
Interactive Web-based Visualization

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Finian Mwalongo

aus Njombe, Tansania

Hauptberichter: Prof. Dr. Thomas Ertl
Mitberichter: Prof. Dr. sc. Filip Sadlo

Tag der mündlichen Prüfung: 11. Oktober 2018

Visualisierungsinstitut
der Universität Stuttgart

2018

Contents

Acknowledgments xi

Abstract xiii

German Abstract — Zusammenfassung xv

1 Introduction 1
1.1 Thesis Contributions . 3
1.2 Structure of the Thesis . 4

2 Fundamentals 7
2.1 Introduction to Data Visualization 7

2.1.1 Molecular Data Visualization 9
2.1.2 GPU-based Volume Visualization 11

2.2 OpenGL and WebGL Rendering 12
2.2.1 OpenGL Rendering Pipeline 13
2.2.2 WebGL Rendering Pipeline 14

2.3 Modern Browsers and HTML5 Technologies 16
2.4 Approaches for 3D Graphics in the Browser 19

3 Remote Visualization 23
3.1 Motivation . 23
3.2 Remote Rendering Approaches 25
3.3 Visualization as a Web Service 26
3.4 Scaling Server-side Infrastructure 29

3.4.1 Grid-based Visualization 29
3.4.2 Cloud-based Visualization 33
3.4.3 Design Considerations for Cloud-based

Visualization Service . 36
3.4.4 Resource and Data Management in the Cloud 38

3.5 Interactive Web-based Visualization 39
3.5.1 Data Encoding and Transfer Techniques 41
3.5.2 Local Rendering in the Browser 44

3.6 Web-based Visualization Applications 46
3.7 Conclusion and Challenges . 54

3.7.1 Conclusion . 54
3.7.2 Challenges . 56

4 GPU-based Molecular Data Visualization in the Browser 59

iii

Contents

4.1 GPU-based Ray Casting . 60
4.2 Acceleration Data Structures . 62
4.3 Implementation . 63
4.4 Results and Discussion . 66

5 GPU-based Remote Visualization of Dynamic Molecular Data on
the Web 73
5.1 Overview . 75
5.2 Implementation . 75

5.2.1 Data Encoding and Quantization 77
5.2.2 WebGL GPU-based Ray Casting 78
5.2.3 Triangle Rendering . 79
5.2.4 Deferred Shading . 81

5.3 Results and Discussion . 83
5.4 Conclusion . 87

6 Web-based Visualization of Bricked Volumetric Data with Levels
of Detail 89
6.1 Algorithmic Pipeline . 92
6.2 Implementation . 93

6.2.1 Server-side Brick Generation 93
6.2.2 Data Encoding and Transfer 94
6.2.3 Client-side Data Processing 94
6.2.4 Prioritization of Volume Bricks 95
6.2.5 Client-side Rendering using WebGL 97

6.3 Results and Discussion . 97
6.4 Summary and Conclusion . 102

7 Conclusion and Outlook 105
7.1 Conclusion . 105
7.2 Outlook . 108

7.2.1 Visualization as a Cloud Service 108
7.2.2 Collaborative Web-based Visualization 109

Bibliography 113

iv

List of Figures

Chapter 2

2.1 Visualization pipeline . 8
2.2 Example visualizations produced by some web-based molecular

visualization tools . 9
2.3 The volume ray marching rendering technique 12
2.4 Relationship between OpenGL, OpenGL ES and WebGL 13
2.5 A Simplified WebGL 2.0 rendering pipeline 14
2.6 Simplified OpenGL rendering pipeline 15
2.7 Client-side optimization technologies in the browser 17
2.8 Architecture of XML3D and X3DOM 20
2.9 Example of rendering simple 3D shapes using X3DOM library . . 21
2.10 Example visualizations of different datasets using X3DOM 22

Chapter 3

3.1 Grid-based visualization pipeline based on web services 30
3.2 GPU support in the cloud through virtualization software and

GPU passthrough Approaches . 35
3.3 Interactive visualization of the chaperonin complex 47
3.4 Visualization of molecular structures at interactive frame rates

using WebGL-based ray casting techniques 48
3.5 Example of medical volume rendering in WebGL using volume

ray marching . 49
3.6 Example of a web-based medical volume rendering 50
3.7 Examples of web-based information visualization using FluidDia-

grams . 50
3.8 Examples of web-based geospatial visualization applications 52
3.9 Examples of web-based 3D model visualizations 53

Chapter 4

4.1 Visualization of spacefilling model for proteins using our WebGL
glyph ray casting method . 61

4.2 Data structures for the grid that is used for ray casting the spheres 62
4.3 Server-side preprocessing . 63
4.4 Client-side preprocessing . 64

v

Figures

4.5 Fragment shader code for accessing voxel data from the grid data
structure . 65

4.6 Example visualizations generated by our GPU-based ray casting
technique . 67

4.7 Visualization of an insulin protein with a close-up view (PDB ID:
1RWE, 823 atoms) . 67

4.8 Volume rendering of an insulin protein (PDB ID: 1RWE) combined
with a triangulated Cartoon representation 70

Chapter 5

5.1 Our application architecture . 76
5.2 Memory layout for the data buffer sent by the server 77
5.3 The visualization of the capsid of a papillomavirus (PDB ID: 3IYJ)

consisting of 1.3 million atoms . 80
5.4 GPU-based sphere ray casting combined with triangle rendering . 81
5.5 Different postprocessing effects via deferred shading 82

Chapter 6

6.1 Algorithmic pipeline of our client - server architecture for the
bricked volume rendering . 91

6.2 Memory layout for brick data serialization between server and client 93
6.3 Effects of importance-based prioritization of bricks 96
6.4 Different snapshots of the bricked volume rendering method show-

ing the aneurism data set at different levels of detail 98
6.5 Visualization of an hazelnuts volume data set using maximum

intensity projection . 99
6.6 Transfer and decompression times for the Hazelnut data set 100
6.7 Performance of the WebGL volume renderer for different data sets

and rendering technique . 101
6.8 Visualization of the engine volume data set using a transfer function 102
6.9 Visualization of the flower data set with 10243 voxels using a

transfer function . 103

vi

List of Tables

Chapter 4

4.1 Performance measurements for the client-side preprocessing and
the server-side preprocessing . 66

Chapter 5

5.1 The systems used for performance measurement including their
specifications . 83

5.2 Performance results showing Transfer times for the Laptop client
machine for various molecules in both LAN and WiFi network
environments . 84

5.3 Rendering performance of the GPU ray casting in frames per
second for various molecules using the PC and Laptop client machines 84

5.4 Rendering performance of the GPU ray casting in frames per sec-
ond of various molecules using the PC and Laptop client machines
with the optimized data layout . 86

vii

List of Abbreviations and Acronyms
CPU Central Processing Unit
GPGPU General-Purpose Computation on Graphics Processing Units
GPU Graphics Processing Unit
API Application Programming Interface
WebGL Web Graphics Library
VTK Visualization Toolkit
GVK Grid Visualization Kernel
vGPU Virtual Graphics Processing Unit
LOD Level of Detail
OpenGL Open Graphics Library
FPS Frames Per Second
PCIe PCI Express—Peripheral Component Interconnect Express

ix

Acknowledgments
First and foremost, I thank God for the gift of life and good health, without
which nothing could have been done. I am extremely grateful to my supervisor,
Thomas Ertl for accepting to supervise my thesis and for his constant and
dedicated support through out my PhD work. It is this quality supervision and
support that has made it possible to bring this work to a successful end. I feel
indebted and will always remain grateful. I also thank Filip Sadlo for accepting
to serve as an external examiner for my thesis.

I thank Guido Reina for the support and collaboration that we had. Many
thanks to Michael Krone for being a great officemate and collaborator. Through
these collaborations, I have learnt a lot. I also thank Grzegorz Karch and
Michael Becher who collaborated with me on some projects.

I thank all my officemates and colleagues at VISUS and VIS for being very
kind and supportive. In a special way, I should mention Gustavo Machado
for his great friendship and Christoph Müller for his help with printing my
dissertation.

I thank the DAAD for granting me a scholarship to pursue my studies in
Germany and Dar es Salaam Institute of Technology for granting me a study
leave and for financial support.

It would have been difficult to reach this far without the support of my best
friend and wife, Angelina. Thank you for your understanding, prayers, and the
sacrifices that you had to make just to ensure that I have full peace of mind to
concentrate on my research. May God bless you abundantly.

I also acknowledge all the support that I received from my family and friends.
Every one in his or her own way helped to propel me forward.

xi

Abstract

The visualization of large amounts of data, which cannot be easily copied for
processing on a user’s local machine, is not yet a fully solved problem. Remote
visualization represents one possible solution approach to the problem, and
has long been an important research topic. Depending on the device used,
modern hardware, such as high-performance GPUs, is sometimes not available.
This is another reason for the use of remote visualization. Additionally, due
to the growing global networking and collaboration among research groups,
collaborative remote visualization solutions are becoming more important. The
additional use of collaborative visualization solutions is eventually due to the
growing global networking and collaboration among research groups.

The attractiveness of web-based remote visualization is greatly increased by
the wide availability of web browsers on almost all devices; these are available
today on all systems—from desktop computers to smartphones. In order to
ensure interactivity, network bandwidth and latency are the biggest challenges
that web-based visualization algorithms have to solve. Despite the steady
improvements in available bandwidth, these improvements are still significantly
slower than, for example, processor performance, resulting in increasing the
impact of this bottleneck. For example, visualization of large dynamic data in
low-bandwidth environments can be challenging because it requires continuous
data transfer. However, bandwidth improvement alone cannot improve the
latency because it is also affected by factors such as the distance between server
and client and network utilization.

To overcome these challenges, a combination of techniques is needed to cus-
tomize the individual processing steps of the visualization pipeline, from
efficient data representation to hardware-accelerated rendering on the client
side. This thesis first deals with related work in the field of remote visualization
with a particular focus on interactive web-based visualization and then presents
techniques for interactive visualization in the browser using modern web stan-
dards such as WebGL and HTML5. These techniques enable the visualization
of dynamic molecular data sets with more than one million atoms at interactive
frame rates using GPU-based ray casting. Due to the limitations which exist in a
browser-based environment, the concrete implementation of the GPU-based ray
casting had to be customized. Evaluation of the resulting performance shows
that GPU-based techniques enable the interactive rendering of large data sets
and achieve higher image quality compared to polygon-based techniques.

In order to reduce data transfer times and network latency, and improve ren-
dering speed, efficient approaches for data representation and transmission are

xiii

Abstract

used. Furthermore, this thesis introduces a GPU-based volume-ray marching
technique based on WebGL 2.0, which uses progressive brick-wise data trans-
fer, as well as multiple levels of detail in order to achieve interactive volume
rendering of datasets stored on a server.

The concepts and results presented in this thesis contribute to the further
spread of interactive web-based visualization. The algorithmic and technolo-
gical advances that have been achieved form a basis for further development
of interactive browser-based visualization applications. At the same time, this
approach has the potential for enabling future collaborative visualization in the
cloud.

xiv

German Abstract
—Zusammenfassung—

Die Visualisierung großer Datenmengen, welche nicht ohne Weiteres zur Ver-
arbeitung auf den lokalen Rechner des Anwenders kopiert werden können,
ist ein bisher nicht zufriedenstellend gelöstes Problem. Remote-Visualisierung
stellt einen möglichen Lösungsansatz dar und ist deshalb seit langem ein
relevantes Forschungsthema. Abhängig vom verwendeten Endgerät ist moderne
Hardware, wie etwa performante GPUs, teilweise nicht verfügbar. Dies ist
ein weiterer Grund für den Einsatz von Remote-Visualisierung. Durch die
zunehmende globale Vernetzung und Kollaboration von Forschungsgruppen
gewinnt kollaborative Remote-Visualisierung zusätzlich an Bedeutung.

Die Attraktivität web-basierter Remote-Visualisierung wird durch die weitrei-
chende Verfügbarkeit von Web-Browsern auf nahezu allen Endgeräten enorm
gesteigert; diese sind heutzutage auf allen Systemen – vom Desktop-Computer
bis zum Smartphone – vorhanden. Bei der Gewährleistung der Interaktivität
sind Bandbreite und Latenz der Netzwerkverbindung die größten Heraus-
forderungen, welche von web-basierten Visualisierungs-Algorithmen gelöst
werden müssen. Trotz der stetigen Verbesserungen hinsichtlich der verfügbaren
Bandbreite steigt diese signifikant langsamer als beispielsweise die Prozessor-
leistung, wodurch sich die Auswirkung dieses Flaschenhalses immer weiter
verstärkt. So kann beispielsweise die Visualisierung großer dynamischer Daten
in Umgebungen mit geringer Bandbreite eine Herausforderung darstellen,
da kontinuierlicher Datentransfer benötigt wird. Dennoch kann die alleinige
Verbesserung der Bandbreite keine entsprechende Verbesserung der Latenz
bewirken, da diese zudem von Faktoren wie der Distanz zwischen Server und
Client sowie der Netzwerkauslastung beeinflusst wird.

