47 research outputs found

    Integrating Existing Software Toolkits into VO System

    Full text link
    Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and " Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.Comment: 9 pages, 3 figures, will be published in SPIE 2004 conference proceeding

    Service-oriented visualization applied to medical data analysis

    Get PDF
    With the era of Grid computing, data driven experiments and simulations have become very advanced and complicated. To allow specialists from various domains to deal with large datasets, aside from developing efficient extraction techniques, it is necessary to have available computational facilities to visualize and interact with the results of an extraction process. Having this in mind, we developed an Interactive Visualization Framework, which supports a service-oriented architecture. This framework allows, on one hand visualization experts to construct visualizations to view and interact with large datasets, and on the other hand end-users (e.g., medical specialists) to explore these visualizations irrespective of their geographical location and available computing resources. The image-based analysis of vascular disorders served as a case study for this project. The paper presents main research findings and reports on the current implementation status

    Utilising the grid for augmented reality

    Get PDF

    Methods and Distributed Software for Visualization of Cracks Propagating in Discrete Particle Systems

    Get PDF
    Scientific visualization is becoming increasingly important in analyzing and interpreting numerical and experimental data sets. Parallel computations of discrete particle systems lead to large data sets that can be produced, stored and visualized on distributed IT infrastructures. However, this leads to very complicated environments handling complex simulation and interactive visualization on the remote heterogeneous architectures. In micro-structure of continuum, broken connections between neighbouring particles can form complex cracks of unknown geometrical shape. The complex disjoint surfaces of cracks with holes and unavailability of a suitable scalar field defining the crack surfaces limit the application of the common surface extraction methods. The main visualization task is to extract the surfaces of cracks according to the connectivity of the broken connections and the geometry of the neighbouring particles. The research aims at enhancing the visualization methods of discrete particle systems and increasing speed of distributed visualization software. The dissertation consists of introduction, three main chapters and general conclusions. In the first Chapter, a literature review on visualization software, distributed environments, discrete element simulation of particle systems and crack visualization methods is presented. In the second Chapter, novel visualization methods were proposed for extraction of crack surfaces from monodispersed particle systems modelled by the discrete element method. The cell cut-based method, the Voronoi-based method and cell centre-based method explicitly define geometry of propagating cracks in fractured regions. The proposed visualization methods were implemented in the grid visualization e–service VizLitG and the distributed visualization software VisPartDEM. Partial data set transfer from the grid storage element was developed to reduce the data transfer and visualization time. In the third Chapter, the results of experimental research are presented. The performance of e-service VizLitG was evaluated in a geographically distributed grid. Different types of software were employed for data transfer in order to present the quantitative comparison. The performance of the developed visualization methods was investigated. The quantitative comparison of the execution time of local Voronoi-based method and that of global Voronoi diagrams generated by Voro++ library was presented. The accuracy of the developed methods was evaluated by computing the total depth of cuts made in particles by the extracted crack surfaces. The present research confirmed that the proposed visualization methods and the developed distributed software were capable of visualizing crack propagation modelled by the discrete element method in monodispersed particulate media

    Interactive Techniques in Grid Computing: A Survey

    Get PDF
    In Grid computing, the dominating paradigm is batch processing. Grid middleware ships with batch-job support only, while lacking support for interactive applications. The reason is that grid middleware was developed for computation-intensive jobs, which may run for a long time before a result becomes available. This leads to a ``post-mortem'' approach of analysing the output, possibly resulting in a waste of computing and research time. Adding the possibility to observe and steer the job during execution enables the researcher to modify job-parameters without restarting the entire job. In this paper, several interactivity support techniques are explored, followed by several examples proving their usefulness

