2,633 research outputs found

    Applications of Factorization Theorem and Ontologies for Activity ModelingRecognition and Anomaly Detection

    Get PDF
    In this thesis two approaches for activity modeling and suspicious activity detection are examined. First is application of factorization theorem extension for deformable models in two dierent contexts. First is human activity detection from joint position information, and second is suspicious activity detection for tarmac security. It is shown that the first basis vector from factorization theorem is good enough to dierentiate activities for human data and to distinguish suspicious activities for tarmac security data. Second approach dierentiates individual components of those activities using semantic methodol- ogy. Although currently mainly used for improving search and information retrieval, we show that ontologies are applicable to video surveillance. We evaluate the domain ontologies from Challenge Project on Video Event Taxonomy sponsored by ARDA from the perspective of general ontology design principles. We also focused on the eect of the domain on the granularity of the ontology for suspicious activity detection

    Wavenet based low rate speech coding

    Full text link
    Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generative model and show that approximating the signal waveform incurs a large rate penalty. Our experiments confirm the high performance of the WaveNet based coder and show that the speech produced by the system is able to additionally perform implicit bandwidth extension and does not significantly impair recognition of the original speaker for the human listener, even when that speaker has not been used during the training of the generative model.Comment: 5 pages, 2 figure

    Bio-inspired Dynamic 3D Discriminative Skeletal Features for Human Action Recognition

    Full text link
    Over the last few years, with the immense popularity of the Kinect, there has been renewed interest in developing methods for human gesture and action recognition from 3D data. A number of approaches have been proposed that ex-tract representative features from 3D depth data, a recon-structed 3D surface mesh or more commonly from the re-covered estimate of the human skeleton. Recent advances in neuroscience have discovered a neural encoding of static 3D shapes in primate infero-temporal cortex that can be represented as a hierarchy of medial axis and surface fea-tures. We hypothesize a similar neural encoding might also exist for 3D shapes in motion and propose a hierarchy of dynamic medial axis structures at several spatio-temporal scales that can be modeled using a set of Linear Dynami-cal Systems (LDSs). We then propose novel discriminative metrics for comparing these sets of LDSs for the task of hu-man activity recognition. Combined with simple classifica-tion frameworks, our proposed features and corresponding hierarchical dynamical models provide the highest human activity recognition rates as compared to state-of-the-art methods on several skeletal datasets. 1

    Learning human actions by combining global dynamics and local appearance

    Get PDF
    In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods

    Overcoming Inter-Subject Variability in BCI Using EEG-Based Identification

    Get PDF
    The high dependency of the Brain Computer Interface (BCI) system performance on the BCI user is a well-known issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classification process and of the BCI protocol to maximize the BCI performance. In addition to this we present an algorithm for EEG-based identification designed to be resistant to variations in EEG recordings between sessions, which is also demonstrated by an experiment with an EEG database containing two sessions recorded one year apart. Further, our algorithm is designed to be compatible with our movement-related BCI device and the evaluation of the algorithm performance took place under conditions of a standard BCI experiment. Estimation of the mu rhythm fundamental frequency using the Frequency Zooming AR modeling is used for EEG feature extraction followed by a classifier based on the regularized Mahalanobis distance. An average subject identification score of 96 % is achieved

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications
    corecore