Um diese Herausforderungen zu bewältigen, wird eine Kombination ver-
schiedener Techniken für die Anpassung der einzelnen Verarbeitungsschritte
der Visualisierungspipeline benötigt, angefangen bei effizienter Datenrepräsen-
tation bis hin zu hardware-beschleunigtem Rendering auf der Client-Seite. Diese
Doktorarbeit befasst sich zunächst mit verwandten Arbeiten auf dem Gebiet der
Remote-Visualisierung mit besonderem Fokus auf interaktiver web-basierter Vi-
sualisierung und präsentiert danach Techniken für die interaktive Visualisierung
im Browser mit Hilfe moderner Web-Standards wie WebGL und HTML5. Diese
Techniken ermöglichen die Visualisierung dynamischer molekularer Daten-
sätze mit mehr als einer Million Atomen bei interaktiven Frameraten durch
die Verwendung GPU-basierten Raycastings. Aufgrund der Einschränkungen,
welche in einer Browser-basierten Umgebung vorliegen, musste die konkrete

xv

German Abstract — Zusammenfassung

Implementierung des GPU-basierten Raycastings angepasst werden. Die Evalu-
ation der daraus resultierenden Performanz zeigt, dass GPU-basierte Techniken
das interaktive Rendering von großen Datensätzen ermöglichen und eine im
Vergleich zu Polygon-basierten Techniken höhere Bildqualität erreichen.

Zur Verringerung der Übertragungszeiten, Reduktion der Latenz und Verbes-
serung der Darstellungsgeschwindigkeit werden effiziente Ansätze zur Daten-
repräsentation und übertragung verwendet. Des Weiteren wird in dieser Dok-
torarbeit eine GPU-basierte Volumen-Ray-Marching-Technik auf Basis von We-
bGL 2.0 eingeführt, welche progressive blockweise Datenübertragung verwen-
det, sowie verschiedene Detailgrade, um ein interaktives Volumenrendering
von auf dem Server gespeicherten Datensätzen zu erreichen.

Die in dieser Doktorarbeit präsentierten Konzepte und Resultate tragen zur
weiteren Verbreitung von interaktiver web-basierter Visualisierung bei. Die
erzielten algorithmischen und technologischen Fortschritte bilden eine Grund-
lage für weiterführende Entwicklungen von interaktiven Visualisierungsan-
wendungen auf Browser-Basis. Gleichzeitig hat dieser Ansatz das Potential,
zukünftig kollaborative Visualisierung in der Cloud zu ermöglichen.

xvi

C
h

a
p

t
e

r

1
Introduction

Visualization has established itself as a critical component in the data anal-
ysis pipeline. Large data sets from scientific experiments, medical scanners,
sensors, and numerical simulations are hard to understand without the aid of
visualization tools. Normally a user (typically a scientist or an engineer) would
download data to his or her PC to visualize the data using a desktop-based
visualization tool. However, this work flow is becoming infeasible due to in-
creasingly large data sets that are difficult or impossible to move. This has
been due to technological advancements in computing power that have enabled
complex problems and high resolution models to be simulated, thus generating
huge amounts of data. Additionally, these data may be stored in machines that
are distributed, for example, in a cluster, grid, or cloud. The main challenge
for visualization tools is how to visualize and gain insight from these data.
Another challenge is the trend towards collaborative research involving teams
that are geographically distributed but working on a single problem. These
researchers could benefit from visualization tools that can be accessible easily
without requiring installation of software in the machine of each member, who
may be using different computing platforms.

In response to these challenges, researchers have looked at remote visualization
as a viable approach for addressing the problems of large data visualization.
Different client-server approaches have been proposed, which will be discussed
in detail in chapter 2 and chapter 3.

On the server side, computing cluster, grids, and recently clouds have been
exploited to scale the visualization algorithms. On the client side, browser-based

2 Chapter 1 ● Introduction

techniques have also received considerable attention due to their ubiquity and
being cross-platform. These attributes make browsers important because of
their potential to alleviate problems associated with software maintenance that
sometimes take up much research time. Additionally, the browser can be used
as a deployment platform for collaborative visualization tools.

Despite these attractive features, until recently, lack of powerful browser tech-
nologies was a limiting factor for interactive visualization. Due to this limitation,
early approaches in web-based visualization have relied on server-side render-
ing and used the browser for displaying the rendered images.

Another factor that has motivated server-side rendering has been lack of power-
ful computational resources on the client. However, this approach suffers from
limited network bandwidth and latency issues. These two factors are critical for
interactive visualization. By rendering the images on the server, any changes on
rendering or visualization parameters on the client have to be sent to the server
to generate a new image, thus incurring round-trip network latency.

In order to achieve high-performance interactive visualization, minimizing
latency is important. The best approach to achieve this, is to perform rendering
on the client machine. This is because rendering is a critical step in the visual-
ization pipeline for interactive visualization. By rendering the data on the client,
the generation of a new image does not require a round trip to the server that
would increase both network bandwidth and latency. Other approaches have
attempted to use plugins to circumvent browser limitations in order to provide
interactivity with limited success due to browser compatibility problems and
potential security dangers that they pose [Heule et al., 2015; Labour et al., 2013;
Carlini et al., 2012].

Recent advances in web technologies like HTML5 [W3C, 2017] and
WebGL [Khronos, 2013, 2011b] combined with improvements in mobile hard-
ware has brought a renewed interest in interactive web-based visualization.
By providing GPU-access in the browser through WebGL, visualization tech-
niques that were only confined to the desktop platforms can be deployed on
the browsers and benefit from its ubiquity and leverage other web standards
that have led to the success of the web as a global distributed system.

JavaScript, the programming language of the web, has also improved signif-
icantly in terms of performance by employing just-in-time (JIT) compilation
techniques that have largely narrowed the performance gap with the native
compiled languages [Jeon and Choi, 2012; Gal et al., 2009].

The availability of the browser in a wide range of devices from smartphones
and tablets over laptops equipped with multi-core CPUs and GPUs rivaling
those found on desktops of few years ago, to desktops, provide a common

1.1 ● Thesis Contributions 3

platform for harnessing the power of these distributed and mobile computing
resources.

Current visualization techniques exploit the highly parallel processing power
of GPUs to achieve high performance rendering for large datasets. For example,
GPU-based ray casting is considered the state-of-the-art technique for molecu-
lar visualization [Grottel et al., 2015]. This technique allows the rendering of
implicitly defined surfaces on the GPU instead of generating corresponding
geometry. It achieves high interactive frame rates even for very large molecules
and generates high-quality images compared to polygon-based rendering tech-
niques. Another advantage is, that it is less demanding in terms of memory
bandwidth because it requires only the parameters defining the implicit surface
to be uploaded to the GPU.

Although many web-based visualization tools that exploit HTML5 and WebGL
have been introduced, they often still rely on polygon rendering techniques. For
example, most existing web-based protein viewers use triangulation techniques
to approximate the spherical surface patches, thus limiting the quality of images
rendered and visualization of molecules with only small number of atoms [Li
et al., 2014; Rego and Koes, 2015; Pettit and Marioni, 2013; JSmol, 2013]. Sup-
porting visualization of large dynamic datasets becomes even more challenging
with this approach, as huge amount of triangles create huge demand for storage
and bandwidth.

This thesis demonstrates the feasibility of visualizing large dynamic datasets
in the browser by leveraging modern web technologies and using GPU-based
ray casting techniques without the use of plugins. Implementations of these
techniques use molecular data from the protein data bank [Berman et al., 2000]
for static data and from molecular simulations for dynamic data. Furthermore,
the thesis demonstrates the feasibility of web-based volume rendering using
multi-resolution and bricked volume representation with importance-based
data transfer allowing progressive visualization of volumetric datasets in the
browser.

1.1 Thesis Contributions

The main contribution of this thesis is the application of GPU-based ray cast-
ing techniques combined with modern web technologies to enable interactive
visualization of large dynamic molecular data and the use of a combined
multi-resolution and bricked volume data representation for interactive volume
rendering in the browser. Specifically, the thesis

• introduces GPU-based ray casting techniques for interactive visualization

4 Chapter 1 ● Introduction

of large dynamic molecular data tailored to the specific restrictions of the
browser environment,

• presents and discusses performance results that demonstrate the feasibility
of visualizing large dynamic molecular data at interactive frame rates in
the browser,

• describes the implementation of GPU-based ray casting with a 3D uniform
grid-based acceleration structure in a WebGL 1.0 environment with limited
hardware capabilities like lack of 3D textures and fragment depth writes,

• describes the implementation of progressive rendering of large volu-
metric data using bricked multi-resolution volume representation and
importance-based data transfer in the browser.

1.2 Structure of the Thesis

This section gives an overview of the structure of this thesis and summarizes
the contributions of the author to the discussed publications. All subsequent
publications were co-authored by the author’s PhD advisor Thomas Ertl. Unless
noted otherwise, the co-authors mentioned below were affiliated with the
Visualization Research Center of the University of Stuttgart (VISUS) at the time
of the collaboration.

Chapter 2 introduces several topics that are important for understanding the
thesis. Since most of the implementations in this thesis have used molecular and
volumetric data, introduction to both molecular and volumetric data visualiza-
tion is given. HTML5, WebGL, and other important web technologies that have
been used to implement the techniques described in this thesis are also briefly
discussed. The chapter then discusses the WebGL rendering pipeline. Finally,
declarative and imperative approaches to 3D web graphics are presented.

Chapter 3 gives an overview of previous work in the area of remote visualiza-
tion focusing on web-based, grid-based, and cloud-based visualization, and
web services. Since computing resources employed in remote visualization are
distributed and heterogeneous, research on this topic has also attempted to
apply the concept of web services to visualization in these computing environ-
ments. This chapter is based on a survey paper [Mwalongo et al., 2016b], for
which the author of this thesis selected the literature and wrote major parts of
the text. The chapter discusses both early approaches using SOAP-based web
services and the recent trend towards RESTful web services. It also discusses
efficient data encoding and transfer techniques for interactive web-based vi-
sualization. Local rendering in the browser covering polygon rendering and
GPU-ray casting rendering approaches are also discussed. Finally, the chapter

1.2 ● Structure of the Thesis 5

introduces visualization applications in various domains including volume,
geospatial, particle, and information visualization.

Chapter 4 addresses the problem of visualizing large static molecular datasets
in the browser using GPU-based ray casting. It uses a 3D uniform acceleration
data structure to speed-up ray-sphere intersections. Different approaches for
generating the acceleration structure on the client side and on the server are
implemented and their performance evaluated. Implementation details to
circumvent the limitations of WebGL are also presented. Finally, the chapter
discusses rendering and data transfer performance results. The results presented
in this chapter were published at the Web3D conference [Mwalongo et al., 2014].
The project was a joint work between the author of this thesis and Michael Krone,
Guido Reina, Michael Becher and Grzegorz Karch. The author of this thesis
was the lead author of the paper and contributed major parts of the prototype
implementation used for testing. The volume rendering was contributed by
Michael Becher as part of his bachelor thesis, which was supervised by Grzegorz
Karch and the author of this thesis.

Chapter 5 presents new techniques for the visualization of large dynamic
molecular datasets in the browser. It discusses efficient data encoding and
transfer techniques that save bandwidth and minimize client side decoding
time. To further reduce the amount of data transferred, quantization techniques
for atom and vertex data are introduced. The chapter shows how different
web technologies including web workers, typed arrays, and web sockets can
be combined with WebGL to enable interactive rendering of large molecules
with over one million atoms. Finally, the chapter presents rendering and data
transfer performance results in both LAN and WiFi environments for various
molecular trajectories. The results discussed in this chapter were published
at the Web3D conference [Mwalongo et al., 2015] and an extended version of
the paper was invited to a journal [Mwalongo et al., 2016a]. The project was a
joint work between the author of this thesis and Michael Krone, Guido Reina,
and Michael Becher. The author of this thesis was the lead author of the paper
and contributed major parts of the implementation of the prototype used for
testing.

Chapter 6 discusses web-based volume rendering based on progressive impor-
tance-based data transfer. The implementation uses a bricked multi-resolution
volumetric data representation. The technique allows users to start viewing
bricks of high importance based on user-defined importance criteria. Low-
resolution brick data are given high importance to allow them to be downloaded
first. These brick data are rendered immediately as they are received thus
allowing the user to view a low-resolution image that gets refined as the high-
resolution brick data are being downloaded asynchronously in a background

6 Chapter 1 ● Introduction

thread. This way the latency is minimized. Optional compression can be used
to further reduce the amount of transferred brick data. To achieve efficient data
transfer and decoding times on the client, an efficient binary serialization format
for volumetric data is introduced. Finally, the chapter presents and discusses
the data transfer and rendering performance results for various volume datasets.
The project and the resulting VMV publication [Mwalongo et al., 2018] was a
joint work between the author of this thesis and Michael Krone, and Guido
Reina. The author of this thesis contributed to the idea of using levels of detail
and progressive data transfer to address the problem of latency for interactive
rendering volumetric data in the browser, and implemented major parts of the
prototype used for testing. The idea was further refined by Michael Krone and
Guido Reina by introducing bricking and importance-based progressive data
transfer.

Chapter 7 sums up the main conclusions of the thesis and provides an outlook
for interactive web-based visualization focusing on the role of cloud computing,
web services, and modern web technologies for supporting geographically
distributed collaborative visualization services and automated scientific work
flows that integrate visualization services with other tools to simplify large data
analysis.

C
h

a
p

t
e

r

2
Fundamentals

This chapter introduces several topics that are important for understanding the
following chapters. First, an introduction to data visualization is given. Since
most of the implementations in this thesis have used molecular and volumetric
data, the chapter next gives an introduction to both molecular and volumetric
data visualization. There after HTML5, WebGL, and other important web
technologies that have been used to implement the techniques described in
this thesis are also briefly discussed. The chapter then discusses the WebGL
rendering pipeline. Finally, the declarative and imperative approaches to 3D
web graphics are discussed.

2.1 Introduction to Data Visualization

Data visualization is a process of creating visual representation of data using
computer graphics techniques [Telea, 2014]. The data to be visualized usually
come from a variety of sources like sensors and computer simulation. The
data to be visualized can be spatial or non-spatial. When the data is spatial,
it is usually called scientific visualization and for non-spatial data it is called
information visualization. Examples of spatial data are data from physical sciences
that have inherent three-dimensional coordinates in space or medical datasets
while non-spatial include mainly tables, graphs, or textual data.

