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Abstract: Using Hidden Markov Models (HMMs) as a recognition framework for 

automatic classification of animal vocalizations has a number of benefits, including the 

ability to handle duration variability through nonlinear time alignment, the ability to 

incorporate complex language or recognition constraints, and easy extendibility to 

continuous recognition and detection domains. In this work, we apply HMMs to several 

different species and bioacoustic tasks using generalized spectral features that can be easily 

adjusted across species and HMM network topologies suited to each task. This 

experimental work includes a simple call type classification task using one HMM per 

vocalization for repertoire analysis of Asian elephants, a language-constrained song 

recognition task using syllable models as base units for ortolan bunting vocalizations, and a 

stress stimulus differentiation task in poultry vocalizations using a non-sequential model 

via a one-state HMM with Gaussian mixtures. Results show strong performance across all 
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tasks and illustrate the flexibility of the HMM framework for a variety of species, 

vocalization types, and analysis tasks. 

Keywords: Hidden Markov Model (HMM); Greenwood Frequency Cepstral Coefficients 

(GFCCs) 

 

1. Introduction  

Within the field of bioacoustics, there is a growing need for accurate automatic signal classification 

for tasks such as call-type classification, individual identification, and assessment of correlation 

between vocalization patterns and specific social or behavioral contexts. There are a number of well-

established techniques for vocalization classification, both template-based and parameter-based. Of the 

template-based methods, many require significant hand-tuning and have difficulty with temporal and 

individual variability. In recent years, there has been work toward application of more advanced 

pattern recognition methods such as those used in human speech and speaker recognition, in particular 

Hidden Markov Models (HMMs). The work presented here focuses on the use of HMMs as a robust 

recognition framework for bioacoustic signal classification across a variety of species and 

classification tasks. 

Existing methods for bioacoustic signal classification include multivariate feature analysis, 

spectrogram cross-correlation, matched filtering, neural networks, dynamic time warping, and others. 

The most well-established of these is spectrogram cross-correlation (SPCC) [1,2], in which a 

spectrogram (time-sequence of short-time Fourier transforms) is directly correlated with test 

vocalizations. Spectrogram cross-correlation is simple to implement, requiring only a single 

vocalization example of each type of call to be recognized, and can be easily applied to either the 

isolated vocalization task, where recordings have been presegmented into separate files, or to 

continuous detection, where a sliding window is applied across a long recording, with correlation 

peaks indicating target detection. This SPCC method is well-suited to recognizing animal sounds 

consisting of tones and frequency sweeps [3]. However, the cross correlation approach is unable to 

adapt to changes in call duration and alignment, and is also significantly impacted by frequency 

variation such as shifts caused by vocal individuality across callers.  

Matched filtering (MF) is a time-series correlation method that uses synthetic waveforms [4] or 

synthetic spectrograms [3] instead of recording examples. This approach is also easy to implement, 

although requiring more effort to construct pattern templates, and has many of the same strengths and 

weaknesses as spectrogram cross-correlation. Artificial Neural Network (ANN) approaches can be 

used for classification in many different applications, depending on the specific choice of input 

features and network topologies. If spectrogram values are used as input features, a common 

configuration, then ANNs can adjust the emphasis given to various portions of the time-frequency 

template, giving improved classification for some tasks such as species detection [5-7]. However, in 

this configuration, ANNs are subject to some of the same temporal nonlinearity and frequency shifting 

weaknesses as SPCC and MF. Dynamic time warping (DTW) [8], commonly used in small-vocabulary 

isolated word recognition for human speech, is able to handle temporal nonlinearity through optimal 
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frame-to-frame alignment of the reference template with test vocalizations. However, it is difficult to 

implement DTW in a continuous detection framework, which is one of the reasons it is now rarely 

used for large-scale speech recognition. 

HMMs, now used in nearly all state-of-the-art speech recognition systems, have begun to gain 

attention in bioacoustics as well [9-12]. An HMM is a statistical state machine model where each state 

represents a stationary spectral configuration, and transitions between states represent spectral changes 

over time. Benefits of HMMs include their ability to handle nonlinear temporal alignment, their 

statistical basis for classification, their extendibility to continuous recognition or detection, and the 

ease with which they can incorporate complex language or other recognition constraints. 

