12,639 research outputs found

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    Continuous Representation of Location for Geolocation and Lexical Dialectology using Mixture Density Networks

    Full text link
    We propose a method for embedding two-dimensional locations in a continuous vector space using a neural network-based model incorporating mixtures of Gaussian distributions, presenting two model variants for text-based geolocation and lexical dialectology. Evaluated over Twitter data, the proposed model outperforms conventional regression-based geolocation and provides a better estimate of uncertainty. We also show the effectiveness of the representation for predicting words from location in lexical dialectology, and evaluate it using the DARE dataset.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP 2017) September 2017, Copenhagen, Denmar

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    Small-variance asymptotics for Bayesian neural networks

    Get PDF
    Bayesian neural networks (BNNs) are a rich and flexible class of models that have several advantages over standard feedforward networks, but are typically expensive to train on large-scale data. In this thesis, we explore the use of small-variance asymptotics-an approach to yielding fast algorithms from probabilistic models-on various Bayesian neural network models. We first demonstrate how small-variance asymptotics shows precise connections between standard neural networks and BNNs; for example, particular sampling algorithms for BNNs reduce to standard backpropagation in the small-variance limit. We then explore a more complex BNN where the number of hidden units is additionally treated as a random variable in the model. While standard sampling schemes would be too slow to be practical, our asymptotic approach yields a simple method for extending standard backpropagation to the case where the number of hidden units is not fixed. We show on several data sets that the resulting algorithm has benefits over backpropagation on networks with a fixed architecture.2019-01-02T00:00:00

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    • …
    corecore