The purpose of visualization is to help gain insight from the data. For example,
it is easy to see relationships or patterns in the data when viewed graphically
rather than when the raw numeric data are presented to the user. This is due to

8 Chapter 2 ● Fundamentals

high bandwidth and cognitive functions of the brain dedicated to processing of
visual information [Glassner, 1994].

The visualization process is usually presented as a pipeline consisting of a
number of transformation stages that transform data from its raw format to
a final image. These visualization pipelines serve as reference models for
the visualization process. Weiskopf [Weiskopf, 2006] presents an abstract
visualization pipeline that is a modification of the original visualization pipeline
introduced by Haber and McNabb [Haber and McNabb, 1990]. Based on this
model, there are three main stages: filtering, mapping, and rendering (see Figure
2.1). The first stage, transforms the raw data to visualization data. This stage
involves data cleaning, data reduction, interpolation, resampling, data format
conversions, and preprocessing computations that make the data visualization-
ready. The mapping stage involves transforming the visualization data to a
renderable representation. This stage involves assigning geometric primitives
and other visual attributes to the data. For example, for visualizing molecular
data where a molecule is made up of atoms, each atom can be mapped to a
sphere and the center and the radius of the atom is mapped to the center and
radius of its sphere. Moreover, each sphere can be assigned a different color
depending on the respective atom. Rendering stage involves creating an image
for static data or video or for dynamic data from the renderable representation
created in the mapping stage. This stage results in an image or video being
displayed to the user.

databases

displayable
image

renderable
representation

visualization
data

raw datasimulation

sensors

d
at

a
ac

q
u

is
it

io
n

filtering mapping rendering

visualization pipeline

interaction

Figure 2.1 — Visualization pipeline [Weiskopf, 2006].

For interactive visualization, all these stages are interactive. This means that
the user can change the parameters for each of this stage and immediately see
changes in the image generated. Interactive visualization allows scientists to
explore the data and to experiment with different what-if scenarios or questions
to test the effect of different parameters to the process generating the data or
the data themselves.

2.1 ● Introduction to Data Visualization 9

The work presented in this thesis deals with molecular and volume visualization.
The next two sections therefore introduce concepts in these topics.

2.1.1 Molecular Data Visualization

Molecular simulations play an important role in the study of the dynamics
of biomolecules. The data produced by these simulations are important in
understanding their functions. Molecular visualization is crucial to analyze and
gain insight from these data, particularly how structure relates to the functions
of these molecules.

The result from these molecular simulations is usually a set of coordinates
that show the positions of atoms of the molecule at different time steps of the
simulation. The entire data set is called a trajectory that is usually written to a
file by the simulation program after every time step or after several time steps.
This trajectory file can later be loaded into a visualization tool and played back
as an animation for dynamic data or a single snapshot can be visualized as a
static image for static data. Figure 2.2 shows visualizations produced by some
web-based molecular visualization tools.

Figure 2.2 — Example visualizations produced by some web-based molecular
visualization tools: top row [Mwalongo et al., 2014, 2015], bottom row-first
JSmol [JSmol, 2013], and bottom row-second and third NGL Viewer [Rose and
Hildebrand, 2015].

Apart from visualizing the dynamics of the molecules from a simulation, their
structures can be visualized using publicly available structure data. A common

10 Chapter 2 ● Fundamentals

source for structure data is the protein data bank [Berman et al., 2000]. This
structure data also acts as a source for molecular simulations, providing the
initial starting atom coordinates.

Several three dimensional models for the visual representation of molecular
structure have been introduced. Simple models include space-filling and ball-
and-stick. There are also surface models called Solvent-Excluded Surfaces (SES)
and Solvent Accessible Surface (SAS) that show the surface of the molecule not
accessible by another molecule and a surface accessible by another molecule
respectively. These models depict different structural attributes of the molecule.
The choice of which model is used, depends on the analysis task at hand. A
detailed discussion of these different molecular model representations is found
in a survey paper by Kozlíková et al. [2016]. Although visualization of the
simulation results is usually done as a post-processing step after the simula-
tion has stopped, sometimes the visualization application can be connected
directly to the simulation application in an approach that is called computational
steering. Here the user can drive the simulation by changing the parameters of
the simulation based on the results of the visualization of data from previous
simulation time steps. This is also advantageous especially for long running
simulations. For example, corrective measures can be taken to stop the sim-
ulation early in case of incorrect computations due to wrong parameters or
misconfiguration.

Connecting visualization and simulation applications can also be done to avoid
moving huge data to a different machine for visualization in a post-processing
step. This approach, also known as in-situ visualization allows the visualization
of data to be done on the same machine where the simulation runs. With the
huge data from complex simulations that cannot be easily moved, this approach
is increasingly gaining attention as a research area in both computational and
visualization communities.

Since, several existing molecular visualization tools have been developed only
for desktops (e.g., VMD [Humphrey et al., 1996], MegaMol [Grottel et al., 2015]),
visualization researchers have long been interested in using the browser as a
deployment platform for molecular viewers due to its ubiquity across devices.
Popular among these web-based molecular viewers is JMol [Jmol, 2009], which
is available as a Java applet and installed in the browser as a plugin. However,
plugins need regular maintenance on every machine they are installed on
(e.g., installing security updates), thus creating installation and maintenance
overhead from the client perspective.

These limitations of the browser have forced many techniques to rely on server-
side rendering and sending images to the client only for display. This approach,
however, suffers from lack of interactivity. Furthermore, the use of plugins in the

2.1 ● Introduction to Data Visualization 11

browser has created security loopholes, leading to many modern browsers to
discontinue plugins in the browser. Another weakness was on the performance
of JavaScript, the language of the web. Its single-threaded and interpreted
nature made it unsuitable for the demands of visualization applications on the
web.

Despite these limitations, the ubiquity of the web browser has remained at-
tractive as a favorable cross-platform deployment environment for molecular
visualization tools and as a potential platform for global collaborative visualiza-
tion [Viegas et al., 2007; Isenberg et al., 2011]. This attractiveness of the browser
has led to efforts for improving the performance of JavaScript and introduction
of modern web technologies that meet the demands of interactive visualization
applications on the web. We discuss these technologies further in section 2.2.2
and section 2.3.

2.1.2 GPU-based Volume Visualization

Volume data is usually defined as scalar field in 3D space. Volume visualization
deals with techniques that generate 2D images from these volumetric data for
the purpose of gaining insight. These data usually come from medical scanners
like CT and MRI or computer simulations that generate 3D data.

GPU-based volume visualization leverages the computational power of the
GPU in order to efficiently render these volumetric datasets. Although there
are several techniques for visualizing volumetric data, for the purpose of this
dissertation, we only focus on GPU-based volume ray casting also known as
GPU-based volume ray marching, which is currently the state-of-the-art method
for rendering volumetric data. Therefore, our technique for web-based volume
visualization, discussed in chapter 6 is based on this rendering technique. The
book by Engel et al. [2006] provides a thorough discussion on GPU-based
volume visualization techniques.

GPU-based volume ray marching is the state-of-the-art approach for direct
volume rendering due to its performance and high image quality. This technique
uses 3D textures (assuming the use of WebGL 2.0) or a set of 2D textures (when
using WebGL 1.0) for data storage and requires support for dynamic looping
in the fragment shader. This technique initializes rendering by first rendering
a proxy geometry, usually the bounding box of the volume data. There are
two approaches for implementing this technique in WebGL: multi-pass and
single-pass GPU-based ray marching.

In the multi-pass approach, the proxy geometry is rendered into a texture in
order to get the entry and exit points of the rays in the volume data. These
rays are then used during the volume traversal pass in order to get the starting

12 Chapter 2 ● Fundamentals

point and the direction of each of the sampling rays. In the fragment shader, the
volume is sampled along the rays, classified, optionally shaded, and iteratively
composited to get the final color of the pixel.

In the single-pass approach, either the front or the back faces of the volume’s
bounding box are rasterized. Ray traversal is also performed in the fragment
shader by marching along the view ray in discrete steps through the volume
and compositing the sample colors to get the final pixel color. Figure 2.3 shows
an overview of the volume ray marching rendering technique.

Eye

Volume Dataset

Volume Sample Point

Figure 2.3 — The volume ray marching rendering technique. A ray is cast
from the eye position for each pixel towards the center of each pixel in the
image plane and the volume is sampled along the ray. Each sample is shaded
and finally all samples are composited to get the final color of the pixel. For
GPU-based volume rendering, this technique is implemented in a fragment
shader.

2.2 OpenGL and WebGL Rendering

As discussed in Section 2.1, rendering is the last stage in the visualization
pipeline. The performance of this stage is very crucial for interactive visu-
alization. Modern interactive visualization applications exploit the power of

2.2 ● OpenGL and WebGL Rendering 13

Graphics Processing Units (GPUs) in order to achieve better performance. Ac-
cess to the GPU is through standards-based application programming interfaces
(APIs) like OpenGL. Our work, in particular, uses WebGL [Khronos, 2011b],
which is based on OpenGL ES which in turn is based on OpenGL (see Fig-
ure 2.4). The next sections provide an overview on the rendering pipelines of
these APIs.

OpenGL
2.0

OpenGL
3.3

OpenGL ES
2.0

OpenGL ES
3.1

OpenGL ES
3.0

WebGL
2.0

WebGL
1.0

OpenGL
4.4

OpenGL
4.5

subset subset

Figure 2.4 — Relationship between OpenGL, OpenGL ES and WebGL (adapted
from: Matsuda and Lea [2013]).

2.2.1 OpenGL Rendering Pipeline

Open GL is an application programming interface (API) that allows graphics
applications to access graphics hardware for image rendering. Modern graphics
processing units (GPUs) are programmable, therefore OpenGL also has pro-
grammable stages in its rendering pipeline, which allow users to write shader
programs that are executed on the GPUs. The standard is divided into three
main groups: OpenGL for the desktop, OpenGL ES for embedded devices, and
WebGL for the browser. The relationship between these different standards
is as shown in Figure 2.4. In contrast to the OpenGL for desktop which has
more programmable stages in its rendering pipeline, OpenGL ES versions upon
which WebGL 1.0 and WebGL 2.0 are based, support only two programmable
stages: vertex and fragment processing. OpenGL ES 3.0 supports shading
language versions 3.0 and 1.0, in contrast to OpenGL ES 2.0 which supports
only shading language version 1.0.

14 Chapter 2 ● Fundamentals

WebGL
Application

Vertex
Shader

Rasterization Fragment
Shader

Framebuffer

Textures

Vertex
data

Texture
data

Transform feedback

Figure 2.5 — A Simplified WebGL 2.0 rendering pipeline. WebGL 1.0 has
similar pipeline, except that it does not support Transform feedback. Pipeline
stages colored in green are programmable.

2.2.2 WebGL Rendering Pipeline

WebGL provides a JavaScript API to the GPU based on the OpenGL ES stan-
dard. Currently, browsers implement WebGL 1.0 based on OpenGL ES 2.0
and WebGL 2.0 (based on OpenGL ES 3.0). WebGL 2.0 supports OpenGL ES
Shading Language (GLSL) 3.0 and 1.0, while WebGL 1.0 supports only shading
language 1.0. Due to browser constraints, including security issues, however,
not all features of the underlying OpenGL ES standards are exposed to WebGL.
It is these constraints that make implementing visualization techniques de-
signed for desktop computing platforms in WebGL not a straight forward task.
Some adaptations are required in order for these techniques to work within
the constraints of the browser environment. Both WebGL versions expose only
two programmable stages of the graphics pipeline: vertex shader and fragment
shader (see figure 2.5). The main computation done by the vertex shader is
transformation of the vertex data received from a web application written in
JavaScript from model to clip space coordinates. The output vertices from
this stage are then assembled into primitives and fed into the rasterizer for
fragments generation. These fragments are the inputs to the fragment shader

2.2 ● OpenGL and WebGL Rendering 15

OpenGL
Application

Vertex
Shader

Tessellation
Shader

Geometry
Shader

Rasterization

Textures

Vertex
data

Texture
data

Transform feedback

Framebuffer

Fragment
Shader

Figure 2.6 — Simplified OpenGL rendering pipeline (OpenGL 4.5), pipeline
stages colored in green are programmable [Kessenich et al., 2016]).

which after processing them, writes the results into a framebuffer.

Therefore, visualization techniques exploiting the programmable graphics
pipeline can only be implemented in a vertex or fragment shader. This is
in contrast to OpenGL that has additional programmable stages like tessellation
and geometry shaders (see Figure 2.6).

Another main difference between OpenGL and WebGL is that WebGL runs
under the control of the browser and has no direct communication with the
underlying operating system. Since WebGL draws on a canvas element, the
browser compositor takes the contents rendered by WebGL and combines them
with other visual elements of the web page to display the final page content to
the user.

Apart from additional layer of indirection that may affect performance, a single
frame in WebGL has less frame budget compared to a frame in OpenGL because
for each frame a fraction of the time has to be reserved for compositing by
the browser. Browsers, however, rely on the graphics APIs of the underly-
ing platform for their implementations of WebGL. On Windows, the ANGLE
project [Koch and Capens, 2012] provides an OpenGL ES 2.0 implementation
based on Direct3D. On Linux and other platforms, ANGLE is not required as
browser implementations are built on top of native OpenGL for that particular
platform. Mobile browsers implement WebGL directly on top of OpenGL ES on
the respective mobile device operating systems.

16 Chapter 2 ● Fundamentals

WebGL 2.0 [Khronos, 2013], which is based on OpenGL ES 3.0, provides more
capabilities than WebGL 1.0 [Khronos, 2011b]. Some of the important addi-
tions to WebGL 2.0 that are relevant for visualization are instancing, multiple
render targets, fragment depth writes and 3D textures. Instancing, fragments
depth writes, and multiple render targets are supported through extensions in
WebGL 1.0, but are included in the core WebGL 2.0 specification.