The performance of HMM-based systems has been compared to other classification methods for 

bioacoustic tasks. Weisburn et al. [13] compared the performance of a matched filter and an HMM 

system for detecting bowhead whale (Balaena mysticetus) call notes. The matched filter used a 

spectrogram template, while the HMM used the three largest spectral peaks as features for an 18-stage 

model. The HMM detected 97% of the notes, whereas the MF detected 84%. Anderson [14] compared 

an HMM approach to a DTW-based system using a dataset consisting of two different species of bird 

song. His conclusion was that although the DTW system worked better with a small amount of training 

data, the HMM system was more robust to noise and to vocalization variability.  

One of the issues that makes comparison across methods difficult is that of feature extraction. The 

selection of features is an essential component of any pattern recognition system, often having as much 

or more impact on the outcome as the choice of classification model. For example, SPCC by definition 

relies on short-time Fourier transform amplitudes as a feature, whereas MF uses a direct time-series 

correlation, and DTW can use any spectral distance measure between frames. HMMs, as statistical 

classification models, are able to use any frame-based feature vector giving meaningful 

discriminability across classes, most commonly cepstral coefficients. This use of cepstrum coefficients 

is somewhat different than the standard statistical analysis approaches common in the bioacoustics 

field, where typical features include whole-vocalization measures such as duration, energy, and 

maximum, minimum and average fundamental frequency values. Such measures work well with 

statistical test techniques such as the t-test, Chi-Squared test, MANOVA, and factor analysis.  

Frame-based features, however, are somewhat more difficult to use with traditional statistical 

approaches [8,15] because there are a variable number of features per vocalization. Another significant 

and often unavoidable problem in bioacoustic signal processing is the presence of background noise 

due to adverse recording environments, as well as convolutional noise due to microphone and sound 

propagation variability. Standard spectral features are highly sensitive to noise, which can decrease 

system accuracy and give misleading results. It is important, therefore, to incorporate signal 

enhancement and/or robust feature extraction techniques that enhance the vocalization while 

suppressing background noise. Common techniques to reduce noise artifacts in bioacoustic signals 

include basic bandpass filters and related frequency-based methods for spectrogram filtering and 

equalization, often incorporated directly into acquisition and analysis tools [16]. Other approaches in 

recent years have included spectral subtraction [17], minimum mean-squared error (MMSE)  

estimation [18,19], adaptive line enhancement [20], and perceptually motivated wavelet  

denoising [21].  
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In the study presented here, we examine the HMM recognition framework and look at its 

applicability to several different types of bioacoustic classification tasks. The framework is illustrated 

with three different datasets, each representing a different kind of task. While the same HMM 

framework and feature extraction methods are used across all tasks, front-end signal processing 

methods and implementation details are tailored to each application. Application tasks include call 

type classification of Asian elephant vocalizations, syllable-based song-type classification of ortolan 

bunting songs, and age-dependent stress stimulus classification of poultry vocalizations.  

2. Methods 

2.1. HMMs 

An HMM is a stochastic finite state machine used to model a speech segment. The segments may be 

words, syllables, subword units, or even a complete phrase [22]. Fundamentally, an HMM is simply a 

set of states connected by transition arcs, as illustrated in Figure 1. When modeling time-sequential 

patterns, the states of the HMM are typically connected with state transitions from left to right, 

representing time.  

Figure 1. HMM with GMM state observations aligned to an Asian Elephant Squeak 

vocalization. The first and last state represent entry and exit points for the model, while 

internal states, called “emitting” states, are aligned to signal frames to maximize overall 

model likelihood. 

4 States HMM 

with 3 Gaussian Mixtures
1 2 3 4 5 6

a24

a23 a34 a45 a56

a22 a33 a44 a55

a35

... ... ...

b4(O1 ) b5(O1 ) b5(Oend)b2(O1 ) b2(Oend) b3(Oend)b3(O1 )
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An HMM is defined by its transition matrix A, in which each element ija  represents the probability 

of moving from state i to j, and state observation probabilities ( )i tb o , which represent the probability 

distributions for each state i. Observations to  represent the data being modeled, in this case the feature 

vectors of the vocalization frames. Because the transition matrix is two-dimensional, the system has 

the Markov property, i.e. the probability of the next state is dependent only on the current state. In 

human speech, Gaussian Mixture Models (GMMs), a weighted sum of Gaussians that can represent a 

wide variety of unimodal and multimodal distribution characteristics, are commonly used to model the 

state observation probability densities. The programming toolkit used here is the Hidden Markov 

Model Toolkit (HTK) from Cambridge University (2002) [23]. Parameter training is implemented 

using the Baum-Welch method (an implementation of the well known Expectation Maximization 

algorithm) for maximum likelihood estimation [24,25], and classification is accomplished using the 

Viterbi algorithm [26] to identify the most likely HMM or HMM sequence given an unknown 

vocalization. 

