43 research outputs found

    Group analysis of DTI fiber tract statistics with application to neurodevelopment

    Get PDF
    Diffusion tensor imaging (DTI) provides a unique source of information about the underlying tissue structure of brain white matter in vivo including both the geometry of major fiber bundles as well as quantitative information about tissue properties represented by derived tensor measures. This paper presents a method for statistical comparison of fiber bundle diffusion properties between populations of diffusion tensor images. Unbiased diffeomorphic atlas building is used to compute a normalized coordinate system for populations of diffusion images. The diffeomorphic transformations between each subject and the atlas provide spatial normalization for the comparison of tract statistics. Diffusion properties, such as fractional anisotropy (FA) and tensor norm, along fiber tracts are modeled as multivariate functions of arc length. Hypothesis testing is performed non-parametrically using permutation testing based on the Hotelling T2 statistic. The linear discriminant embedded in the T2 metric provides an intuitive, localized interpretation of detected differences. The proposed methodology was tested on two clinical studies of neurodevelopment. In a study of one and two year old subjects, a significant increase in FA and a correlated decrease in Frobenius norm was found in several tracts. Significant differences in neonates were found in the splenium tract between controls and subjects with isolated mild ventriculomegaly (MVM) demonstrating the potential of this method for clinical studies

    FADTTSter: Accelerating hypothesis testing with functional analysis of diffusion tensor tract statistics

    Get PDF
    Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC

    Brain maturation of newborns and infants

    Get PDF
    pre-printRecently, imaging studies of early human development have received more attention, as improved modeling methods might lead to a clearer understanding of the origin, timing, and nature of differences in neurodevelopmental disorders. Non-invasivemagnetic resonance imaging (MRI) can provide three-dimensional images of the infant brain in less than 20 minutes, with unprecedented anatomical details and contrast of brain anatomy cortical and subcortical structures and brain connectivity.1,2,3 Repeating MRI at different stages of development, e.g., in yearly intervals starting after birth, gives scientists the opportunity to study the trajectory of brain growth and compare individual growth trajectories to normative models. These comparisons become highly relevant in personalized medicine, where early diagnosis is a critical juncture for timing and therapy types

    Voxel-wise group analysis of DTI

    Get PDF
    pre-printDiffusion tensor MRI (DTI) is now a widely used modality to investigate the fiber tissues in vivo, especially the white matter in brain. An automatic pipeline is described in this paper to conduct a localized voxel-wise multiple-subject group comparison study of DTI. The pipeline consists of 3 steps: 1) Preprocessing, including image format converting, image quality check, eddy-current and motion artifact correction, skull stripping and tensor image estimation, 2) study-specific unbiased DTI atlas computation via affine followed by fluid nonlinear registration and warping of all individual DTI images into the common atlas space to achieve voxel-wise correspondence, 3) voxel-wise statistical analysis via heterogeneous linear regression and wild bootstrap technique for correcting for multiple comparisons. This pipeline was applied to process data from a fitness and aging study and preliminary results are presented. The results show that this fully automatic pipeline is suitable for voxel-wise group DTI analysis

    Evaluation of DTI property maps as basis of DTI atlas building

    Get PDF
    pre-printCompared to region of interest based DTI analysis, voxel-based analysis gives higher degree of localization and avoids the procedure of manual delineation with the resulting intra and inter-rater variability. One of the major challenges in voxel-wise DTI analysis is to get high quality voxel-level correspondence. For that purpose, current DTI analysis tools are building on nonlinear registration algorithms that deform individual datasets into a template image that is either precomputed or computed as part of the analysis. A variety of matching criteria and deformation schemes have been proposed, but often comparative evaluation is missing. In our opinion, the use of consistent and unbiased measures to evaluate current DTI procedures is of great importance and our work presents two possible measures. Specifically, we propose the evaluation criteria generalization and specificity, originally introduced by the shape modeling community, to evaluate and compare different DTI nonlinear warping results. These measures are of indirect nature and have a population wise view. Both measures incorporate information of the variability of the registration results in the template space via a voxel-wise PCA model. Thus far, we have used these measures to evaluate our own DTI analysis procedure employing fluid-based registration on scalar DTI maps. Generalization and specificity from tensor images in the template space were computed for 8 scalar property maps. We found that for our procedure an intensity-normalized FA feature outperformed the other scalar measurements. Also, using the tensor images rather than the FA maps as a comparison frame seemed to produce more robust results

    Connectivity-informed Sparse Classifiers for fMRI Brain Decoding

    Get PDF
    International audienceIn recent years, sparse regularization has become a dominant means for handling the curse of dimensionality in functional magnetic resonance imaging (fMRI) based brain decoding problems. Enforcing sparsity alone, however, neglects the interactions between connected brain areas. Methods that additionally impose spatial smoothness would account for local but not long-range interactions. In this paper, we propose incorporating connectivity into sparse classifier learning so that both local and long-range connections can be jointly modeled. On real data, we demonstrate that integrating connectivity information inferred from diffusion tensor imaging (DTI) data provides higher classification accuracy and more interpretable classifier weight patterns than standard classifiers. Our results thus illustrate the benefits of adding neurologically-relevant priors in fMRI brain decoding

    Constrained data decomposition and regression for analyzing healthy aging from fiber tract diffusion properties

    Get PDF
    pre-printIt has been shown that brain structures in normal aging undergo significant changes attributed to neurodevelopmental and neurodegeneration processes as a lifelong, dynamic process. Modeling changes in healthy aging will be necessary to explain differences to neurodegenerative patterns observed in mental illness and neurological disease. Driving application is the analysis of brain white matter properties as a function of age, given a database of diffusion tensor images (DTI) of 86 subjects well-balanced across adulthood.We present a methodology based on constrained PCA (CPCA) for fitting age-related changes of white matter diffusion of fiber tracts. It is shown that CPCA applied to tract functions of diffusion isolates population noise and retains age as a smooth change over time, well represented by the first principal mode. CPCA is therefore applied to a functional data analysis (FDA) problem. Age regression on tract functions reveals a nonlinear trajectory but also age-related changes varying locally along tracts. Four tracts with four different tensor-derived scalar diffusion measures were analyzed, and leave-one-out validation of data compression is shown

    TRAFIC: Fiber tract classification using deep learning

    Get PDF
    We present TRAFIC, a fully automated tool for the labeling and classification of brain fiber tracts. TRAFIC classifies new fibers using a neural network trained using shape features computed from previously traced and manually corrected fiber tracts. It is independent from a DTI Atlas as it is applied to already traced fibers. This work is motivated by medical applications where the process of extracting fibers from a DTI atlas, or classifying fibers manually is time consuming and requires knowledge about brain anatomy. With this new approach we were able to classify traced fiber tracts obtaining encouraging results. In this report we will present in detail the methods used and the results achieved with our approach

    A tract-specific approach to assessing white matter in preterm infants.

    Get PDF
    Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts
    corecore