Instancing allows several copies of the same objects to be rendered once, thus
minimizing the number of draw calls and CPU-GPU bandwidth. The geometry
of each unique object is sent to the GPU only once and only per instance data
like position, color, and transformations are uploaded to the GPU in every
frame. This is important especially for polygon rendering where large meshes
may contain many similar objects. Multiple render targets (MRTs) allow the
fragment shader to write fragment data to more than one buffer at once. This
is useful for visualization techniques that require multiple render passes like
deferred shading.

Other visualization techniques require modifying the depth value in the frag-
ment shader. Therefore depth write support enables such techniques to be
implemented in WebGL. Support for 3D textures is also important for volume
rendering where data from medical images like MRI and CT scans can easily be
visualized without requiring conversion of 3D volumetric data into 2D texture
atlases. 3D textures also allow trilinear interpolation to be performed directly by
the hardware, thus increasing performance compared to when the interpolation
is performed in user code in the fragment shader.

2.3 Modern Browsers and HTML5 Technologies

In the context of this thesis, we define a modern web browser as a browser that
supports HTML5 [W3C, 2017] and WebGL [Khronos, 2011b, 2013] standards.
HTML5 is the latest version of the standard for the HTML markup language
at the time of writing this thesis. It introduces new elements and several web
technologies that provide new capabilities for the browser. For example, the
canvas element provides a programmable drawing surface through JavaScript,
the video element provides native capabilities for viewing video, and the
audio element provides native audio playback. Moreover, the performance
of the JavaScript language itself has improved significantly due to advances
in compiler technology. For example, modern JavaScript engines use Just-In-
Time (JIT) compilation and optimization techniques in order to achieve high
performance in terms of execution speeds.

Additionally, there are other technologies in the browser that can be exploited
for optimized processing that can improve rendering speeds (see Figure 2.7).

2.3 ● Modern Browsers and HTML5 Technologies 17

Figure 2.7 — Client-side optimization technologies in the browser.

For example, typed arrays [Khronos, 2011a]—defined as part of the JavaScript
language, provide efficient binary data processing in the browser, web work-
ers [W3C, 2015] allow long running computations to be performed without
affecting the responsiveness of the application because they run on a different
thread than the main thread that handles user interactions. WebSocket [Fette
and Melnikov, 2011] provides bi-directional full duplex persistent communi-
cation channels between client and server. This section discusses core HTML5
elements and other web technologies that make it feasible to build interactive
visualization applications in the browser.

Typed Arrays were first introduced as a separate specification to allow efficient
handling of binary data in the browser for WebGL applications. Currently they
are part of the JavaScript language. Raw binary data is stored in an object
called ArrayBuffer, which is of fixed length once created. Access to this data is
through views. For example, to view the data as an array of 32-bit floating point
values, a Float32Array view is used. For a buffer that contains heterogeneous
data similar to structs in C or C++ language, a low-level interface is provided
through an object called Dataview. Raw binary data can be from a file or received
from a network. Data encoded as an ArrayBuffer is GPU-friendly in that it can
be uploaded to the GPU directly without requiring further processing on the
CPU-side. This is important in the browser because heavy computations in
JavaScript can affect performance significantly.

Web workers enable parallel processing in the browser, which allows long
running scripts to be executed in a separate thread than the main thread. Since
JavaScript is a single-threaded language, everything runs otherwise in the so

18 Chapter 2 ● Fundamentals

called main thread including handling user interactions and rendering. Also
scheduling of tasks is non-preemptive, that is once a task has been started it
runs up to completion. If a function in a script takes much time, it can cause the
user interface to be unresponsive. To alleviate this problem, these long running
scripts can be executed in the background in their own thread.

However, these threads do not share memory, each web worker runs in a
separate virtual machine with its own memory and, therefore, communication
between the main thread and the workers is possible only through message
passing. Since current browser implementations allow WebGL to render only
from the main thread, data processed in a worker has to be passed back
to the main thread for rendering. This can be challenging for large data.
One optimization technique for binary data encoded as ArrayBuffer is called
transferable objects. This allows memory ownership to be transferred from
a worker to the main thread and vice versa, which is also known as zero
copy.

WebSocket is a communication protocol based on TCP that allows client and
server to maintain full-duplex persistent communication between them. To
initiate the communication, a client sends to the server a normal HTTP request,
but with an upgrade header requesting the server to upgrade to a websocket
connection if it supports it. If the server supports the websocket protocol, the
connection is upgraded to become a websocket connection. This connection
remains open until a client or server explicitly closes it. As long as the commu-
nication is open, both client and server can send data at the same time just like a
regular TCP connection. Websocket avoids the initial cost of establishing a new
connection for every request as it is the case with HTTP. The cost of initiating
a connection in the case of a websocket is therefore incurred once. This is
important for the visualization of dynamic data which requires continuous data
updates and the ability to communicate simultaneously in both directions using
a single communication channel.

WebRTC [W3C, 2018] is another technology that allows low-latency peer-to-peer
real-time communication between browsers supporting video, audio, and data
transfer. By combining video, audio and data communication in a unified
standard, it becomes easier to build collaborative visualization applications in
the browser. Although collaborative visualization is not addressed in this thesis,
the techniques introduced can serve as a foundation for the development of
such tools.

The <canvas ...> element introduced in HTML5 standard provides a surface for
graphics drawing through JavaScript. Currently, it supports 2D and WebGL
rendering contexts. The 2D rendering context is CPU-based while WebGL
provides an OpenGL ES based API for GPU-access through JavaScript.

2.4 ● Approaches for 3D Graphics in the Browser 19

Since WebGL is a low-level API, many libraries and frameworks have been
built to provide high-level functionality on top of it to make it easier to de-
velop applications that leverage the power of the GPU. Frameworks include
X3DOM [Behr et al., 2010] and XML3D [Sons et al., 2010] that aim at integrating
3D graphics with the HTML5 document object model (DOM). On the part of
libraries, Three.js [Threejs, 2010] and BabylonJS [BabylonJS, 2013] are some of
the popular JavaScript libraries that provide a scene graph-based API on top of
WebGL. A survey paper on 3D web graphics by Evans et al. [Evans et al., 2014]
discusses these libraries and frameworks in more details.

Another web technology is the SVG standard upon which other high level
visualization tools like D3.js [Bostock et al., 2011] are built. D3.js is a popular
JavaScript library for information visualization that builds on SVG and 2D
canvas standards. The functionality of the SVG standard can be included in
an HTML document through the HTML5 <svg ...> element tag. Depending on
browser implementations, these elements can be hardware accelerated in order
to improve performance.

2.4 Approaches for 3D Graphics in the Browser

Main approaches for 3D graphics in the browser can be categorized as declar-
ative or imperative. Declarative approaches try to extend the HTML markup
language to support custom markup elements that allow 3D content authors
to define their scenes and embed them in the browser for rendering without
the need for programming. Prominent examples for these approaches are
X3DOM [Behr et al., 2010] and XML3D [Sons et al., 2010]. These two tech-
nologies use XML as the format for encoding the model of the scene to be
rendered as a scene graph and are currently implemented on top of WebGL.
Their architectures are as shown in Figure 2.8.

Figure 2.9 shows how X3DOM can be integrated with a HTML page for ren-
dering simple 3D shapes. X3DOM can also be used for visualization of various
datasets as shown in Figure 2.10

Despite the simplicity of declarative approaches as far as programming is
concerned, these approaches suffer from computational and storage overhead
by using XML as the data format to encode the model to be rendered. Moreover,
declarative approaches may be too restrictive for applications which require
low-level access to the GPU.

On the other hand, WebGL [Khronos, 2011b] is an imperative approach to
3D web graphics that provides direct access to the GPU. Although the low-
level graphics API requires more programming skills compared to declarative
approaches, it offers more flexibility and can handle rendering of even larger

20 Chapter 2 ● Fundamentals

Figure 2.8 — Top: Architecture of XML3D (image: [Sons et al., 2013] © 2013
IEEE). Bottom: Architecture of X3DOM (image: [Behr et al., 2010] © 2010 ACM).

amounts of data. By providing direct access to the GPU, efficient processing
can be achieved by encoding data in binary formats that can be uploaded to
the GPU with minimal processing in JavaScript, thus saving time and space.
The work described in this thesis uses WebGL directly due to its flexibility and
low-level powerful access to the GPU that allows rendering of large data at
interactive frame rates.

2.4 ● Approaches for 3D Graphics in the Browser 21

Figure 2.9 — Example of rendering simple 3D shapes using the X3DOM library
(rotated).

22 Chapter 2 ● Fundamentals

Figure 2.10 — Example visualizations using X3DOM: terrain of Puget
sound [X3DOM, 2017a] (Top), volume rendering of medical dataset [X3DOM,
2017b] (Bottom).

C
h

a
p

t
e

r

3
Remote Visualization

This chapter discusses previous work in the area of remote visualization with
special emphasis on interactive web-based visualization. The work is based
on our recent survey paper on web-based visualization [Mwalongo et al.,
2016b].

3.1 Motivation

Remote visualization has long been an important area of research motivated
by the need to visualize huge amounts of data ranging from simulations over
medical imaging to big data from social media or business intelligence. This
need arises from insufficient computational resources at the user’s side (client).
The reason can either be relatively thin clients, like mobile phones, or the sheer
amount of data to process.

Even if the client were powerful enough, moving the full data set to the client
quickly becomes impractical due to bandwidth, latency or local storage limita-
tions. In certain scenarios, making the raw data available might also present
legal or privacy issues. Here, remote visualization becomes a viable solu-
tion.

The need for data sharing and collaboration among geographically distributed
teams has also been a driving force behind remote visualization. Although there
have been rapid technological advances in end user devices (e.g., smart phones,
tablets, laptops, and desktops with multiple cores and GPUs), the problem of
large data still holds, and in fact, it is growing rapidly because the network

24 Chapter 3 ● Remote Visualization

speed and latency improvements do not grow proportionally with processor
speeds.

Web-based visualization in particular has received much attention due to its
ubiquity across platforms, ranging from desktop computers to smartphones,
and its potential as a collaborative platform [Isenberg et al., 2011].

Web-based approaches can allow visualization tools to be deployed across de-
vices from single source code base. This does not only allow easy collaboration
and sharing of visualization tools among different teams, but also simplifies
software maintenance issues, allowing visualization researchers and domain
scientists to focus more on the core issues of their research.

Moreover, this deployment model allows domain scientists to access latest
visualization techniques (e.g., by simply refreshing a page). This close collabo-
ration between visualization researchers and domain scientists is also important
for the visualization research community to avoid the danger of loosing its
users [Lorensen, 2004].

Another advantage of web-based solutions for the client-side is that users (e.g.,
domain scientists) do not need to install software, they just need a browser. Since
browsers are currently deployed in many devices, they give more flexibility for
the user to work from any device, anywhere, as long as there is an Internet
connection. As many visualization solutions are currently GPU-based, program
shaders (which are simple text files) can be hosted on a server together with the
data and easily shared by multiple clients. This setup is attractive even in cases
where the data is not shared. A user with data on a local machine can simply
get the visualization code from the server and visualize the data locally instead
of uploading the data to the server, which may be expensive for large datasets
or overload the server when many users are uploading their datasets. For large
datasets, moving computation (code) to the data is cheaper than moving the
data to the computation [Gray et al., 2005].

Despite efforts of previous research, limited bandwidth and network latency
are still the main challenges for remote visualization. The continuous growth of
data sets and gradual improvement of infrastructure and client devices make
remote visualization still an active research area. The current trend is towards
exploiting modern computation and networking infrastructure combined with
efficient data transmission techniques to enable interactive visualization in the
browser. Although compression has been employed for efficient use of network
bandwidth, low latencies can best be achieved through client side rendering.
Therefore GPU access in the browser through WebGL [Khronos, 2013, 2011b]
and HTML5 technologies [W3C, 2017] are an important addition for enabling
high-performance interactive rendering in the browser.

3.2 ● Remote Rendering Approaches 25

3.2 Remote Rendering Approaches

Visualization tools have been developed following a pipeline model first intro-
duced by Haber and McNabb [1990]. Whereas in a traditional visualization,
all the stages of the pipeline run in a single machine, in remote visualization,
any part of the pipeline can run on a different machine. This is usually in a
client-server architecture where part of the pipeline is executed on the server
and the other parts on the client.

Strategies for partitioning the visualization pipeline can broadly be divided
into three categories depending on where the rendering stage of the pipeline
is executed. In the first strategy, the rendering is executed at the server, called
server-side rendering. In this approach, the images (for static data) or video
streams (for dynamic data) are generated at the server and sent to the client
for display. The work of Yoo et al. [2010] and Jomier et al. [2011] employ this
approach. Many other early techniques followed this approach [Engel et al.,
2000, 1999; Engel and Ertl, 1999; Hendin et al., 1998; Trapp and Pagendarm, 1997;
Wood et al., 1996]. These approaches use a combination of VRML, Java applets,
Flash, or JavaScript on the client side. On the server, some techniques employ
hardware-accelerated techniques to achieve better rendering performance.

Historically, server-side rendering was favored, mainly due to limitations in
client side computation power. Despite the advantage that this approach has
minimum requirements on the client, it can lead to poor performance due to
bandwidth and latency issues. This approach is therefore not well suited for
interactive visualization.