Figure 2. GMM model aligned to a non-stress condition poultry vocalization. 
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The left to right topology and number of states in the model may be adjusted to accommodate a 

wide variety of sequential patterns. Patterns with more variation and complexity are typically assigned 

models with more states to represent the different regimes. In contrast, it is possible to use HMMs to 

classify patterns without any temporal structure at all by utilizing a single state HMM with a GMM 

observation model, as illustrated in Figure 2, which reduces it to a simple statistical classifier. 

Transitions may also be added so that some states may be skipped completely. This is particularly 

useful in terms of modeling beginning and ending silence regions within vocalizations. Simply by 

including extra beginning and ending states, arbitrary amounts of surrounding silence regions are 

implicitly included in the model and there is no need for precise segmentation of individual 

vocalization start and end points. Accommodating the presence of silence and pauses within 

vocalizations is another example of temporal nonlinearity that can be easily handled by the HMM 

framework but is extremely difficult to incorporate into template based models. 

2.2. GFCC/GPLP features 

Mel-Frequency Cepstral Coefficients (MFCCs) [27] and Perceptual Linear Prediction (PLP) 

coefficients [28] are well-established feature representations for human speech analysis and 

recognition tasks. Both of these are representations of the vocal tract spectrum incorporating 

perceptual models of the human auditory system. The MFCC approach warps the linear frequency axis 

to match the Mel-scale cochlear frequency map, while the PLP method uses critical band filters, equal-

loudness curve amplitude transformation, and cube-root power to intensity transformation. The use of 

MFCC and PLP coefficients have several beneficial characteristics and have been shown to be robust 

and highly effective for characterizing human speech for tasks such as speech and speaker recognition. 

These features, however, are specific to the human auditory system and need to be modified for 

application across a wider variety of animal species. 

The features used in this work are a generalization of the MFCC and PLP features [29] based on the 

work of Greenwood [30], who showed that many terrestrial and aquatic mammals have a logarithmic 

cochlear-frequency map. MFCCs have been generalized to Greenwood Function Cepstral Coefficients 

(GFCCs) by the use of the Greenwood frequency warping function. PLPs have been generalized to 

generalized perceptual linear prediction (gPLP) coefficients, constructed by substituting a species-

specific frequency warping function and equal loudness curve. It has been shown [10,31] that these 

generalized features are effective for acoustic pattern classification across a wide range of species and 

applications. The basic calculation method for GFCCs is to place triangular filters over the Fourier 

Transform of each frame, spaced according to the Greenwood frequency warping function, and then 

take the filter bank energies and use a Discrete Cosine Transform (DCT) to convert the filter bank 

energies into cepstral coefficients. In the experiments presented here, a 12-dimensional GFCC vector is 

used as the base feature, to which signal log energy is appended, after which velocity and acceleration 

coefficients (referred to as delta and delta-delta coefficients in the speech community) are calculated 

for each of the 13 original features, yielding an overall 39-element feature vector for each frame. In 

addition, the feature vectors are normalized using Cepstral Mean Subtraction (CMS), a common 

technique which simply subtracts the mean value across each vocalization. This compensates for fixed 

convolutional noise effects like microphone channel variation. 
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2.3. Language Models 

During the recognition process, multiple HMMs can be connected together to form recognition 

networks. In continuous speech recognition, the fundamental HMM units are often individual 

phonemes, so that this recognition network represents phoneme-to-word mappings (i.e., a dictionary), 

pronunciation variants, pauses between words or phonemes, and word-to-word transitions (i.e., a 

language model). The recognition network also offers a mechanism for directly incorporating language 

model probabilities. For bioacoustic tasks, this recognition network framework can be used to 

represent information about the specific number and types of vocalization sequences expected.  

Figure 3. HMM recognition networks. Each unit represents an individual HMM, with the 

overall network representing allowable HMM sequences (a) Isolated vocalization network, 

exactly one HMM per vocalization and one vocalization per recording (b) Isolated 

vocalization network incorporating a constrained language model (c) Constrained model 

with optional inter-syllable short pauses and beginning/ending silence regions (d) 
Transformation into continuous detection network. 

