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Abstract. It has been shown that brain structures in normal aging un-
dergo significant changes attributed to neurodevelopmental and neurode-
generation processes as a lifelong, dynamic process. Modeling changes in
healthy aging will be necessary to explain differences to neurodegenera-
tive patterns observed in mental illness and neurological disease. Driving
application is the analysis of brain white matter properties as a function
of age, given a database of diffusion tensor images (DTI) of 86 subjects
well-balanced across adulthood. We present a methodology based on con-
strained PCA (CPCA) for fitting age-related changes of white matter dif-
fusion of fiber tracts. It is shown that CPCA applied to tract functions
of diffusion isolates population noise and retains age as a smooth change
over time, well represented by the first principal mode. CPCA is therefore
applied to a functional data analysis (FDA) problem. Age regression on
tract functions reveals a nonlinear trajectory but also age-related changes
varying locally along tracts. Four tracts with four different tensor-derived
scalar diffusion measures were analyzed, and leave-one-out validation of
data compression is shown.

1 Introduction

Unlike earlier hypothesis that brain anatomy and major functions are pretty
much established after adolescence and would not change significantly until
late adulthood, there is increasing evidence of dynamic, lifelong changes of
brain structures and thus plasticity. To examine correlation of age-related brain
changes, volumetric measurements such as brain tissue [1] or cortical thickness [2]
were proposed. Regression on brain MRI has been used by Davis et al.. [3] to
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depict age-related shape and volume changes. White matter changes in diffusion
tensor imaging (DTI) due to aging were reported by analyzing changes of scalar
diffusion measures such as fractional anisotropy (FA) and mean diffusivity (MD)
in manually selected brain [4,5] or tract regions [6]. Analysis was most often per-
formed by regional measurements of FA or MD across different age groups, or by
linear regression of such measurements versus age. Whereas most of this previous
analysis uses manually selected regions of interest strategically placed in subre-
gions of known fiber tract locations, clinical research is often interested in the
analysis of whole fiber tracts associated with specific tasks or cognitive function.
Age-related changes of tract diffusion properties should therefore be represented
at various positions of tracts, informing researchers about anatomical location
and type of diffusion changes. This paper presents a methodology for age re-
gression of fiber tract diffusion properties. We follow the work of Goodlett et
al.[7] where fiber bundles are parametrized with arc-length and attributed with
local diffusion properties summarized across perpendicular cross-sections. These
parametrized representations with diffusion attributes can thus represented by
functions whose shape represents variation of diffusion as a function of locality,
f(s), with s = [0 . . . l]. Diffusion is a scalar derived from tensors, so that f(s)
can be a function of FA or MD, for example. Measuring such tract functions
from subjects with different age t results in a set of functions parametrized as
f(t, s). Using a constrained PCA technique (CPCA), we demonstrate how the
complex shape and time change information encoded in f(t, s) can be simplified
to a model where regression on one coefficient efficiently represents locality, type
and magnitude of age-related diffusion changes.

This paper is organized as follows: Section 2 describes the concept of con-
strained PCA. The processing pipelines for population-based segmentation of
fiber tracts and for analysis of age-related diffusion changes of tracts are de-
scribed in section 3. Section 4 summarizes results on several tracts from the
healthy aging study, followed by validation experiments (section 5).

2 Constrained Principal Component Analysis (CPCA)

Our problem is defined as follows: Given a set of parametrized functions of diffu-
sivity attributed with age, f(t, s), we would like to isolate the major systematic
change of functional shapes with respect to age from population noise. Such a
dimensionality reduction cannot be optimally achieved by principal component
analysis (PCA) since any decomposition to modes of major variability would
not consider the time attribute. We therefore fit the set of functions into a space
that is constrained to a smooth change with time. The first or first few of the
resulting coefficients can then be used for age regression via polynomial fit.