A second strategy is to render the images at the client, called client-side rendering.
In this approach the server provides the raw data (sometimes a subset of it)
for rendering at the client. Some of the recent work based on this strategy
for volume data are by Movania and Feng [2012], and Congote et al. [2011].
Some earlier works also follow this approach [Lluch et al., 2006; Diepstraten
et al., 2004; Engel et al., 2000, 1999; Engel and Ertl, 1999]. The advantage of
this strategy is that by performing rendering on the client, the interactivity is
typically improved as the round-trip latency to the server whenever a viewpoint
or other rendering parameters change is avoided. However, this approach de-
mands capable computational resources on the client for interactive rendering.
Luckily, recent advances in graphics hardware have brought more computa-
tional processing power to commodity hardware including mobile devices,
making client-side rendering an attractive approach in both native and web
platforms. These advances in GPU-technology have improved the processing
power on mobile devices and thus narrowing the gap between mobile and
desktop platforms.

26 Chapter 3 ● Remote Visualization

The third strategy is to combine both server-side and client-side rendering to
benefit from resources on both ends. In this approach rendering is still done
on the client, however the server does some preprocessing in order to reduce
computation load at the client side. Preprocessing may involve generating
acceleration data structures [Mwalongo et al., 2014], generating renderable
representations (e.g., geometry and textures) [Limper et al., 2014; Sutter et al.,
2014]), or packaging implicit surface parameters in GPU-friendly structures
that minimize processing time at the client before rendering [Mwalongo et al.,
2015]). For geometric data, streaming and progressive rendering [Limper et al.,
2014; Wen et al., 2014; Ponchio and Dellepiane, 2015] with levels of detail are
used in order to hide latency and improve interactive user experience. GPU-
based rendering helps to improve the rendering performance and interactivity
by offloading expensive computations to the GPU that would otherwise be
infeasible to be done on the CPU using JavaScript.

The remote visualization problem requires many issues to be addressed from
data management, encoding, communication, streaming to efficient rendering
techniques [Parulkar et al., 1991; Stevens et al., 2001; Brodlie et al., 2005; Shi,
2011]. Combining server and client side processing provides the benefits of
powerful computational resources available at the server and interactive render-
ing on the client. In order to address the needs of growing datasets and many
concurrent users, the server side can benefit from grid and cloud computing
resources for complex data management and analysis. Section 3.4 discusses
how these technologies can be combined with client-side rendering to enable
high-performance interactive visualization for even large datasets and scaling
to many concurrent users. We refer to visualization in these environments as
grid-based and cloud-based visualization. However, before discussing these
two scenarios, we discuss visualization as a web services because the concept
of web services is widely applied in these environments.

3.3 Visualization as a Web Service

The World Wide Web Consortium (W3C) defines a web service as a software
system designed to support interoperable machine-to-machine interaction over a net-
work [W3C, 2004]. The main goal of web services is to allow seamless in-
teroperability between different software applications and tools that need to
communicate in order to accomplish a particular task. Since the services inter-
act based on standardized interfaces without consideration of implementation
details, software written in different programming languages and running on
different platforms can communicate and work together harmoniously without
requiring manual integration by the user. This approach is especially important
in heterogeneous distributed systems.

3.3 ● Visualization as a Web Service 27

Main approaches for applying the concept of web services to visualization
with regard to how the pipeline is partitioned can be grouped into three: in
the first approach, the entire visualization pipeline is treated as a black box
and an application can be viewed as a single service. The user is provided
with an interface for specifying data to be visualized and interacting with the
resulting visualization. Tableau Online [Tableau, 2013] and TIBCO Spotfire
Cloud [TIBCO, 2014] are some of the examples that fall into this category. This
approach has the advantage of being simple for the end user. However, it may
limit the user from the types of visualizations that can be created.

In the second approach, each of the different stages of the visualization pipeline
is implemented as an independent web service. In this approach, the entire
visualization pipeline is exposed to the user who can connect different services
to create pipelines in order to generate various visualizations. These services
can potentially be from different providers, implemented in different languages
and running on different platforms. Wang et al. [Wang et al., 2008], Zudilova-
Seinstra et al. [Zudilova-Seinstra et al., 2008], and Charters et al. [Charters et al.,
2004] follow this approach in the context of grid-based visualization. Although
this approach provides the maximum flexibility for the end user, it may suffer
from inefficiencies due to communication overheads and excessive data copying
between services.

A third approach combines some of the stages of the visualization pipeline into
a single service. By combining some stages into a single service, inefficiencies
suffered by the first approach due to communication and data movements can
be avoided and still retain the flexibility provided by the second approach that
can allow users to connect various visualization services that provide more
powerful visualizations. Wood et al. [Wood et al., 2008] and d’Auriol [d’Auriol,
2011] follow this approach.

Viewing a visualization application as a single service would provide a good
abstraction when considering a visualization as an integral component in the
entire data analysis pipeline (e.g., combining simulation, analysis, and visual-
ization) rather than a separate application. On the other hand, mapping each
stage of the visualization pipeline to a web service or combining some services
into a single service may be more suitable for visualization application devel-
opers. Developers may be interested in combining different implementations
of visualization techniques that provide different capabilities or exploit special
hardware features for each stage of the visualization pipeline to create a new
composite visualization service for end users.

Another important aspect is the handling of data movement between web ser-
vices in a visualization pipeline. Web services can exchange data directly with
each other or do so through a centralized data store. Koulouzis et al. [Koulouzis

28 Chapter 3 ● Remote Visualization

et al., 2010] compare the performance of these two data movement approaches
and show that direct data exchange between services provides better perfor-
mance compared to doing it through a centralized data store.

On the implementation side, two main approaches are used, SOAP-based web
services [Seely, 2001] and RESTful web services [Pautasso, 2014], based on an
architectural style first introduced by Fielding [2000]. Current trends [Webber
et al., 2010; Wilde and Pautasso, 2011; Richardson et al., 2013] favor RESTful web
services rather than SOAP-based services due to their simplicity and easy inte-
gration with other web standards. Moreover, by using web standards, RESTful
services can exploit the already existing web infrastructure for scalability and
performance. Pautasso et al. [2008] give a detailed architectural comparison
between these two approaches. Despite the popularity of RESTful web services
in the business domain and cloud-based services, this approach has not yet
caught much attention in the visualization community. We discuss visualization
as a web service in the context of grid and cloud computing environments in
Section 3.4.1 and Section 3.4.2 respectively.

Web service approaches allow different tools to be designed in such a way that
they can communicate and exchange data in standardized ways, irrespective of
their implementation language, platform, or device where they are deployed.
This would allow to easily automate the data analysis pipeline (where visual-
ization is just a component). Components need only agree on a communication
protocol and keep their internal implementation details to themselves. Moreover,
decoupling the interface from implementation details allows each component
to be implemented and independently optimized based on its specific task that
it performs or special hardware features that it exploits.

Existing work on visualization as a service has focused more on applying the
concept of web services to visualization software alone (i.e., interoperability
between visualization system components) and less attention has been paid
to interoperability between visualization services with other tools in the data
analysis pipeline (e.g., simulation and analysis tools/services). The increasingly
huge amounts of data and complex analysis required to understand and gain
insight from these data makes visualization tools alone inadequate for the task.
Hence, multiple approaches need to be combined.

By providing programming language and platform independent interfaces to
visualization services, it becomes easy to connect these tools together and po-
tentially automate the creation of data analysis pipelines. This can be achieved
through sophisticated visualization workflow engines that can automatically
orchestrate different visualization services given only the data to be visualized
and some user provided visualization parameters for the desired output visu-
alization. This would allow scientists to focus on their domain research work,

3.4 ● Scaling Server-side Infrastructure 29

and reduce time spent manually integrating software tools.

3.4 Scaling Server-side Infrastructure

High performance and complex simulations enabled by grid and cloud comput-
ing combined with a large number of scientific instruments (e.g., sensors, laser
scanners) produce petabytes of data. These huge datasets have led to the use
of cloud-based storage systems like Globus Online [Foster, 2011] and Amazon
S3 [Amazon, 2010]. Traditional visualization tools designed for a single user
and small data start to show their limit for data at this scale. Therefore, it
becomes necessary to exploit the available grid and cloud computing resources
to solve the problem of large data visualization. A single machine is no longer
sufficient to visualize all the data. Similarly, it becomes overwhelming for a
single user to understand all the data, thus requiring visualization tools that
support collaborative visual analysis.

3.4.1 Grid-based Visualization

Grid computing is a distributed system model that allows pooling of computa-
tional and storage resources to provide a high-performance problem-solving
computing infrastructure [Foster et al., 2001, 2003]. The computational re-
sources in a grid are distributed similar to a cluster. However, while a cluster
is usually built from resources that belong to a single organization, a grid
combines resources from multiple organizations that may be geographically
distributed [Foster and Kesselman, 1999]. Therefore resources in a grid envi-
ronment are usually heterogeneous compared to those in a cluster which are
generally homogeneous.

Grid-based visualization is motivated by high demands from high-performance
and complex simulations that use grid resources for computation and storage of
the simulation results. As the simulations and other scientific instruments pro-
duce massive data, it becomes infeasible to visualize these data with only locally
available computing resources. Therefore, an infrastructure of a similar scale is
required for data visualization. As computational and storage resources in the
grid are by nature geographically distributed, the challenge for visualization
algorithms is therefore how to efficiently use this distributed infrastructure to
achieve good performance while at the same time handling network bandwidth
and latency issues.

Most of the work in grid-based visualization also exploit the use of web ser-
vices as a way to ensure interoperability between the heterogeneous computing
resources in these environments. As discussed in section 3.3, there are several

30 Chapter 3 ● Remote Visualization

approaches for partitioning the visualization pipeline based on web services.
Charters et al. [2004] present an architecture for distributed visualization based
on web services that maps each stage of the pipeline as proposed by Haber and
McNabb [1990] into a separate web service (see Figure 3.1). The architecture
allows each service to run on a different node in the grid that can be geographi-
cally distributed. This setup can allow each service to exploit local and specific
resources for maximum performance. Visualization services exchange data
with each other through data transfer services provided by the underlying grid
middleware. The visualization pipeline is created and controlled through a
pipeline composition tool that orchestrates different web services in order to
create a particular visualization.

Data
Service

Grid

Grid

Steering

Mapping
Service

Filter
Service

Render Service

Presentation
Service

Grid

Grid

Grid

Client
 User Interface

Web Services
Middleware

Visualization
Components

Web
 Service Calls

Proprietary
Communications

Figure 3.1 — Grid-based visualization pipeline based on web services proposed
by Charters et al. (adapted from: Charters et al. [2004]) (Top) and by Wood et al.
(adapted from: Wood et al. [2008])(Bottom).

An implementation of this pipeline uses SOAP-based web services [Snell et al.,
2002] built on top of a grid middleware (Globus Toolkit [Foster, 2005]) and

3.4 ● Scaling Server-side Infrastructure 31

the visualization functionality is provided by the VTK library [Schroeder et al.,
2006]. Their implementation is used to demonstrate the visualization of particle
simulation of dark matter, X-Ray Crystallography data, and volume data.

A similar approach to web service-based visualization pipeline is advocated by
Zudilova-Seinstra et al. [2008], who apply a service-oriented approach to create
an interactive visualization framework that supports visualization researchers
and domain scientists in collaborative and distributed medical data analysis.
Visualization experts can use the framework to create various visualizations
that can then be used by medical experts to explore the data.

Wood et al. [2008] present a 3-layered architecture for web service-based vi-
sualization. The three layers are client, middleware, and visualization layer.
The client layer provides the user interface functionality, the visualization layer
is responsible for visualization functionality, and the middleware layer acts
as an interface between the client layer and the visualization layer (see Fig-
ure 3.1).

Visualization pipelines are created using an XML-based markup language called
skML [Duce and Sagar, 2005] that describes input-output relationships. The user
can control the visualization pipeline through the middleware layer. Similar
to Charters et al. [2004], the architecture is implemented on top of the Globus
Toolkit using SOAP-based web services and VTK library for visualization
functionality. Web service notification capabilities provided by the underlying
grid middleware are used for data exchange between web services.

Kranzlmüller et al. [2004] present a grid visualization kernel (GVK) based on
Globus Toolkit [Foster, 2005]. The authors propose a set of visualization services
as an extension to grid middleware services that can be used as building blocks
for creating visualization applications. To visualize data from a simulation, for
example, a visualization request is sent to the GVK. The GVK initializes the
visualization pipeline and remains connected with the simulation. When the
simulation has new data, it sends the simulation data to the GVK to update the
visualization.

To view the visualizations, a client (a user or an application interested in the
visualization) sends a visualization request to the GVK. Upon receiving the
request, GVK establishes a connection that links the client with the visualization
pipeline connected to a simulation whose results the client has chosen to
visualize. The kernel allows multiple visualization requests to be connected
to a single simulation. One of the main advantages of this architecture is
that it decouples the visualization clients from the simulation providing the
data source. This decoupling provides much flexibility for linking different
simulations and visualization clients.

32 Chapter 3 ● Remote Visualization

Koval et al. [2015] build a web-based front-end for visualization of data re-
sulting from a simulation running in a grid computing infrastructure. Data
preprocessing on the grid is used to filter out data that is not relevant for the
requested visualization in order to reduce the amount of data transferred to the
client. Rendering is done on the client in WebGL using the Three.js [Threejs,
2010] library. The motivation for client-side rendering is to minimize latency
and improve interactivity.

Koulouzis et al. [2010] apply web-service approach for enabling domain scien-
tists to flexibly create visualization applications from distributed visualization
pipelines in the context of medical image analysis. The use of a web-service
approach is motivated by the need for interoperability of different tools in
the analysis pipeline. Orchestration of the visualization is done through a
visualization workflow engine that controls the execution of the pipelines. Since
services do not communicate directly, this model of interaction provides more
flexibility. The implementation of the visualization is based on the VTK library.
Furthermore, the authors experiment with two different models of data commu-
nication between web services (i.e., data read, filter, map, and render services.):
centralized and distributed communication models. In the centralized model,
services communicate through a central data store; in the distributed model a
data producing service and a data consuming service communicate directly. In
both models, the URIs of the data resources are exchanged between services
rather than the actual data for efficiency reasons.