 
 

The flexibility of this framework is illustrated by the four different recognition networks shown in 

Figure 3. The first of these is just a simple single-vocalization classification network, where each 

HMM represents a vocalization pattern and there is exactly one vocalization per segmented file. The 

second adds substantial complexity, allowing repeated HMM sequences according to specific patterns. 

Here, each HMM would typically be a sub-vocalization unit (such as a syllable of a bird song). The 

third is similar to the second but adds optional short pauses between individual syllables as well as 

initial beginning and ending silence models for more robust alignment. The final network illustrates 

the addition of a feedback loop and an optional background noise model in parallel, which changes the 

individual vocalization recognition network into a continuous detection network that outputs both 
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recognized vocalizations and timestamps across an entire recording. Vocalization and language 

probabilities can also be incorporated into the network to maximize the effective detection probability. 

3. Experiments 

3.1. Asian Elephant (Elephas maximus): Repertoire Analysis 

Elephants are intelligent, long-living animals that live in a complex and fluid society in which 

several modes of communication play a role in maintaining group cohesion and social order, and in 

locating and assessing reproductive state of potential mates [32,33]. Although the social and behavioral 

contexts of Asian elephant communication signals are well studied [34-37], the study of the elephant 

vocal repertoire through categorization of call types by acoustic parameters is still needed as a basis for 

future research on individuality and for comparisons of acoustic communication among elephant 

species and populations [32]. McKay [38] described ten basic vocalizations for Asian elephants, 

divided into three major categories. However, only the low frequency rumble has been described by 

spectral and temporal features [39].  

This study focuses on call type classification for Asian elephant repertoire analysis and validation. 

Vocalizations were recorded from captive elephants housed at the Oregon Zoo in Portland, OR (USA) 

and from domesticated elephants in Thailand [40,41]. Vocalizations were collected in a variety of 

social contexts, time frames, and environmental noise conditions in both urban and rural settings. Data 

was recorded from seven known individuals and between 10 and 25 unknown individuals, at distances 

ranging from 1 to 100 meters. The primary sampling rate was 44.1 kHz, although a few calls were 

alternatively recorded at 32 kHz. Call types were manually classified using perceptual aural cues and 

visual inspection of spectrograms for differentiation of fundamental frequency contour, tonality, and 

signal duration. Glaeser et al. [40,41] defined an acoustic repertoire of Asian elephants based on 

acoustic parameters, and validated structural distinction among six basic call types (Bark, Roar, 

Rumble, Squeak, Squeal, and Trumpet) and the non-laryngeal Blow. In addition to these basic call 

types, five call combinations with these basic calls forming their constituent parts are defined (Roar-

Rumble, Squeal-Squeak, Squeak train, Squeak-Bark, and Trumpet-Roar). The frequency range of the 

signal energy ranges from 14 Hz up to 9 kHz, and call durations range from 0.1 to 14 seconds. 

Trumpets, Squeaks, Squeals have energy in the higher frequency range (54 Hz to 9 kHz) and are 

differentiated perceptually and through visual inspection by frequency modulation and duration. 

Rumbles, Roars, and Barks are limited to the lower frequency range (14 Hz to 5 kHz), and are 

differentiated by amplitude modulation and duration. A total of 2,044 vocalizations were manually 

segmented into all call categories. All vocalizations are included in the data set, regardless of signal 

degradation by noise or presence of overlapping signals.  

To maximize training set size given the limited number of examples, 5-fold cross validation is 

implemented. In the cross-validation methodology, the data set is divided into multiple equal subsets 

(five for this experiment), with one set used for testing and the remaining for training. The process is 

then repeated once for each test subset, so that each example is used as a test point exactly once.  

For analysis, GFCC features are extracted from the vocalizations using a moving Hamming window 

with a window size of 25 ms with 15 ms overlap. A 39 element feature vector (standard in human 
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speech recognition) is used, with 12 GFCC coefficients with cepstral mean normalization plus log-

energy, appended by velocity and acceleration, as described previously. The Greenwood frequency 

warping constants are calculated using 10 Hz−10 kHz to encompass the signal energy [40,41]. A total 

of 60 triangular filterbanks (more than is usually used in human speech) are spaced in accordance with 

the Greenwood warping function across that frequency range to guarantee enough filterbanks in the 

low frequencies, where a large amount of signal energy is located. One Hidden Markov Model is used 

to model each of the 11 different call types discussed above, with 12 emitting states per HMM and 

GMM state distributions with three Gaussian mixtures per state. A range of parameter variations was 

also implemented for comparative evaluation, with generally similar performance present across a 

broad range of states and mixtures. 

