2,438 research outputs found

    An overview of the Amoeba distributed operating system

    Get PDF
    As hardware prices continue to drop rapidly, building large computer systems by interconnecting substantial numbers of microcomputers becomes increasingly attractive. Many techniques for interconnecting the hardware, such as Ethernet [Metcalfe and Boggs, 1976], ring nets [Farber and Larson, 1972], packet switching, and shared memory are well understood, but the corresponding software techniques are poorly understood. The design of general purpose distributed operating systems is one of the key research issues for the 1980s

    Distributed operating systems

    Get PDF
    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups.\ud \ud In this paper, an overview of recent research in distributed systems is given. In turn, the paper discusses overall system structure, protection issues, file system designs, problems and solutions for fault tolerance and a mechanism that is rapidly becoming very important for efficient distributed systems design: hints.\ud \ud An attempt was made to provide sufficient references to interesting research projects for the reader to find material for more detailed study

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Distributed debugging and tumult

    Get PDF
    A description is given of Tumult (Twente university multicomputer) and its operating system, along with considerations about parallel debugging, examples of parallel debuggers, and the proposed debugger for Tumult. Problems related to debugging distributed systems and solutions found in other distributed debuggers are discussed. The following are the main features of the debugger: it is event based, using a monitor for intercepting these events; record and reply are the main debugging techniques; preprocessing of events is done by programmable filters; the user interface is graphical, using grouping as the main abstraction mechanism. Parts of the debugger, as well as initial versions of the global and local event managers, have been implemented. A slow serial link between the front-end processor and the Tumult system has been replaced by a fast SCSI communication link. The user interface is partly textual, partly graphical. The languages used to implement the debugger are Modula-2 and C. The X Window System and OSF/Motif are used for the graphical user interfac

    On debugging in a parallel system

    Get PDF
    In this paper a description is given of a partly implemented parallel debugger for the Twente University Multicomputer (TUMULT). The system's basic method for exchange of data is message passing. Experience has learned that most programming errors in application software are made in calls to the kernel and the interprocess communication. The debugger is intended to be used for locating bugs at this level in the application software. It is assumed that basic blocks of the debuggee can be debugged using a traditional sequential sourcelevel debugger

    The Amoeba Distributed Operating System - A Status Report

    Get PDF
    As the price of CPU chips continues to fall rapidly, it will soon be economically feasible to build computer systems containing a large number of processors. The question of how this computing power should be organized, and what kind of operating system is appropriate then arises. Our research during the past decade has focused on these issues and led to the design of a distributed operating system, called Amoeba, that is intended for systems with large numbers of computers. In this paper we describe Amoeba, its philosophy, its design, its applications, and some experience with it. 1

    The Amoeba Distributed Operating System

    Get PDF
    corecore