Another difference between the centralized model and distributed model is that,
in the centralized model, the workflow engine provides a URI of the central
data store where the particular service should upload its results as an input
parameter. In the distributed model, each service returns a URI to the work
flow engine after completing its task. Other services can then use this URI to
get the results. This URI is passed to the next service in the pipeline which can
then read the data directly from the provided URI.

In order to benefit from the computational and storage resources of the grid and
exploit client resources for interactive grid-based visualization, visualization
approaches that combine the resources of the grid and client devices are pre-
ferred. Recent advances in client devices including mobile devices with relative
powerful GPUs and multi-core CPUs make it feasible to offload expensive
preprocessing computations to the grid and perform rendering on the client.
This ensures better interactivity compared to approaches that rely on grid-based
rendering with image and video streaming. Server-side rendering suffers from
network latencies and limited bandwidth in cases where the images or videos
generated become large in size compared to the original dataset. In this case
transferring only a subset of data that is necessary for generating the required

3.4 ● Scaling Server-side Infrastructure 33

visualization becomes attractive.

3.4.2 Cloud-based Visualization

Cloud computing is a new model of distributed computing whereby IT re-
sources are delivered and accessed using Internet technologies [Armbrust et al.,
2010; Mell and Grance, 2011]. This new model is a result of advances in virtual-
ization, networking, and web technologies [Erl et al., 2013]. Cloud computing
provides a flexible and scalable platform that can be exploited for remote and
collaborative visualization. Cloud-based visualization can be considered as an
evolution of grid-based visualization; they all scale the server part in the remote
visualization equation and use distributed computational resources. Although
grids and clouds are similar in concept, they differ in the model of management
and provisioning of computational and storage resources.

Management of computational and storage resources in the cloud is based on
virtualization technology. That is, the cloud management software depends
on a virtualization layer controlled by a hypervisor to provide computation
and storage resources to applications that run on the cloud through virtual
machines. Foster et al. [2008] provide a more detailed comparison between
these two paradigms.

Current visualization techniques are offered either as visualization libraries
(which are programming language specific and may require significant time to
learn them) or as complete visualization applications (providing a challenge to
domain scientists to deal with multiple applications and learn new interfaces).
This approach of delivering visualization solutions also limits domain scien-
tists’ access to latest visualization techniques and therefore denies them the
opportunity to benefit from the latest advances in visualization research.

By offering visualization techniques as services and deploying them on the
cloud, domain scientists can be relieved from the trouble of dealing directly
with visualization applications or visualization libraries and hence concentrate
on the core activities of their research. A visualization service hides all the
implementation details and the various data formats and provides a simple
interface through which its functionality can be accessed. To be able to com-
municate, the application and the visualization service need only agree on a
common communication protocol. Also since the visualization services are
programming language agnostic, integration of latest visualization techniques
with other tools used by scientists becomes easier. The easy interoperability
of visualization services with tools being used by domain scientists and ex-
ploiting cloud computing infrastructure as a deployment platform would also
greatly accelerate collaborative work among domain scientists themselves and

34 Chapter 3 ● Remote Visualization

between visualization researchers and domain scientists who are geographically
dispersed.

Web services technology has been developed to address mainly the issue of
application interoperability across computing platforms and programming
language. As discussed in Section 3.3, several approaches have been proposed
to apply web services to the design of visualization applications and different
strategies for data exchange between web services.

Similar to grid-based visualization, the application of web services in the cloud
is predominant. In contrast to SOAP-based web services implementations in
grid-based visualization, RESTful web services implementations are common
in cloud services. For example, popular commercial cloud-based visualization
services (TIBCO Spotfire [TIBCO, 2014] and Tableau Online [Tableau, 2013])
provide RESTful APIs to their services.

The difference in the way computational and storage resources are managed in
the grid and the cloud brings different opportunities and challenges for cloud-
based visualization, different from grid-based visualization. Cloud computing
works with virtualized resources managed by various cloud middleware (e.g.,
Open Nebula [Moreno-Vozmediano et al., 2012], OpenStack [OpenStack, 2010],
Eucalyptus [Nurmi et al., 2009] for open-source cloud management software
and commercial offerings from Google [Google, 2008], Amazon [Amazon, 2006],
and Microsoft [Microsoft, 2010]). Because of these virtualized resources, cloud
applications (cloud services) run on virtual machines and do not have direct
access to the physical hardware.

These cloud management software packages in turn depend on virtualiza-
tion software technologies (e.g., Microsoft HyperV, Xen, KVM, XenServer, and
VmWare). Among these, Xen, XenServer, and KVM are open source. Although
most of the computational and storage resources (e.g., CPUs, hard disks and
other I/O devices) are well supported, virtualization of GPUs is relatively lim-
ited. Thus, it becomes challenging for cloud applications that leverage the power
of the GPU for their performance. As most modern visualization techniques
rely on the power of the GPU for performance, this means that GPU support in
the cloud is necessary for modern visualization applications. This requirement
can however have less impact on techniques that use client-side rendering, as in
this case, the server side is not required to have GPU capabilities as opposed to
the client where rendering is performed. Despite of this, client-side rendering
can also still benefit from GPU-based preprocessing computations in the cloud
to reduce the computation load on the client and therefore improve rendering
performance. This can be achieved through leveraging GPGPU technologies
like CUDA and OpenCL.

Currently, GPU-access is provided by only few virtualization software imple-

3.4 ● Scaling Server-side Infrastructure 35

Figure 3.2 — GPU support in the cloud through virtualization software (Left)
and GPU passthrough (Right). Virtualization software creates several virtual
GPUs from a single GPU that can be shared by multiple concurrent users.
However, this approach can perform poorly compared to GPU passthrough due
to the addition of a virtualization layer on top of the physical GPU.

mentations through GPU passthrough or virtual GPU (vGPU) approaches (see
Figure 3.2). In a GPU passthrough approach, a single dedicated to each virtual
machine. This means that there is a one to one mapping between a virtual
machine and a GPU. This offers better performance but suffers from scalability.
vGPU virtualizes the GPU the same way that the CPU and other I/O devices
are virtualized. This allows multiple virtual machines to share a single GPU.
This scales better with respect to the number of concurrent users, but can suffer
from performance issues because each GPU access from the virtual machine
has to pass through the virtualization layer (hypervisor).

Although GPU passthrough capability is supported by GPUs from mutliple
vendors, vGPU is only available on specific NVIDIA cards [Herrera, 2013].
Therefore, supporting GPU-based applications in the cloud requires a combi-
nation of specific GPUs, virtualization software technologies, and cloud man-
agement software. For example, building a private cloud with vGPU support
out of open source software can currently only be achieved through OpenStack
or CloudStack using XenServer as a hypervisor with NVIDIA GRID GPUs.
However, this situation is likely to improve due to research being done on
GPU-virtualization techniques [Dowty and Sugerman, 2009; Gupta et al., 2009;
Giunta et al., 2010; Yang et al., 2012; Tian et al., 2014; Vu et al., 2014] and the
demand for cloud gaming services [Shea et al., 2013; Huang et al., 2013].

Interactivity is crucial for interactive visualization. This implies that cloud-
based visualization services with client-side rendering is an ideal combination
in order to avoid round-trip network latency delays.

36 Chapter 3 ● Remote Visualization

Current techniques, especially cloud-based gaming services use cloud-based
rendering with video streaming to the client [OTOY, 2013; NVIDIA, 2015].
Despite the optimization attempts including use of content delivery networks
located near the geographic locations of the users, latency still remains a chal-
lenge [Choy et al., 2012; Chen et al., 2011; Suselbeck et al., 2009]. Therefore,
cloud-based rendering approaches might not be an appropriate approach for
interactive visualizations. Moreover, current advances in mobile computing
devices providing GPU-based rendering capabilities is narrowing the perfor-
mance gap between these devices and desktop computers making client side
rendering an attractive approach. However, remote rendering approaches may
be appropriate in cases where the decision is driven by other factors other than
computational resources, for example privacy or security issues.

3.4.3 Design Considerations for Cloud-based
Visualization Service

Visualization software as currently designed and developed is typically not capa-
ble of exploiting the existing distributed heterogeneous hardware infrastructure
and has limited support for typical research environments, which consists of
researchers who are distributed across the globe and need tools that can support
their collaborative work. The problem facing visualization tools is how to best
harness the heterogeneous computing infrastructure, interoperability with other
tools that form part of the entire data analysis pipeline, like simulation and
analysis/analytics tools.

Depending on the target users (i.e., domain scientists or developers of visual-
ization tools), different approaches for partitioning the visualization pipeline
can be adopted. Given its flexibility, a hybrid approach that combines different
stages of the visualization pipeline as individual web service and at the same
time minimizing communication costs is more ideal. This hybrid approach
is more appropriate for developers of visualization tools who would be in-
terested in combining different visualization services in order to create new
visualizations.

For example, a cloud-based visualization service could be considered as a
composite service formed from three individual services, namely Data Service,
Mapping Service, and View Service. The data service would be responsible
for interfacing with various data sources and hides the heterogeneity of the
various data sources to the visualization pipeline. Other services forming the
visualization pipeline can access the data through a uniform interface exposed
by this service. Data filtering or search capabilities would also be provided
by this service. These two capabilities are crucial especially for big data that
cannot be visualized all at once. Users need to be provided with capabilities to

3.4 ● Scaling Server-side Infrastructure 37

selectively visualize the data for the task at hand. The mapping service would
be responsible for mapping the data into renderable representations or visual
representation. The visual representation can then be passed to the viewing
service for rendering and interaction with the user.

Providing rendering as a capability of a view service rather than a service
in its own would be appropriate in order to hide low-level rendering details
from users who will be responsible for combining these services into new
composite visualization services. All details dealing with rendering and camera
manipulations become hidden under a specific instance of a view service. That
is, the implementation details of the renderer and camera are hidden within
the view service. Only simple interfaces to facilitate parameter manipulation
and interaction can be provided. This abstraction can serve well when the
underlying implementation technologies for these components change but the
user interface should remain unchanged.

Communication between these individual services would be coordinated by
a controller service that can integrate these services dynamically and flexibly
at run-time to create a single composite visualization service. Other tools that
form part of a data analysis workflow can then connect to the service as clients
in order to access its functionality. The interaction between the service and its
clients can be based on any asynchronous message based communication in
order to decouple them in space and time. This decoupling allows them to run
on different platforms with computational resources that are more suited for
their tasks and hence improve their performance.

By exposing the visualization functionality as a service, it becomes a long
running process that once started does not stop, unless intentionally stopped.
With this operation mode, it can support a reactive execution model or "push"
model rather than a visualization application “pulling” the data to be visualized.
Data sources would be “pushing” data to the visualization service. This model
of execution would also allow the data sources and the visualization to remain
connected in such a way that when the data changes, the visualization can
change dynamically to reflect changes in the data. As data continue to grow
(Big Data Challenge), this event-driven approach may prove to be more suitable,
since data can be visualized as it comes in (as data streams).

With this long running nature of the service, efficient use of resources becomes
paramount and this is where the elasticity of the cloud in resource manage-
ment become crucial for scalability. Elasticity is a capability of the cloud to
provision computational resources depending on the current workload of the
system [Herbst et al., 2013]. It allows the cloud to automatically allocate more
resources to a service when the demand is high and releases already allocated
resources when the demand becomes low.

38 Chapter 3 ● Remote Visualization

3.4.4 Resource and Data Management in the Cloud

Efficient use of resources in the cloud is receiving more research attention fo-
cusing on more efficient resource abstraction mechanisms due to high resource
demands and inefficiencies in virtual machines as units of computational re-
source management. Since each virtual machine requires a complete operating
system, the I/O overhead and memory requirements for the service running
in a virtual machine can be high [Felter et al., 2015]. Current trends towards
containers (e.g., Docker Container [Merkel, 2014]), and cloud-based resource
management platforms, similar to operating systems, tuned for cloud infrastruc-
ture (e.g., Apache Mesos [Hindman et al., 2011]) are more promising for better
performance and efficient sharing of computational resources. Both Docker
Container and Apache Mesos have GPU support (mainly NVIDIA GPUs).

Another important aspect of cloud-based visualization is the issue of data man-
agement. Many existing visualization applications perform data management
tasks on their own without the help of databases. However, this approach may
not be efficient in the cloud because of the massive amount of data and the
potential concurrent access of the visualization services. For example, some
researchers are already using cloud computing resources to run their simula-
tions [Kohlhoff et al., 2013; Vecchiola et al., 2009; Evangelinos and Hill, 2008].
These simulations typically produce massive data that may not feasible to be vi-
sualized using a single workstation. Since the data, in this case, is already in the
cloud, it becomes desirable to also host the visualization services in the cloud in
order to avoid moving these massive data. In this setup, visualization applica-
tions would benefit from delegating concurrency issues and data management
to a separate data layer that is dedicated for data management.

Concurrent access and large data management has, for a long time, been
a central issue in database research, however the adoption of databases for
management of scientific data in general and visualization in particular has
been slow. Complexity of data management and lack of native support for
scientific data in most of the databases has been cited as one reason for this
slow adoption [Gray et al., 2005]. SciDB [Stonebraker et al., 2013] is a recent
database for scientific data that has been introduced to address these issues.
Moreover, as the management of computing infrastructure including databases
is being outsourced to third parties through computing clouds, the complexity
of managing this infrastructure becomes less of a problem for scientists. This is
another compelling reason for cloud-visualization services to relieve scientists
from managing visualization tools with all the complexity that comes along,
and let them focus on doing science. This would not only accelerate discovery
but also encourage collaboration.