Table 1. Confusion matrix for 12 state HMM with 3 mixtures. Basic call types are shown 

in bold. BRK=Bark, RRM=Roar-Rumble, ROR=Roar, RUM=Rumble, SKC=SqueakTrain, 

SQG=Squeak-Bark, SQK=Squeak, SQL=Squeal, SQS=Squeak-Squeal, TMP=Trumpet, 

TRR=Trumpet-Roar. Overall accuracy is 60.1% (vs. chance accuracy 28.0%). 

 Classification 

BRK RRM ROR RUM SKC SQG SQK SQL SQS TMP TRR 

La
be

l 

BRK 42 0 10 20 0 0 1 5 0 6 0 

RRM 0 5 8 4 0 0 0 0 0 0 0 

ROR 21 5 134 32 0 0 0 11 2 8 0 

RUM 7 1 20 87 1 0 0 32 10 23 0 

SKC 0 0 2 0 64 5 0 10 22 3 0 

SQG 0 0 1 0 8 13 3 2 1 0 0 

SQK 11 0 0 5 26 2 253 16 11 7 0 

SQL 12 0 2 38 17 0 11 323 103 66 0 

SQS 0 0 0 7 26 4 13 75 75 1 0 

TMP 6 0 1 22 2 1 17 24 4 227 0 

TRR 0 0 0 0 0 0 0 1 1 0 4 

 

The confusion matrix over the full data set conditions, including all call types with all overlapping 

and noisy calls, are shown in Table 1. The overall accuracy for the full set is 60.1%. The pattern shown 

by the confusion matrix indicates that a significant number of the errors are made between highly 

confusable call types and between basic call types and their corresponding call-combinations. By 

roughly ordering the columns according to confusability between calls, similarity can be observed by 

looking along the diagonal for blocks with significant error rates. Some of these patterns are 

highlighted in the confusion matrix for reference. Similarity between RRM (Roar-Rumble) and RUM 

(Rumble) and to a lesser extent ROR (Roar) is noted, as well as substantial similarity between SQS 

(Squeak-Squeal) and SQL (Squeal). These similarities are expected because combination calls are 

made up of the basic call types with which they are confused, and the error patterns help confirm the 

repertoire categories. 
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More accurate classification is possible by including only the basic call types, and by excluding 

calls with high noise degradation and calls that overlap with other calls or sporadic sounds. This 

improvement is shown in Table 2, where the accuracy for a 12 state HMM classifier with three 

Gaussian mixtures is 85.0%, across 186 clean vocalizations. 

Table 2. Call type classification accuracy over reduced-set clean Asian Elephant data. 

Overall accuracy is 85.0% (vs. chance accuracy 32.8%). 

 Classification 

BRK ROR RUM SQK SQL TMP 

La
be

l 

BRK 15 0 0 0 4 3 

ROR 3 22 0 0 1 0 

RUM 1 2 4 0 0 1 

SQK 0 0 0 60 1 0 

SQL 0 1 0 1 26 2 

TMP 0 2 0 3 3 31 

 

3.2. Ortolan Bunting (Emberiza Hortulana): Syllable, Song Variant, and Song Type Classification 

The ortolan bunting is an endangered migratory passerine distributed from Western Europe to 

Mongolia [42], which has undergone a major population decline in recent years [43,44]. This bird 

vocalizes in a range between 1.9 kHz and 6.7 kHz and has a relatively simple song and a repertoire 

size that varies between just a few songs per individual to as many as 24 [45]. The ortolan bunting 

vocalizations examined for this study were collected from County Hedmark, Norway in May of 2001 

and 2002 [46]. The male vocalizations were recorded on 11 out of 25 sites within an area of  

about 500 km2. The total number of males in the covered area during 2001 and 2002 was 

approximately 150. As described by Osiejuk [46], these ortolan vocalizations were recorded  

between 04:00 and 11:00 am with a professional DAT recorder at the sampling rate of 48 kHz. 

