146,675 research outputs found

    Inhibitory factors in cheese milk

    Get PDF
    Some milks were found to be inhibitory to one group of starters when tested by a 6 1/2 hour activity test, but the phenomenon was not evident when the same milk was tested by a 6 1/2 hour vitality test in which the milk is clotted with rennet. Comparison of these tests with actual vat workings at a commercial cheese factory showed that the results of vitality testing correlate well with acidity production in the vat. In contrast, the results obtained from the activity test are markedly affected by inhibitory factors in the milk and show no correlation whatever with vat workings, It is concluded that the activity test in pasteurized milk is a very unreliable measure of the ability of starter strains to work satisfactorily in the cheese vat and that the vitality test should be used for this purpose

    Calibration of cognitive tests to address the reliability paradox for decision-conflict tasks

    Get PDF
    Standard, well-established cognitive tasks that produce reliable effects in group comparisons also lead to unreliable measurement when assessing individual differences. This reliability paradox has been demonstrated in decision-conflict tasks such as the Simon, Flanker, and Stroop tasks, which measure various aspects of cognitive control. We aim to address this paradox by implementing carefully calibrated versions of the standard tests with an additional manipulation to encourage processing of conflicting information, as well as combinations of standard tasks. Over five experiments, we show that a Flanker task and a combined Simon and Stroop task with the additional manipulation produced reliable estimates of individual differences in under 100 trials per task, which improves on the reliability seen in benchmark Flanker, Simon, and Stroop data. We make these tasks freely available and discuss both theoretical and applied implications regarding how the cognitive testing of individual differences is carried out.</p

    Video streaming

    Get PDF
    B

    Group Testing with Probabilistic Tests: Theory, Design and Application

    Get PDF
    Identification of defective members of large populations has been widely studied in the statistics community under the name of group testing. It involves grouping subsets of items into different pools and detecting defective members based on the set of test results obtained for each pool. In a classical noiseless group testing setup, it is assumed that the sampling procedure is fully known to the reconstruction algorithm, in the sense that the existence of a defective member in a pool results in the test outcome of that pool to be positive. However, this may not be always a valid assumption in some cases of interest. In particular, we consider the case where the defective items in a pool can become independently inactive with a certain probability. Hence, one may obtain a negative test result in a pool despite containing some defective items. As a result, any sampling and reconstruction method should be able to cope with two different types of uncertainty, i.e., the unknown set of defective items and the partially unknown, probabilistic testing procedure. In this work, motivated by the application of detecting infected people in viral epidemics, we design non-adaptive sampling procedures that allow successful identification of the defective items through a set of probabilistic tests. Our design requires only a small number of tests to single out the defective items. In particular, for a population of size NN and at most KK defective items with activation probability pp, our results show that M=O(K2log(N/K)/p3)M = O(K^2\log{(N/K)}/p^3) tests is sufficient if the sampling procedure should work for all possible sets of defective items, while M=O(Klog(N)/p3)M = O(K\log{(N)}/p^3) tests is enough to be successful for any single set of defective items. Moreover, we show that the defective members can be recovered using a simple reconstruction algorithm with complexity of O(MN)O(MN).Comment: Full version of the conference paper "Compressed Sensing with Probabilistic Measurements: A Group Testing Solution" appearing in proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing, 2009 (arXiv:0909.3508). To appear in IEEE Transactions on Information Theor

    The meanings and consequences of educational assessments

    Get PDF

    Study of Optimal Perimetric Testing In Children (OPTIC): Normative visual field values in children

    Get PDF
    Purpose: We sought to define normative visual field (VF) values for children using common clinical test protocols for kinetic and static perimetry. Design: Prospective, observational study. Subjects: We recruited 154 children aged 5 to 15 years without any ophthalmic condition that would affect the VF (controls) from pediatric clinics at Moorfields Eye Hospital. Methods: Children performed perimetric assessments in a randomized order using Goldmann and Octopus kinetic perimetry, and Humphrey static perimetry (Swedish Interactive Thresholding Algorithm [SITA] 24-2 FAST), in a single sitting, using standardized clinical protocols, with assessment by a single examiner. Unreliable results (assessed qualitatively) were excluded from the normative data analysis. Linear, piecewise, and quantile mixed-effects regression models were used. We developed a method to display age-specific normative isopters graphically on a VF plot to aid interpretation. Main Outcome Measures: Summary measures and graphical plots describing normative VF data for 3 common perimetric tests. Results: Visual field area increased with age on testing with Goldmann isopters III4e, I4e, and I2e (linear regression; P < 0.001) and for Octopus isopters III4e and I4e (linear regression; P < 0.005). Visual field development occurs predominately in the infero-temporal field. Humphrey mean deviation (MD) showed an increase of 0.3 decibels (dB; 95% CI, 0.21-0.40) MD per year up to 12 years of age, when adult MD values were reached and thereafter maintained. Conclusions: Visual field size and sensitivity increase with age in patterns that are specific to the perimetric approach used. These developmental changes should be accounted for when interpreting perimetric test results in children, particularly when monitoring change over time
    corecore