These examples demonstrate the flexibility of the framework and its accompanying results
    corecore