Songs of ortolan buntings are composed of base units referred to as syllables. Each syllable is 

described using letter notation, as illustrated in Figure 4. Songs are categorized by song type, defined 

according to the general type of syllable pattern, and further into specific song variants, defined by 

exact repetition pattern. For example, common song types include ab, cd, and huf, with common song 

variants such as aaaab, aaaaabb, cccd, and hhhhuff. Although individual examples of syllables differ 

in length and frequency across individuals, they maintain the same sonogram shape and underlying 

temporal pattern.  
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Figure 4. Ortolan bunting syllables (from [46]). 

 
 

This study focuses on automatic song classification in the ortolan bunting. Modeling is done at the 

syllable level, so that each syllable type has a corresponding HMM, and then classifying into a syllable 

sequence to match individual songs with a specific song type and song variant.  

To evaluate classification accuracy using HMMs, a subset of 10 frequently produced call types is 

used, with 25 calls in each type used for training and 25 for testing, and data across multiple 

individuals included in both the training and test sets. The call types selected include ab, cb, cd, eb, ef, 

gb, guf, h, huf, and jufb, which consist of the ten common syllables a, b, c, d, e, f, g, h, j, and u. In addition 

a silence model is trained to represent beginning and ending silence and pauses between syllables. 

Due to substantial recording noise, all waveforms are enhanced using simple band-pass filtering to 

eliminate noise outside the active vocalization range (2,500 to 7,500 Hz) of these calls, followed by 

Ephraim-Malah filtering [18], a statistical signal enhancement method common in human speech 

processing applications. Analysis is then done using Hamming windows with a window size of 5 ms 

with 2.5 ms overlap, accounting for the much faster temporal patterns present in the bunting 

vocalizations as compared to the Asian elephants. Features for classification are the same 39 element 

GFCC feature vector described previously for the Asian elephant data, with a few minor differences. 

The main difference is that the lower and upper frequency limits of the Greenwood function used for 

frequency warping are adjusted to 2,500 and 7,500 Hz, respectively, to represent the frequency range 

of these calls. In addition, a simple baseline curve normalization is added to the log energy feature. 

This consists of performing a second order polynomial fit to the log energy curve for each song, then 

subtracting the baseline curve from the log energy on a per-frame basis. This is done because the 

amplitude of the individual syllables is commonly the loudest in the middle portion of calls, and the 

normalization compensates for the longer-term amplitude changes while still allowing shorter-term 

signal amplitude modulations to be represented by the energy feature and thus used for classification. 

Each syllable model consists of a 15 emitting state HMM with a single Gaussian, designed to track 

the time-evolution of each syllable’s frequency pattern. Multiple Gaussian mixtures are not necessary 



Algorithms 2009, 2                            

 

 

1421

because of the simplicity of the frequency characteristics along each step in the time-frequency pattern. 

Recognition is implemented using a constrained language model describing the allowable song 

patterns, as illustrated previously in Figure 3. 

Classification is evaluated in terms of song-type accuracy, syllable accuracy, and song-variant 

accuracy. Song-type and song-variant accuracy can be computed directly as the percent of songs with 

the correct classification. However, since there are multiple syllables in each song, syllable accuracy 

requires a detailed alignment process, where the recognized song is aligned against the correct song 

transcription and a dynamic programming method is used to determine the minimal number of 

insertions, deletions, and substitutions differentiating the recognized song or correct song [23]. Final 

results are shown in Table 3 below. In addition, Table 4 shows the increase in syllable accuracy as the 

various system improvements described above are added sequentially, including language modeling 

constraints, feature normalization and signal enhancement, short pause models between syllables, and 

energy normalization. It can be seen that language model constraints, feature normalization (which 

reduces individual vocal variability), and front-end signal enhancement each make very substantial 

contributions to accuracy improvement. 

Table 3. Song type, syllable, and song variant classification accuracy for overall system. 

Measure Accuracy 
Song Type 100% 
Syllable 97.5% 

Song Variant 77.6% 

 
Table 4. Increase in accuracy due to sequential system improvements. Constrained 

Recognition Network (CRN) refers to the song-type language model of Figure 3b. Cepstral 

Mean Subtraction (CMS) is feature normalization as described in Section 2.2. Signal 

Enhancement (SE) is Bandpass plus Ephraim-Malah filtering as described above. Short 

Pause (SP) is the song-type language model of Figure 3c, and Energy normalization (EN) 

is baseline curve energy normalization as described above. 