We propose the use of constrained Principal Component Analysis (CPCA)
[8,9] to perform data reduction that incorporates the age or time effect in the
observed data. For a set of discretized functions f(t, s) that represents the ob-
served population data at different points of time, we first construct a data
matrix Zt,s indexed by time t along the row and indexed by the tract spatial
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parametrization s along the column (as in standard PCA). CPCA linearly sepa-
rates the data matrix given multiple constraint variables or external information
about the structure of the data along the row or columns of the observations.
For constraint variables α1, · · · , αj , a data matrix M is rewritten as:

M = M̃(α1) + · · · + M̃(αj) + R (1)

where R is the residual data matrix. Unlike standard PCA, CPCA decom-
poses the individual data matrices for each constraint variable rather than the
original unconstrained data matrix. This ensures that the subspaces generated
by CPCA encode the effects of the constraint variables. In our tract analysis, we
have one constraint variable along the row (time) and Z can be formulated as:

Z = Z̃(t) + R (2)

where Z̃(t) is a projection of each individual function onto the space of poly-
nomials a0 + a1t + · · ·+ aktk that smoothly varies with time and R is the resid-
ual data matrix. We have chosen the projection to the space of polynomials
to constrain the analysis to changes that vary smoothly with time and exclude
noise and population variability. Given a matrix of polynomial basis functions
B and the matrix of polynomial coefficients that best fit the observed data C,
Z̃(t) = BC and Z = BC + R.

Within the constrained CPCA framework, all analysis of the diffusion prop-
erties is performed within the subspaces of the constrained data matrix BC and
we exclude the residual matrix to ensure that noise is not attributed as age effect.
A polynomial up to a degree 4 was used in our experiments.

3 Application to age-related white matter tract changes

Driving application: White matter change in healthy aging: We have access to
a database of high-resolution, 3-Tesla MR images of 100 healthy subjects aged
20 to 76, with 20 subjects per decade divided equally by gender. All subjects
are carefully screened for the presence of brain-related disease. Images acquired
include T1, T2, MRA, and diffusion tensor images. After screening for image
quality of successful DTI scans, 86 DTI could be selected for this study. DTI was
done on a Siemens Allegra 3T head-only scanner: One image without diffusion
gradients together with diffusion weighted images along six gradient directions
with a b-value of 850, repeated 2 times for averaging. TR/TE were 7500/73ms,
the matrix size was 64x64, and voxel resolution was isotropic with 2x2x2mm3.

Atlas building of tensor images: The images are initially aligned by affine reg-
istration of the non-diffusion weighted images to a template T2 (MNI) image
using mutual information, which ensures mapping into a normative brain space.
A scalar feature, the greatest eigenvalue of the Hessian of the FA image, is com-
puted for each subject [7]. A diffeomorphic, fluid registration is computed for
the set of feature images [10] using the affine alignment as an initalization. The
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result of the registration is a set of transformations that smoothly map each sub-
ject image into a common atlas coordinate system and can also be used to map
structures from the atlas back to each subject’s native space. All tensor images
deformed into the atlas space are averaged to produce a template tensor image
for the atlas, which is used to extract fiber tracts for the white matter structures
of interest. We extracted the four bundles genu, splenium, mid corpus callosum
(mid-cc) and motor-sensory via fiber tractography in atlas space to ensure corre-
spondence across subjects (Fig. 1 right), using a standard streamline integration
method. These tracts were then mapped back into each subjects native space to
obtain diffusion measures for that subject. This results in a set of tracts in the
atlas space with equivalent geometry but diffusion values extracted from each
subject. Validation and comparison to individual tractography has been done,
but space constraints prohibit inclusion in this paper. Since subjects have differ-
ent ages equally distributed between 19 and 68, we therefore get sets of functions
represented as f(t, s) with s representing parametrization by arc-length and t
subject age. The scalar diffusion measures f can be chosen as FA, MD (trace),
axial diffusivity (AD, λ1) and radial diffusivity (RD, (λ2 + λ3)/2).