3.5 ● Interactive Web-based Visualization 39

3.5 Interactive Web-based Visualization

High performance rendering is crucial for interactive visualization in browsers
which, in most cases, is achieved through GPU-based rendering. Although
GPU-based rendering has been common in the desktop platforms, it has only
been recently available in the browser through the introduction of WebGL.

GPUs have mostly been optimized for triangle rendering, meaning that any
higher description of a model has to be tessellated to triangles before rendering.
Tessellation is normally done in the CPU and then triangles are sent to the GPU
for rendering. However, for large models, this usually results in a performance
penalty because of the CPU-GPU bandwidth bottleneck. Modern graphics APIs
provide more programmable stages (e.g., tessellation shaders) that allow this to
be done in the GPU and therefore avoid the bandwidth bottleneck. However,
in WebGL only vertex and fragment shaders are available. Any solution that
requires tessellation has to be done in JavaScript on the CPU. For large data
sets, this becomes an impediment for high performance. It becomes even more
problematic for dynamic data that can potentially change in every frame.

Rendering geometry data in WebGL without costly tessellation in the CPU is
possible for objects whose geometry can be implicitly defined, e.g., spheres.
This geometry can be generated by performing ray-object intersections in the
fragment shader. The application just passes the parameters of the implicit
function to the GPU, thus minimizing data uploaded to the GPU. For example,
in molecular rendering, where spheres are used to model each atom in the
molecule, only the radius and the center is sent to the GPU together with other
attributes like color.

Therefore, for high performance rendering in the browser, generating the geom-
etry in the GPU using this ray casting technique offers performance benefits
compared to polygon rendering. Ray casting offers not only performance ben-
efits but also generates high quality pixel-accurate images. Since ray-object
intersections are the most expensive calculations, acceleration structures are
usually used to minimize the number of intersection tests. The acceleration
structures are usually created on the server as part of a preprocessing step as
creating them on the client would be slow [Mwalongo et al., 2014]. This is also
explained in details in chapter 4.

Although there have been great improvements in JavaScript performance
through just-in-time (JIT) compilation techniques and limited parallel pro-
cessing capabilities through web workers, as discussed earlier in chapter 2, the
performance of JavaScript still lags behind that of native compiled languages.
Therefore, in order to gain maximum performance, most web applications
follow a client-server architecture where a computation is partitioned between

40 Chapter 3 ● Remote Visualization

server and client. In this setup, the server can be used for data storage and high
demanding computations that cannot be performed in the client. This means
that the data to be visualized has to be transferred to the client before rendering.
Network data transfer has to deal with two main challenges: bandwidth and
latency. Despite great improvements in network infrastructure, bandwidth is
still a challenge due to huge amounts of data generated by modern simulations,
social networks, sensors, and scientific instruments.

As the growth of data increasingly outpace the improvements in network
bandwidth, compression techniques and data filtering techniques are important
for efficient transfer of data from servers to clients. Compression and filtering
can also be combined to obtain optimal results. An important note about
compression techniques is to balance between optimizing for compression ratio
and decoding time. Decoding time is important for interactive rendering. When
complex compression techniques that incur expensive decoding procedures
are used, the gains obtained in bandwidth savings are lost. These various
techniques are discussed in section 3.5.1.

Apart from compression techniques, selectively sending minimum data that
is just enough to generate the required visualization is another approach for
reducing the amount transferred to the client. This minimal data is usually
encoded in a GPU-friendly format (e.g., using array buffers) such that the
data can be directly uploaded to the GPU with very little processing on the
client.

Latency is another important factor for interactive rendering. Network latency
can be influenced by the distance between the client and server locations.
As the distance between server and client increases, so does the propagation
delay. Expensive computations at the server and client due to, for example,
compression and decompression can also increase latency and, thus, affect
rendering performance.

Various techniques are employed to tackle this challenge through decoupling
the rendering thread and the data transfer thread so that the rendering thread
does not get stalled by latencies due to network transfers. In WebGL, this means
performing rendering in the main thread and data fetching in the web worker
and using transferable objects to transfer the data between the two to avoid the
cost of copying the data. The communication between the main thread and
the worker thread is asynchronous so the main thread can continue to render
the already received data and to update the image as the new data becomes
available.

Another techniques that is used to deal with latency is through data streaming
and level of detail techniques. The data is encoded in the format that allows pro-
gressive transfer of different levels of detail starting with a low resolution model

3.5 ● Interactive Web-based Visualization 41

and continuously updating the model until the high resolution model is down-
loaded. This technique is mainly applicable for data that can be represented as
meshes (see section 3.5.1 for details).

Therefore, interactive web-based visualization depends on optimizing for inter-
active rendering. This requires techniques that minimize network and CPU-GPU
bandwidth together with minimizing latency. For the case of bandwidth this
can be achieved through compression techniques that minimize decoding time
before rendering. Latency hiding techniques like overlapping rendering with
I/O tasks, streaming and progressive rendering techniques, and use of GPU-
friendly structures (e.g., array buffers) are crucial in minimizing latency and
improving rendering times.

As visualization is executed as a pipeline with several stages, prioritized op-
timization for rendering is important because no matter how optimized the
other stages are, if they in turn have a negative impact on rendering time (e.g.,
through long decoding time, or CPU-based decoding leading to CPU-GPU
bandwidth bottlenecks), the entire pipeline will be as fast as the rendering stage
can be. An end-to-end performance optimization strategy is important in order
to achieve satisfactory performance. The sensitivity of latency on interactive
rendering is what makes client-side rendering important compared to server-
side approaches. Although server-side rendering can benefit from powerful
computational resources on the server or cloud, they can only be appropriate
when interactivity is not important.

3.5.1 Data Encoding and Transfer Techniques

Data encoding and data transfer on the web aims at efficient use of bandwidth,
progressive transmission, and minimal decoding time at the client side. These
goals are important to ensure high performance rendering in the browser.

Efficient use of bandwidth can be achieved through compression techniques
or minimizing the transferred data by preprocessing the data at the server and
by avoiding sending unnecessary data to the client [Ponchio and Dellepiane,
2015; Wen et al., 2014]. Commonly used compression schemes that can be
automatically handled by browsers are gzip and deflate. To use these schemes,
the browser sends the request to the server with a header Accept-Econding:
gzip,deflate, indicating to the server that it can handle any of these formats. If
the server can encode the data in one of these formats, it sends back the data
with the respective encoding. If none of the requested formats are supported by
the server, an uncompressed format is sent instead.

These compressions can be combined with preprocessing approaches that select
minimal data to be sent in order to get optimal data file sizes that use minimal

42 Chapter 3 ● Remote Visualization

bandwidth. The advantage of using these standard compression schemes is that
decoding at the client is handled automatically by the browser and, therefore,
there is no decoding step in the JavaScript application.

Since the browser provides the uncompressed version of the data to the
JavaScript application, the data is uploaded to the GPU in uncompressed
form, and therefore it can still suffer from the CPU-GPU bandwidth bottleneck.
Moreover, for large dynamic data uploading to the GPU can take significant
time and therefore slow down rendering times. Compression techniques that
cover the entire pipeline up to the GPU are more efficient because they minimize
the data uploaded to the GPU and also save GPU memory. This is important
especially for mobile devices.

Since data for rendering is usually fetched from the network, it is important
to isolate the rendering thread from network latencies. Latency cannot be
completely eliminated but can be tolerated if hidden. This is commonly achieved
by doing rendering in the main thread and data fetching in a web worker and
using asynchronous communication between the two threads. Rendering can
only be done in the main thread because the current WebGL standard does
not allow accessing WebGL context in the web worker. To further avoid the
cost of copying data between the main thread and the web worker, an efficient
transfer mechanism called transferable objects is used. This mechanism transfers
the ownership of data from sender to receiver.

Another approach for dealing with latency is using progressive data trans-
mission and level of detail (LOD). This approach is common for transmission
of mesh data. The idea is to encode the mesh data in different LODs and
transmit each of them progressively to the client starting with a low resolution
model. At the client, the low resolution model is decoded and rendered. The
user can start interacting with the model while more refined representations
are progressively being loaded and the image updated to get a more refined
representation. Several LODs can be used including discrete, continuous, and
view-dependent LODs.

Other techniques combine progressive transmission, view-dependent LODs
and compression to optimize the network bandwidth usage [Ponchio and
Dellepiane, 2015]. However, they require decoding at the client side that can
affect rendering performance and CPU-GPU bandwidth. There are techniques
that avoid the decoding step by using chunked binary data representations
that can be interpreted at the client as Array Buffers and directly uploaded to
the GPU. These approaches can be combined with quantization techniques to
compress mesh attributes data like position, normals and color to reduce the
amount of transferred data.

Dynamic volumetric data can be encoded in the form of compressed textures

3.5 ● Interactive Web-based Visualization 43

combined with a normal compression scheme, for example, deflate [Yang et al.,
2015]. Since deflate scheme can be handled by the browser, at the client side the
application is presented with already inflated data (i.e., only the compressed
texture format). Each frame is treated as compressed video texture that is
uploaded directly to the GPU for rendering. This technique takes advantage
of video texture support of WebGL and the compressed texture minimizes the
bandwidth and GPU storage.

There are other techniques that use lossless image compression techniques like
PNG to encode data. However this approach saves only the network bandwidth
because the decompression is handled by the browser before presenting the
data to the application. Therefore it is uploaded to the GPU in an uncompressed
form.

Progressive transmission leverages a feature of the HTTP protocol called range
requests that allows the client to request a range of bytes of a resource. With this
capability encoding formats can pack various LODs in each chunk which then
can be progressively decoded at the client [Limper et al., 2014].

As decoding time is paramount for interactive rendering in the browser, any
compression technique that does not take that into consideration may be just
shifting the problem from a network bandwidth problem to a latency problem.
Moreover, doing decoding in JavaScript, no matter how fast it is, can still suffer
from the cost of data upload to the GPU and the limited CPU-GPU bandwidth.
Although the bandwidth of the PCIe bus is relatively high compared to the
network bandwidth, data upload to the GPU can still remain challenging
especially on less powerful devices. For static data, a one time upload penalty
can be tolerable, but for dynamic data, its cost is significant. Therefore the cost
of data upload to the GPU for large dynamic data can not be ignored.

Interactive web-based visualization, therefore, requires a careful balance be-
tween computational, communication (bandwidth and latency), and storage
costs (memory). While these costs are somehow common also in other visual-
ization environments, communication costs are more pronounced in remote
visualization due to network-based communication and data access. Optimizing
only for one type of cost may not be optimal for the entire pipeline performance
and therefore end-to-end considerations are more important. Data encoding
and transfer techniques that use progressive transmission, levels of detail, and
GPU-friendly formats that eliminate or keep client side processing to the bare
minimum before GPU upload are more promising to achieve high interactive
rendering in the browser.

44 Chapter 3 ● Remote Visualization

3.5.2 Local Rendering in the Browser

In the local rendering approach, the rendering stage of the visualization pipeline
is performed at the client-side (i.e., in the browser). The main motivation for
local rendering is to improve interactivity during visualization. Local rendering
avoids round trip latencies suffered by server-side rendering approaches. Recent
advances in web technologies including JavaScript improved performance and
WebGL have made it feasible to achieve high rendering performance in the
browser. The discussion in this section focuses only on techniques that utilize
modern HTML5 and WebGL standards, as these are the technologies that allow
high performance rendering in the browser without plugins.

Many visualization techniques in the browser exploit the capability of the GPU
through WebGL or libraries built on top of it (e.g., SpiderGL [Di Benedetto
et al., 2010], Three.js [Threejs, 2010], and Babylon.js [BabylonJS, 2013]). Some
other techniques use the 2D canvas API or the Scalable Vector Graphics (SVG)
through the <svg> HML5 element (e.g., D3 [Bostock et al., 2011]). To improve
performance, other capabilities like Web Workers (for background processing),
Array Buffers (for binary data processing) are used.

The main advantage of local rendering approach is that once the data has been
transferred to the client, rendering performance is not affected by network
bandwidth and latency issues. For dynamic data, the rendering step can be
decoupled from data fetching and pre-processing steps (e.g., through asyn-
chronous communication) to ensure interactivity. By isolating the rendering
step from network transfers and pre-processing steps, the user can continue
interacting with the data which has already been uploaded to the GPU without
being stalled by network data transfers. The main challenge for this approach
is that it requires considerably high computing resources on the client (e.g
GPU), though this is becoming less a challenge with current technological
advances.

Common GPU-based rendering approaches in the browser use polygonal-
based or GPU-based ray casting techniques. Polygonal-based techniques use
basic triangle rasterization by using the low-level WebGL API directly or any
JavaScript library built on top of it. This approach is mainly used for rendering
3D models whose geometry is represented as triangle meshes, for example, CAD
models or geometry produced from modeling tools like Maya or Blender.

In some cases where the original data is not a triangle mesh, the model has to
be tessellated first before rendering. For example, in visualization of molecular
structures, spheres are used to model atoms of a molecule. Therefore, these
spheres have to be triangulated first and then uploaded as triangles to the GPU
for rendering. Use of triangles as approximations for surfaces benefits from
highly optimized rasterization hardware to achieve high rendering rates. In

3.5 ● Interactive Web-based Visualization 45

order to get smooth surfaces, however, a large number of triangles is usually
required. This can in turn lead to huge demands on CPU-GPU bandwidth.

In cases where the meshes are fetched from the network, this can have impli-
cations on network bandwidth, too. As discussed in section 3.5.1, different
compression and transfer techniques are employed to address these challenges.
In an effort to achieve interactivity, sometimes a trade-off has to be made be-
tween rendering performance and image quality. A surface can be approximated
using fewer triangles in order to maintain interactivity, thus compromising the
quality of the final image. Sometimes LODs techniques can be used to selec-
tively represent a scene with a coarse or a detailed model depending on how far
the object is from the view point or other viewing parameters (view-dependent
LOD).