Methodology (15 state HMMs with 1 Gaussian) Syllable 
Accuracy 

Baseline 39 element feature vector  61.0% 
Baseline + CRN (Constrained Recognition Network ) 74.0% 
Baseline + CMS (Cepstral Mean Subtraction) 88.0% 
Baseline + CRN +CMS + SE  (Signal Enhancement) 95.9% 
Baseline + CRN + CMS + SE + SP (Short Pause) 96.7% 
Baseline + CRN + CMS + SE + SP + EN (Energy Normalization) 97.5% 

 

3.3. Chicken (Gallus Domesticus): Age-Dependent Stress Condition Classification 

Maintaining low-stress living conditions is extremely important to the care of domesticated poultry 

used for agricultural food production. However, currently the only clinical tool for directly measuring 

stress levels requires measuring hormonal indicators in blood samples, which itself stresses the 
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animals. This study is focused on investigating the correlation between vocalization patterns in 

agricultural chickens and various stress stimuli in this environment, for the purpose of assessing 

whether vocalizations could be reliably used as a stress indicator. Two separate stress-related task 

experiments are implemented, one focused on directly detecting living condition stress in vocalizations 

and one focused on evaluating the connection among stress induced by human presence, diet and age.  

Vocalizations were collected at the University of Connecticut Poultry Barn, which houses 25 

animals. A stationary microphone to which the animals were accustomed was used. Long (multiple-

minute) DAT recordings at a 44.1 kHz sampling rate were made after acclimatization to each condition 

under test, and then divided into 10 second duration segments for analysis and classification. The 

vocalizations used in these experiments vary from previous studies in that there are large numbers of 

individuals vocalizing simultaneously, so that individual vocalizations cannot be separated and there is 

no discernible time patterning. This is accommodated within the HMM framework by reducing the 

number of states to 1 because there is no time sequence to be modeled, and increasing the number of 

mixtures to 12 to get a finer resolution discrimination in terms of overall spectral characteristics across 

the population. Thus, the classification method is spectral as opposed to sequential, and the HMM 

approach becomes equivalent to a much simpler GMM statistical classifier. 

Feature extraction is again similar to that of the previous tasks, using a base 39-element GFCC 

feature vector, with Hamming frames of 25 ms each, frame overlap of 15 ms, and 26 filter banks for 

analysis. The lower and upper frequency limits are set to 125 Hz and 2,000 Hz [47], respectively, 

based on the approximate hearing range. However, the log energy coefficient is not included since 

there is no need for a loudness pattern due to the non-temporal model, and to avoid any bias that might 

be introduced by overall vocalization amplitude in different conditions, 

3.3.1. Age dependent living condition detection 

The goal of the first task is age-dependent living condition classification. Newly hatched chicks 

were recorded at the ages of 1, 2 and 3 months, in six different stress factor conditions. These 

conditions include: No stimulus (Control), Heat (H), Human Presence (HP), Heat + Human Presence 

(H + HP), Crowding (C), Heat + Crowding (H + C). The baseline Control condition was without any 

humans present and an ambient temperature of 60 degrees Fahrenheit, the Heat condition was 

conducted at an ambient temperature of 100 degrees Fahrenheit, the Human Presence condition was 

conducted with one individual present in the barn, and the Crowding condition was conducted with 

space per chicken reduced by 1/3 over standard recommended conditions. A total of 1,355 vocalization 

segments were recorded across the three age groups and six conditions.  

Classification is run over each age category separately using 10-fold cross validation. An example 

confusion matrix for the 3 month old data subset is shown in Table 6, and overall accuracies are given 

in Table 5. Chance accuracy in all cases is between 25−35%. The results suggest that vocalizations are 

affected by condition and also that vocal production patterns become more consistent over time. It can 

be seen that, as might be expected, the highest confusion is between conditions with overlapping 

stimuli, for example Heat vs. Heat + Human Presence vs. Heat + Crowding. Accuracy between the 

disjoint stimuli Heat, Human Presence, and Crowding is much higher.  
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Table 5. Sample condition classification confusion matrix, for 3 month old age group. 

Accuracy 72.4% (vs. chance accuracy 25.3%). 