CPCA on a set of functions: Figure 2 illustrates the example of FA of the mid-
cc tract represented by a set of functions coded with age. We can observe that
FA at the middle part close to the corpus callosum does not change strongly
with age but that the sidelobes, i.e. bundle locations close to the cortex, show
significant decrease of FA with age. The complexity of age change and the type
and amount of change at different tract locations are not visible due to large
population variability. We then applied constrained CPCA to the set FA(t, s)
in order to decrease dimensionality and determine major shape variation of the
FA functions with age. Standard PCA is applied for comparison.

Figure 3 illustrates results for PCA (top) and CPCA (bottom) for the mid-
cc tract. Plots in the left column show samples projected into the space of the
first two principal components and age. Samples are color-coded with age. As
expected, PCA does not present obvious structure versus age but CPCA results
in a low-dimensional continuous path for the 86 samples. The middle column
illustrates projection to only the first component versus age, with overlay of 4th-
order regression on age. Again, PCA does not depict a clear relationship to age,
but age regression of CPCA (middle, bottom) illustrates a nonlinear continuous
change with age, with large changes between age 20 and 30, than flattening
till age 50, and accelerated change thereafter. The right column displays the
FA tract functions reconstructed from the first component for all 86 subjects.
Unlike PCA, CPCA encodes age change of the FA functions, clearly visible as
the systematic age-sorted coloring of CPCA and random coloring of PCA.

Our main aim is a simplified model of changes of diffusion functions with
respect to age. As seen in Fig. 4(b) left for the mid-cc tract, most energy is
concentrated on the first component of CPCA. Moreover, age correlation is very
strong for the first component but nonsignificant for the others. PCA is shown for
comparison. We therefore chose to model the diffusion changes by age regression
within the subspace of only the first component. Here, we fit a polynomial up to
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Fig. 1. DTI population atlas: Left Tensor field of atlas computed over 86 sub-
jects: Middle: FA map calculated from tensor atlas. Right: Typical fiber bundles
used in this study. Mid corpus callosum, sensory-motor and genu tracts are
color-coded with FA, with [0 · · · 1] ranging from dark blue over yellow to red.

Fig. 2. Plot of all mid-cc tract functions of FA shaded by age (left) and 3D
representation of the age set sorted by age (young to old from right to left).

a b c

Fig. 3. Results of the analysis of FA of the mid-cc tract with standard PCA
(top) and constrained CPCA (bottom). Age is encoded in color. a) The first
two modes plotted against age. b) Only first mode versus age with overlay of
4th order age regression. c) FA functions of 86 subjects projected onto the first
component. Columns b and c demonstrate that data reduction by CPCA does
encode a strong age-related relationship not seen in PCA (see random coloring
in PCA versus age-sorted coloring in CPCA in column c).
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FA MD AD RD
(a) Reconstruction of diffusion properties of the mid-cc tract using polynomial age
fitting within the first subspace generated by CPCA. Age is encoded in different shades
of gray amd shown for years 20,30,40,50 and 60. We display the evolution of diffusion
properties as a function of age for FA, MD, AD and RD.

CPCA PCA

Mode %eval corr %eval corr

1 66.20 0.978 24.25 0.069
2 23.68 0.032 20.82 -0.496
3 7.78 0.020 12.86 0.145
4 2.33 0.203 10.81 -0.047

CPCA %eval

Mode FA MD AD RD

1 66.20 80.98 55.40 64.91
2 23.68 15.91 21.92 25.93
3 7.78 2.54 19.70 6.87
4 2.33 0.56 2.96 2.27

(b) Left: Normalized eigenvalues and age correlation of first four CPCA and PCA modes
on the set of functions of FA along the mid-cc tract, illustrating the stronger compres-
sion of CPCA but also concentration of age-correlation on the first component. Right:
Normalized eigenvalues of CPCA for FA, MD, AD and RD diffusion measures.

Fig. 4. Results of mid-cc tract for four different diffusion measures.

a degree 4 to the projections of the functions to the first component (see Fig. 3
column b). Using this polynomial fit, we can then reconstruct the expected
diffusion properties for each age in the range of interest. Fig. 4(a) illustrates the
reconstructions for ages 20,30,40,50 and 60 and for various diffusion properties
(FA, MD, AD, RD) along the mid-cc tract. Age is encoded using a gray-scale
color map. The figures show nonlinear differences across age and also variations
of change patterns as a function of tract location.

