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Overview of 2D Transition Metal Dichalcogenides

Two dimensional transition metal dichalcogenides (2D TMDs) exhibit 
useful electronic and mechanical properties for sensing applications:

• Flexible (> 10% Strain)
• Large Surface to Volume Ratio
• Large Band Gap (1.0-3.4 eV)

• Low Subthreshold Swing → Strong Response to Surface 
Adsorption Events 

• MoS2: 60 mV per decade of current
• Graphene: >1000 mV per decade of current



Purpose of Research
• Designing synthetic materials from ultra thin 

building blocks (1 atom or 1 molecule thick) 
allows design of materials at the ultimate 
scaling limit

• Materials held together with van der Waals 
bonds (like TMDs) allow assembly with no 
constraints on lattice parameter

• Ability to synthesize multilayer architectures 
currently limited by kinetics of film growth

• Short term objective: Create large 2D TMD 
materials

• Ultimate Goal: synthesis of >10 layer TMD 
heterostructures
• Allows for the tailorability of material 

properties, such as band gap, absorption, 
etc.



Process: Create Uniform TMDs

• Control morphology of monolithic metal layers
• Grow transition metal films using a vapor 

phase process with control over:
• Flux (atoms/cm2·s)
• Kinetic energy of incident species
• Temperature

• Observe morphology of metals 
• AFM/SEM
• electronic probe station

• Expose metals to sulfur/selenium vapor at high 
temperature
• With collaborators at Rice University/AFRL

• Observe structure and properties of TMDs
• AFM
• Raman Spectroscopy
• photoluminescence

Expose metal film to chalcogen vapor 
to transform it into large area uniform 
transition metal dichalcogenide film



Growing Transition Metal Films

• Transition metal films grown in a sputtering chamber
• Varied metal deposition conditions

• Deposition time
• Temperature

• Room temperature (25 °C)
• 500 °C

• Power modulation
• Direct current (DC)

• Lowest energy of deposited atoms
• Pulsed direct current (PDC)

• Medium energy range
• High-Power 

• High energy range



Power Modulation Importance

• Surface Energy of Metals
• Metals have higher surface energy 

than substrate
• Favors the formation of islands

• Power Modulation Changes the Surface 
Energy of the Substrate
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Characterization of Transition Metal Films

• Surface Characteristics
• Atomic Force Microscope (AFM)

• Thickness of material
• Morphology (cluster size)

• Scanning Electron Microscope (SEM)
• Surface characteristics

• Conductivity
• Traditional Probing Station

• Direct indicator of film continuity

Metal Film

Substrate



Results: Conductivity



Results: AFM Thickness

PDC, 2s
Thickness: 0.521 nm
Roughness: 0.274 nm

HiPIMS, 5s
Thickness: 0.437 nm
Roughness:0.231 nm

DC, 2s
Thickness: 0.961 nm
Roughness: 0.303 nm

PDC, 8s
Thickness: 1.66 nm
Roughness: 0.473 nm

HiPIMS, 20s
Thickness: 1.19 nm
Roughness: 0.340 nm

DC, 8s
Thickness: 1.89 nm
Roughness: 0.390 nm 
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Diameter of 1 Mo atom: 0.3 nm



Results: AFM Morphology
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Selenation of Mo samples

• Completed by collaborators at Rice University and AFRL
• Raman Spectroscopy

• Shows bond formation
• Conversion from Mo to MoSe2 was successful
• The conversion was not localized

• Film is continuous

MoSe2

MoSe2





Future Work

• Stack Mo, W
• Convert the stacks to TMDs
• Tune the band gaps by changing the 

order of the TMD layers
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