 
Classification  

Control H HP H + HP C H + C 
La

be
l 

Control 97 0 2 0 0 0 

H 0 39 7 12 7 0 

HP 5 1 70 0 20 0 

H + HP 0 12 0 24 0 6 

C 7 2 2 0 34 1 

H + C 3 1 0 11 9 19 

 
Table 6. Overall 6 condition classification accuracy for 1, 2, and 3 month old age groups. 

 Accuracy 
1 month 60.5% 
2 months 62.0% 
3 months 72.4% 

 

To examine the change in vocalization patterns as a function of age, a cross testing experiment is 

done by training and testing on disjoint age groups. An example of these results, training on one month 

old data and testing on two and three month old data, is shown in Table 7. Accuracy drops in 

proportion to age differences between training and test set conditions, dropping from 60.5% within the 

same age group (from Table 6), to 49.1% on 2 month olds (a one month age differential), to 34.9% on 

3 months (a two month age differential).  

Table 7. Accuracy of 2 and 3 month old chick vocalizations using models trained on 1 

month old data. 

 Accuracy 
2 months 49.1% 
3 months 34.9% 

 

3.3.2. Stress and Diet detection 

A second study on poultry vocalizations is also implemented, focused on determining whether 

vocalization patterns could be used to differentiate dietary conditions (meat vs. vegetable fed), stress 

vs. nonstress conditions (human presence being the stress stimulus), and age of the animals  

(young, 0–4 weeks, vs. mature, 5−6 weeks).  

Results for stress classification are shown in Table 8. All accuracies are above 90%, and indicate 

that within these conditions, human presence stress is relatively easy to detect. The slightly higher 

accuracy for mature vocalizations may be simply correlated with age, in that vocalization patterns tend 

to be more stable and established in older individuals, or may be due to learned reactions or 

preferences.  
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Table 8. Stress (S) vs. Nonstress (NS) classification as a function of age and diet conditions. 
 

Meat fed 
0–4 weeks old 

98.6% 

Classification 

NS S 

La
be

l NS 176 0 

S 5 190 

 

Veg fed 
0–4 weeks old 

94.40% 

Classification 

NS S 

La
be

l NS 224 1 

S 22 164 
 

Meat fed 
5–6 weeks old 

100% 

Classification  

NS S 

La
be

l NS 72 0 

S 0 89 

 

Veg fed 
5–6 weeks old 

98.9% 

Classification  

NS S 

La
be

l NS 92 0 

S 2 82 

 
Table 9. Meat vs. Vegetarian diet classification as a function of age and stress conditions. 

 

Nonstress  
0-4 weeks old 

61.6% 

Classification 

Meat Veg 

La
be

l Meat 157 140 

Veg 24 106 

 

Stress  
0-4 weeks old 

69.6% 

Classification 

Meat Veg 

La
be

l Meat 128 46 

Veg 62 119 
 

Nonstress  
5-6 weeks old 

89.2% 

Classification 

Meat Veg 

La
be

l Meat 63 9 

Veg 9 85 

 

Stress  
5-6 weeks old 

78.4% 

Classification  

Meat Veg 

La
be

l 

Meat 71 19 

Veg 18 63 

 

In comparison, determining whether or not diet has impact on vocalization patterns is a much more 

difficult classification task. Table 9 presents the results on this question. The main observation is that 

diet does impact vocalization patterns with accuracies high enough to confirm significance in all cases. 

Additionally, it can be seen that the nonstressed condition vocalizations are much easier to 

discriminate than the stress condition vocalizations, and that more mature animals are easier to 

differentiate than young animals. This indicates that diet-related vocalization differences are 

diminished by stress but increase with age. Maximum accuracy, for mature animals in the nonstressed 

condition, are relatively easy to discriminate on the basis of diet, at 89.2%. Looking comprehensively 

at all the poultry experiments, the main overall conclusion is that while vocalization patterns increase 

in consistency and differentiability with age, stress conditions can be differentiated across all  

age levels. 
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4. Conclusions 

Overall, the experimental results show consistent performance across a diverse set of species and 

application tasks. The use of a robust automatic classification model can offer insight into repertoire 

variation, individual vocal variability, social context correlations, stress conditions, and many other 

important animal behavior questions. Hidden Markov Models, with a flexible recognition network 

topology and probabilistic framework for classification, coupled with generalized spectral features 

such as GFCCs for application across many species, offer an extremely robust and powerful 

framework for many bioacoustic applications. 
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