117,383 research outputs found

    Growth, Structure and Pattern Formation for Thin Films

    Get PDF

    Metal Layer Architectures for 2D TMD Heterostructures

    Get PDF
    The purpose of this investigation is to control the formation of atomically thin metal films of transition metals on silicon wafers with a 200 nm oxide layer. Metals have physical characteristics that are dependent on the thickness and structure of the material. The thickness and the structure of the material change depending on the conditions of metal deposition. By varying the metal deposition conditions, the desired physical characteristics, such as roughness and crystalline domain size, can be attained. This project focuses on depositing a transition metal film using a sputtering chamber at different growth conditions using low power, medium power, and high power. Film thickness and structure were observed using an atomic force microscope (AFM). Surface features were observed using a scanning electron microscope (SEM). Conductivity data was used to indicate film structure. The metal films will then be exposed to a vapor containing sulfur or selenium to create thin heterostructures of transition metal dichalcogenides (TMDs). The heterostructure films will then be characterized using an AFM, SEM and Raman Spectroscopy. Once the relationship between metal film structure and reactivity with chalcogen vapors is understood, different transition metal films will be deposited sequentially to form a bilayer of two transition metals. After film growth, the bilayers will be observed using an AFM and SEM. Conductivity data will indicate film structure. The bilayer films will be exposed to vapor containing sulfur or selenium to create two layers of TMDs. One of the applications of this project is to be able to tune the electronic and optical properties of semiconductors by varying the stacking pattern of many TMD layers. This will allow desirable band gaps to be achieved for transistors and sensors. Stacking two layers is the first step in understanding how effective this novel approach for development of synthetic superlattices can be.https://ecommons.udayton.edu/stander_posters/2898/thumbnail.jp

    Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Get PDF
    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x=2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3Ă—3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2Ă—2) superstructure, and finally the pure (2Ă—2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2Ă—2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates

    Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy

    Full text link
    Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The nitrogen partial pressure, during sputtering process was varied in the range of 0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an increase in nitrogen partail pressure results in formation of an amorphous structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe were obtained while at even higher nitrogen partial pressures, nitrides themselves became nanocrystalline or amorphous. The surface, structural and magnetic properties of the deposited films were studied using x-ray reflection and diffraction, transmission electron microscopy, polarized neutron reflectivity and using a DC extraction magnetometer. The growth behavior for amorphous film was found different as compared with poly or nanocrystalline films. The soft-magnetic properties of FeN were improved on nanocrystallization while those of NiFeN were degraded. A mechanism inducing nanocrystallization and amorphization in Fe and NiFe due to reactive nitrogen sputtering is discussed in the present article.Comment: 13 Pages, 15 Figure

    The influence of substrate temperature on growth of para-sexiphenyl thin films on Ir{111} supported graphene studied by LEEM

    Get PDF
    The growth of para-sexiphenyl (6P) thin films as a function of substrate temperature on Ir{111} supported graphene flakes has been studied in real-time with Low Energy Electron Microscopy (LEEM). Micro Low Energy Electron Diffraction (\mu LEED) has been used to determine the structure of the different 6P features formed on the surface. We observe the nucleation and growth of a wetting layer consisting of lying molecules in the initial stages of growth. Graphene defects -- wrinkles -- are found to be preferential sites for the nucleation of the wetting layer and of the 6P needles that grow on top of the wetting layer in the later stages of deposition. The molecular structure of the wetting layer and needles is found to be similar. As a result, only a limited number of growth directions are observed for the needles. In contrast, on the bare Ir{111} surface 6P molecules assume an upright orientation. The formation of ramified islands is observed on the bare Ir{111} surface at 320 K and 352 K, whereas at 405 K the formation of a continuous layer of upright standing molecules growing in a step flow like manner is observed.Comment: 9 pages, 7 figures, Revised Version as accepted for publication in Surface Scienc

    Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface

    Full text link
    Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi2Se3 and Si substrate, as verified by RHEED (Reflection High Energy Electron Diffraction), TEM (Transmission Electron Microscopy) and XRD (X-Ray Diffraction). The lattice constant of Bi2Se3 is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi2Se3 film down to the first quintuple layer without any second phase or an amorphous layer.Comment: 20 pages, 7 figure
    • …
    corecore