    Interactive web-based visualization

    Get PDF
    The visualization of large amounts of data, which cannot be easily copied for processing on a user’s local machine, is not yet a fully solved problem. Remote visualization represents one possible solution approach to the problem, and has long been an important research topic. Depending on the device used, modern hardware, such as high-performance GPUs, is sometimes not available. This is another reason for the use of remote visualization. Additionally, due to the growing global networking and collaboration among research groups, collaborative remote visualization solutions are becoming more important. The additional use of collaborative visualization solutions is eventually due to the growing global networking and collaboration among research groups. The attractiveness of web-based remote visualization is greatly increased by the wide availability of web browsers on almost all devices; these are available today on all systems - from desktop computers to smartphones. In order to ensure interactivity, network bandwidth and latency are the biggest challenges that web-based visualization algorithms have to solve. Despite the steady improvements in available bandwidth, these improvements are still significantly slower than, for example, processor performance, resulting in increasing the impact of this bottleneck. For example, visualization of large dynamic data in low-bandwidth environments can be challenging because it requires continuous data transfer. However, bandwidth improvement alone cannot improve the latency because it is also affected by factors such as the distance between server and client and network utilization. To overcome these challenges, a combination of techniques is needed to customize the individual processing steps of the visualization pipeline, from efficient data representation to hardware-accelerated rendering on the client side. This thesis first deals with related work in the field of remote visualization with a particular focus on interactive web-based visualization and then presents techniques for interactive visualization in the browser using modern web standards such as WebGL and HTML5. These techniques enable the visualization of dynamic molecular data sets with more than one million atoms at interactive frame rates using GPU-based ray casting. Due to the limitations which exist in a browser-based environment, the concrete implementation of the GPU-based ray casting had to be customized. Evaluation of the resulting performance shows that GPU-based techniques enable the interactive rendering of large data sets and achieve higher image quality compared to polygon-based techniques. In order to reduce data transfer times and network latency, and improve rendering speed, efficient approaches for data representation and transmission are used. Furthermore, this thesis introduces a GPU-based volume-ray marching technique based on WebGL 2.0, which uses progressive brick-wise data transfer, as well as multiple levels of detail in order to achieve interactive volume rendering of datasets stored on a server. The concepts and results presented in this thesis contribute to the further spread of interactive web-based visualization. The algorithmic and technological advances that have been achieved form a basis for further development of interactive browser-based visualization applications. At the same time, this approach has the potential for enabling future collaborative visualization in the cloud.Die Visualisierung großer Datenmengen, welche nicht ohne Weiteres zur Verarbeitung auf den lokalen Rechner des Anwenders kopiert werden können, ist ein bisher nicht zufriedenstellend gelöstes Problem. Remote-Visualisierung stellt einen möglichen Lösungsansatz dar und ist deshalb seit langem ein relevantes Forschungsthema. Abhängig vom verwendeten Endgerät ist moderne Hardware, wie etwa performante GPUs, teilweise nicht verfügbar. Dies ist ein weiterer Grund für den Einsatz von Remote-Visualisierung. Durch die zunehmende globale Vernetzung und Kollaboration von Forschungsgruppen gewinnt kollaborative Remote-Visualisierung zusätzlich an Bedeutung. Die Attraktivität web-basierter Remote-Visualisierung wird durch die weitreichende Verfügbarkeit von Web-Browsern auf nahezu allen Endgeräten enorm gesteigert; diese sind heutzutage auf allen Systemen - vom Desktop-Computer bis zum Smartphone - vorhanden. Bei der Gewährleistung der Interaktivität sind Bandbreite und Latenz der Netzwerkverbindung die größten Herausforderungen, welche von web-basierten Visualisierungs-Algorithmen gelöst werden müssen. Trotz der stetigen Verbesserungen hinsichtlich der verfügbaren Bandbreite steigt diese signifikant langsamer als beispielsweise die Prozessorleistung, wodurch sich die Auswirkung dieses Flaschenhalses immer weiter verstärkt. So kann beispielsweise die Visualisierung großer dynamischer Daten in Umgebungen mit geringer Bandbreite eine Herausforderung darstellen, da kontinuierlicher Datentransfer benötigt wird. Dennoch kann die alleinige Verbesserung der Bandbreite keine entsprechende Verbesserung der Latenz bewirken, da diese zudem von Faktoren wie der Distanz zwischen Server und Client sowie der Netzwerkauslastung beeinflusst wird. Um diese Herausforderungen zu bewältigen, wird eine Kombination verschiedener Techniken für die Anpassung der einzelnen Verarbeitungsschritte der Visualisierungspipeline benötigt, angefangen bei effizienter Datenrepräsentation bis hin zu hardware-beschleunigtem Rendering auf der Client-Seite. Diese Doktorarbeit befasst sich zunächst mit verwandten Arbeiten auf dem Gebiet der Remote-Visualisierung mit besonderem Fokus auf interaktiver web-basierter Visualisierung und präsentiert danach Techniken für die interaktive Visualisierung im Browser mit Hilfe moderner Web-Standards wie WebGL und HTML5. Diese Techniken ermöglichen die Visualisierung dynamischer molekularer Datensätze mit mehr als einer Million Atomen bei interaktiven Frameraten durch die Verwendung GPU-basierten Raycastings. Aufgrund der Einschränkungen, welche in einer Browser-basierten Umgebung vorliegen, musste die konkrete Implementierung des GPU-basierten Raycastings angepasst werden. Die Evaluation der daraus resultierenden Performanz zeigt, dass GPU-basierte Techniken das interaktive Rendering von großen Datensätzen ermöglichen und eine im Vergleich zu Polygon-basierten Techniken höhere Bildqualität erreichen. Zur Verringerung der Übertragungszeiten, Reduktion der Latenz und Verbesserung der Darstellungsgeschwindigkeit werden effiziente Ansätze zur Datenrepräsentation und übertragung verwendet. Des Weiteren wird in dieser Doktorarbeit eine GPU-basierte Volumen-Ray-Marching-Technik auf Basis von WebGL 2.0 eingeführt, welche progressive blockweise Datenübertragung verwendet, sowie verschiedene Detailgrade, um ein interaktives Volumenrendering von auf dem Server gespeicherten Datensätzen zu erreichen. Die in dieser Doktorarbeit präsentierten Konzepte und Resultate tragen zur weiteren Verbreitung von interaktiver web-basierter Visualisierung bei. Die erzielten algorithmischen und technologischen Fortschritte bilden eine Grundlage für weiterführende Entwicklungen von interaktiven Visualisierungsanwendungen auf Browser-Basis. Gleichzeitig hat dieser Ansatz das Potential, zukünftig kollaborative Visualisierung in der Cloud zu ermöglichen

    Self-Adaptive Configuration of Visualization Pipeline Over Wide-Area Networks

    Full text link
    corecore