4 Results

The CPCA analysis has been applied to the major four fiber tracts genu, sple-
nium, mid-cc and motor-sensory. Fig. 5 displays age-related changes as calculated
for these four tracts. We illustrate the reconstructed diffusion functions of FA
and MD for age 20, 30, 40, 50 and 60, using projection onto the first CPCA
component and 4th-order regression. The plots clearly illustrate that the age-
related trajectory of white matter diffusion is nonlinear, i.e. different decades
present different changes, and second that diffusion changes vary significantly as
a function of tract location. FA in genu, splenium and mid corpus callosum, for
example, shows only minor age change in the center region but significant FA
decrease in the peripheral parts close to the cortex. The motor-sensory tract (arc-
length left to right presents superior to inferior tract location, see also Fig. 1)
also demonstrates age-changes of FA close to the cortex but large MD changes
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motor-sensory mid corpus callosum genu splenium

Fig. 5. Reconstructed functions of FA (top row) and MD (bottom row) for four
fiber tracts. Age is encoded as gray-scale for years 20, 30, 40, 50, and 60. Age-
correlation of CPCA was significant for all 4 tracts (0.93, 0.98, 0.85 and 0.95).

along the middle part between cortex and internal capsule. The splenium tract
showed much more population variability than the genu, which is reflected in
the MD analysis. Major conclusions related to the specific age study might be
too preliminary, but this discussion demonstrates how the results could be inter-
preted by clinical researchers. The caption in Fig. 5 also lists the age correlation
for the first component of CPCA which is highly significant for all 4 tracts.

5 Validation

We validate the choice of an age-constrained subspace by leave-one-out cross
validation. Given a set of N functions, we perform leave-one-out analysis by
excluding one function from the set followed by performing data reduction and
regression using the reduced set. We then project the one excluded function to
the computed first principal component, and compare the projected score against
the expected score from the polynomial fitting. We decided to use this approach
to validate the data reduction by projection to a lower dimensional subspace
and also the age-based fitting within this subspace. This analysis was performed
on the subspaces computed by CPCA and regular PCA. The values for the
average of the sumx|proj(x)− fit(x)|2 measure for motor-sensory, mid-cc, genu
and splenium are (0.01975, 0.02298, 0.01698, 0.03778) for CPCA and (0.02499,
0.03051, 0.02367, 0.12504) for PCA. As seen, the CPCA consistently provides
lower prediction error compared to the unconstrained PCA. The prediction error
for PCA is higher for the noisy diffusion data in the splenium tract.

6 Discussion

We present a methodology for analyzing age-related changes of white matter
measured along fiber tracts. The framework includes population-based map-
ping of DTI to a common coordinate space, tractography, and representation of
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tensor-derived scalar diffusion measures along tracts. CPCA constrained to age
is then applied to the sets of diffusion functions to reduce dimensionality to the
first principal mode. The PCA projections are performed on the curves recon-
structed from the polynomials. We thus enforce the dominant eigenvectors to
be strongly driven by time and not necessarily be the original eigenvectors. We
preferred this global approach versus regression at each spatial position to ac-
count for along-tract correlation. Results on major tracts demonstrate feasibility
and represent type of changes of FA and MD as reported elsewhere. However,
our preliminary analysis predicts that age changes might not be simplified to
linear regression but show more complex time and space variations. The strong
dimensionality reduction while still encoding age-related changes as a function of
tract location might be a benefit for biostatisical analysis. We plan to apply the
method to clinical studies of aging and early brain development, with testing for
group differences of change trajectories of white matter diffusion. A limitation
might be the independent analysis of tensor-derived diffusion parameters. In the
future, we will explore joint analysis of multiple features, e.g. FA and tensor
norm or AD and RD, or even full tensors.
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