

Metal Layer Architectures for 2D TMD Heterostructures

Anna Benton

Advisors: Drs. Christopher Muratore and Nick Glavin Department of Chemical and Materials Engineering Materials and Manufacturing Directorate

Overview of 2D Transition Metal Dichalcogenides

Two dimensional transition metal dichalcogenides (2D TMDs) exhibit useful electronic and mechanical properties for sensing applications:

- Flexible (> 10% Strain)
- Large Surface to Volume Ratio
- Large Band Gap (1.0-3.4 eV)
 - Low Subthreshold Swing → Strong Response to Surface Adsorption Events
 - MoS₂: 60 mV per decade of current
 - Graphene: >1000 mV per decade of current

2D molecular sensors with enhanced sensitivity/selectivity

Purpose of Research

AFRI

- Designing synthetic materials from ultra thin building blocks (1 atom or 1 molecule thick) allows design of materials at the ultimate scaling limit
- Materials held together with van der Waals bonds (like TMDs) allow assembly with no constraints on lattice parameter
- Ability to synthesize multilayer architectures currently limited by kinetics of film growth
- Short term objective: Create large 2D TMD materials
- Ultimate Goal: synthesis of >10 layer TMD heterostructures
 - Allows for the tailorability of material properties, such as band gap, absorption, etc.

Process: Create Uniform TMDs

- Control morphology of monolithic metal layers
 - Grow transition metal films using a vapor phase process with control over:
 - Flux (atoms/cm²·s)
 - Kinetic energy of incident species
 - Temperature
- Observe morphology of metals
 - AFM/SEM
 - electronic probe station
- Expose metals to sulfur/selenium vapor at high temperature
 - With collaborators at Rice University/AFRL
- Observe structure and properties of TMDs
 - AFM
 - Raman Spectroscopy
 - photoluminescence

Expose metal film to chalcogen vapor to transform it into large area uniform transition metal dichalcogenide film

Growing Transition Metal Films

- Transition metal films grown in a sputtering chamber
 - Varied metal deposition conditions
 - Deposition time
 - Temperature
 - Room temperature (25 °C)
 - 500 °C
 - Power modulation
 - Direct current (DC)
 - Lowest energy of deposited atoms
 - Pulsed direct current (PDC)
 - Medium energy range
 - High-Power
 - High energy range

Power Modulation Importance

- Surface Energy of Metals
 - Metals have higher surface energy than substrate
 - Favors the formation of islands
- Power Modulation Changes the Surface Energy of the Substrate

Characterization of Transition Metal Films

- Surface Characteristics
 - Atomic Force Microscope (AFM)
 - Thickness of material
 - Morphology (cluster size)
 - Scanning Electron Microscope (SEM)
 - Surface characteristics

- Conductivity
 - Traditional Probing Station
 - Direct indicator of film continuity

Results: Conductivity

Results: AFM Thickness

DC, 8s Thickness: 1.89 nm Roughness: 0.390 nm

PDC, 8s Thickness: 1.66 nm Roughness: 0.473 nm

HiPIMS, 20s Thickness: 1.19 nm Roughness: 0.340 nm

Diameter of 1 Mo atom: 0.3 nm

AFRL

Results: AFM Morphology

THE AIR FORCE RESEARCH LABORATORY

Selenation of Mo samples

- Completed by collaborators at Rice University and AFRL
- Raman Spectroscopy
 - Shows bond formation
- Conversion from Mo to MoSe₂ was successful
- The conversion was not localized

Refractive index and extinction coefficient of selenized Mo films for different wavelengths of light

Refractive index and extinction coefficient of CVD MoSe₂ films

Future Work

- Stack Mo, W
- Convert the stacks to TMDs
- Tune the band gaps by changing the order of the TMD layers

b

С

Acknowledgements

Dr. Christopher Muratore Dr. Nick Glavin Dr. Mike Snure Dr. P. Ajayan (Rice) Art Safriet Kristi Singh Grace Culpepper Alex Merrill My Family and Friends

AFRL/UD team