A different rendering technique that achieves high rendering rates and high im-
age quality is GPU-based ray casting. It is an image-based rendering technique
that exploits the power of the GPU to accelerate rendering. Since WebGL sup-
ports only vertex and fragment processing as programmable stages, GPU-based
ray casting is performed in a fragment shader. Images are generated by shooting
rays through the center of each pixel to the scene to find objects that intersect
the ray using ray-intersection tests. When a ray hits an object along the ray,
the closest hit point is taken and shaded according to any shading model, for
example, Blinn-Phong. Since rays are shot for each pixel, the resulting images
are pixel correct and high quality. To initiate the rendering pipeline, a bounding
geometry or proxy geometry is rendered. Other implementations require an
acceleration structure and efficient ray traversal techniques to accelerate the
ray-object intersection tests as they consume more computation time than other
steps of the algorithm.

In platforms where OpenGL or WebGL supports depth writes in the fragment
shader, a different implementation technique can be used. In this technique,
a simpler proxy geometry is rendered in order to generate the fragments and
ray-object intersection is performed in the fragment shader to generate the real
object. This approach yields better performance as it does not require creation
of an acceleration data structure. Therefore, the time for creating the data
structure and the cost of ray traversal in the fragment shader is avoided. This is
especially important for dynamic data. These techniques are discussed in more
detail in chapter 4 and chapter 5 in the context of macromolecular structure
visualization.

Visualization of volume data from medical and other domains uses GPU-based
volume ray casting. This technique can use a single-pass [Movania and Feng,
2012] or multi-pass implementation [Congote et al., 2011] depending on the
capabilities of the hardware. The technique requires support of 3D textures to

46 Chapter 3 ● Remote Visualization

store the volume data. For hardware that does not support 3D textures, 2D
slicing or 2D texture atlases can be used to represent the 3D texture. However,
this approach requires that trilinear interpolation is computed in the fragment
shader which may be inefficient. Using 3D textures benefits from trilinear
interpolation performed automatically by the graphics hardware.

3.6 Web-based Visualization Applications

Many scientific domains have employed web-based visualization approaches in
order to exploit the ubiquity of the browser and modern HTML5 technologies.
These domains include the visualization of particles, volumes, hierarchical and
relational data, geospatial data, and 3D models. Moreover, generic toolkits for
visualization of various datasets have been developed.

Particle visualization has mainly focused on visualization of molecular data.
Molecular visualization in the browser has been popular from the early be-
ginnings of the web. The visualization of molecular data as calotte model is
an example for particle-based visualization where each atom is depicted as
a sphere. The size of each sphere represents the van-der-Waals radius of the
corresponding element. When using polygon-based rendering, these spheres
have to be tessellated into triangles that are then rasterized.

Jmol [Jmol, 2009], implemented as a Java applet and its recent re-implementation
in JavaScript, JSMol [JSmol, 2013], are some of the most popular tools used for
visualizing protein structures. The main limitation of Jmol is that it requires
users to install a browser plugin. While JSmol alleviates the plugin problem,
it still lacks the capability of handling large molecules. Both Jmol and JSMol
use polygon rendering as discussed section 3.5.2. Callieri et al. [2010] also
use polygon-based rendering for the visualization of molecular data via the
SpiderGL library [Di Benedetto et al., 2010]. Additional recent examples of
web-based molecular viewers are NGL Viewer [Rose and Hildebrand, 2015],
3DMol.js [Rego and Koes, 2015], and PV [Biasin, 2013]. They all leverage WebGL
for visualization of molecular structures in the browser. The RCSB protein data
bank [Berman et al., 2000] web site, for example, uses NGL as one of its
integrated protein viewers. Figure 3.3 shows one of the visualizations produced
by the NGL Viewer. iView [Li et al., 2014] is another protein viewer that also
incorporates virtual reality features. Li et al. [2014] presented a visualization
tool for protein-ligand complexes that was built using Three.js [Threejs, 2010].
Beside the aforementioned calotte model, most of these viewers support other
commonly used visualizations for molecular data (e.g., molecular surfaces or
ball-and-stick models), which are derived from the particle positions. These
additional representations are all the same based on a polygonal representation

3.6 ● Web-based Visualization Applications 47

Figure 3.3 — Interactive visualization of the chaperonin complex (PDB ID:
1AON, 58,674 atoms) using the integrated NGL protein viewer [Rose and
Hildebrand, 2015] on the RCSB webpage (https://www.rcsb.org).

and rendered using the same techniques.

Visualization of dynamic molecular data (trajectories) from molecular simula-
tions is also an important feature for domain scientists. This capability has
up to recent years been confined to desktop solutions. Chapter 5 discusses
visualization of dynamic data in more details. As discussed in section 3.5.2, two
main approaches can be used for rendering spheres: GPU-based ray casting and
mesh rendering. GPU-based ray casting techniques offer better results in terms
of rendering performance and image quality. These techniques are discussed
in more details in chapter 4 and chapter 5. Figure 3.4 shows some exemplary
images produced by GPU-based ray casting.

Chandler et al. [2015] present a WebGL remote visualization solution for
smoothed particle hydrodynamics (SPH) simulation data. The server side
preprocesses data by creating an octree data structure for storing a multi-
resolution model for each time step. Streaming of data to the client is done for
each individual time step. The client initially receives a low-resolution model
from the server and then high resolution models are incrementally loaded as
the rendering progresses. This is done to avoid long latencies before the first

https://www.rcsb.org

48 Chapter 3 ● Remote Visualization

Figure 3.4 — Visualization of molecular structures at interactive frame rates
using WebGL-based ray casting techniques. Left: an insulin protein (PDB ID:
1RWE, 823 atoms) and its close-up view with correct sphere-sphere intersections
and pixel-accurate spheres [Mwalongo et al., 2014]. Middle: a hemoglobin pro-
tein (PDB ID: 4HHB, 4,384 atoms) with toon shading effects generated through
deferred shading [Mwalongo et al., 2015]. Right: capsid of a papillomavirus
(PDB ID: 3IYJ, 1.3 M atoms).

view of the model is rendered. The received octree data structure is encoded as
a texture and uploaded to the GPU during rendering. Since the solution uses
a WebGL 1.0 implementation that does not support 3D textures, the textures
are packaged as 2D textures and address translation is used to access the data
in the shaders. Moreover, fetching and processing of data in the client is done
in a web worker to avoid stalling the rendering or UI interactions in the main
thread.

Volume visualization has been applied to medical, weather, and hydrody-
namics simulation data. Rendering techniques used in these applications are
GPU-based ray casting or volume ray marching and texture-based techniques.
These techniques typically require 3D texture support in the hardware.

Congote et al. [2011] presented an early work on volume visualization using
GPU-based ray marching in WebGL (see chapter 2 for details). They use a
multi-pass GPU-based volume ray casting approach to visualize volumetric
data from medical imaging and weather radar scans. Their work forms a basis
for the implementation of MedX3D in X3DOM—MEDX3DOM [Congote, 2012].
MedX3D [John et al., 2007] is an extension of the X3D standard Brutzman
and Daly [2007] to support web-based volume visualization. Other volume
visualization systems for large medical data were introduced by Movania and
Feng [2012] (see figure 3.5) and Noguera and Jiménez [2012]. Both systems
also run efficiently on mobile device browsers. Jiménez et al. [2014] presented
a client-server application for the analysis of the 3D fractal dimension of MRI
data.

Jacinto et al. [2012] presented a client-server application for medical volume
segmentation and rendering. The segmentation uses an image-based approach

3.6 ● Web-based Visualization Applications 49

Figure 3.5 — Example of medical volume rendering in WebGL using volume
ray marching (image: [Movania and Feng, 2012] © 2012 IEEE).

that extracts slices from the original volume data on the server and sends them
to the client as JPEG or PNG images, where they can be annotated to trigger
the segmentation on the server. Isosurfaces are extracted from the segmented
volume and sent to the client for visualization. The server side uses the VTK
library and the client side uses the Three.js [Threejs, 2010] library for rendering
the isosurface meshes (see figure 3.6). One targeted application is the fast
extraction of knee bones for prosthetic design.

A medical visualization application that exploits augmented reality capabilities
has been shown by Virag et al. [2014]. The system is designed using a client-
server architecture, but also takes advantage of WebRTC for accessing a camera
and transmitting the imagery to remotely allow for a second opinion from
another physician. The camera feed is also used as input for the JSARToolKit,
which takes care of marker tracking. That way, a virtual model of a patient
equipped with said markers can be synchronized with the visualization.

Hou et al. [2015] present an image-based technique to visualize medical volumes.
They used a server-side GPU-accelerated rendering and stream each generated
frame to the client for display. The rendering engine on the server uses CUDA
and the VTK library for rendering the data to a framebuffer object (FBO) that is
then read back and sent to the client. The advantage of this approach is that it
benefits from powerful computational and storage resources on the server side.

50 Chapter 3 ● Remote Visualization

Figure 3.6 — Example of the web-based medical volume rendering presented
by Jacinto et al. Jacinto et al. [2012]. The isosurface meshes were extracted on
the server using Marching Cubes and rendered on the client using WebGL
(image: [Jacinto et al., 2012] © 2012 ACM).

Figure 3.7 — Examples of web-based information visualization using Flu-
idDiagrams [Andrews and Wright, 2014].(image created from examples on
the author’s homepage http://digitalwright.net/msc/examples/, last accessed
2018/07/31).

However, by doing the rendering on the server, smooth interaction on the client
is affected due to round trip network latency.

Information visualization techniques leveraging the power of WebGL and
HTML5 are presented by Sarikaya and Gleicher [2015] and Liu et al. [2013].
Figure 3.7 shows example information visualizations.

Sarikaya and Gleicher [2015] present a WebGL-based implementation of the
Splatterplots technique [Mayorga and Gleicher, 2013] for interactive visualiza-
tion of large two-dimensional point data sets. Splatterplots address the problem
of overdraw in regular scatter plots that arise when visualizing large point data

http://digitalwright.net/msc/examples/

3.6 ● Web-based Visualization Applications 51

sets. Computations that were performed on the CPU in the original implemen-
tation [Mayorga and Gleicher, 2013] were moved to GPU using render-to-texture
techniques in order to attain better performance.

Liu et al. [2013] present techniques for visualization of geolocated data in
WebGL. They use a client-server architecture where the server preprocesses
the data before streaming them to the client for rendering. The preprocessing
involves pre-computing data tiles from data cubes and then encoding them
as image files. These images are transferred to the client and uploaded to the
GPU as textures. On the client side, the authors employ a two-pass approach
for rendering: The first pass is a computation step which uploads the data
tiles to the GPU and computes summary values. The results are written to a
framebuffer object (FBO). The second pass is a rendering pass that uses the
textures generated in the first pass to render the final images. The focus of their
techniques is to achieve interactive and perceptual scalability for visualization of
large data sets. In order to achieve this scalability, they use binned aggregation
techniques to reduce the amount of data to be visualized and exploit GPU
acceleration for parallel computation and rendering. Data reduction techniques
combined with the use of data tiles allow efficient visual analysis of large data
sets.

Geospatial Visualization includes spatial and spatial-temporal data (4D) and
covers various kinds of data like marine data [Resch et al., 2014], raster-
maps [Jenny et al., 2016], weather forecasting data [Diehl et al., 2015], and
city models [Gaillard et al., 2015]. Some examples of geospatial visualizations
are shown in Figure 3.8

Common among all modern web-based geospatial visualizations is the use of
WebGL for hardware-accelerated rendering and other modern HTML5 tech-
nologies. Some approaches [Resch et al., 2014; Gaillard et al., 2015] use WebGL
directly and others [McCann et al., 2014; Kim et al., 2015] use declarative frame-
works like X3DOM. X3DOM implements a component from the X3D standard
for visualization of geospatial data [Plesch and McCann, 2015].

The overview-and-detail visualization for mesh data by Figueiredo et al. [2014]
described in section 3.5.2 was used for the visualization of geomorphological
structures of an underground cave in the browser. A 3D mesh representing the
surface of the cave was generated from a detailed point cloud and stored on a
server at different levels of detail. The overview can be used to navigate and
select stalactites or stalagmites and to request a high-resolution representation
of the filtered neighborhood of these relevant structures for detail analysis.

Resch et al. [2014] describe a prototypical implementation of a web application
for visualization of 3D time-dependent geospatial data to support non-experts

52 Chapter 3 ● Remote Visualization

Figure 3.8 — Examples of web-based geospatial visualization applications
(image: [Resch et al., 2014]).

in decision making (see figure 3.8). They further discuss various user require-
ments including usability, representing 4D geo-data for such applications, their
implementation aspects and performance. Moreover, the authors highlight
challenges of representing spatial-temporal data in web-based visualization
tools.

3D Models Visualization involves rendering of 3D meshes that can either
be stored locally or streamed from a server. As discussed in section 3.5.1,
these applications, employ various level of detail techniques combined with
efficient data encoding and transfer techniques for efficient bandwidth usage.
Additionally, these techniques can be combined with compression or selective
data transfer to further reduce the amount of data that is sent to the client for
rendering. Examples of various 3D model visualizations are shown in Figure 3.9

Generic Toolkits exist, covering a range of application domains including
information visualization, protein visualization, medical visualization, and
geospatial visualization. Most of these toolkits use client-side rendering that
employs modern browser-based web technologies like WebGL. They provide
high-level functionality on top of WebGL in order to simplify creation of
visualizations in certain domains.

FluidDiagrams [Andrews and Wright, 2014] is a prototypical toolkit that offers
GPU-accelerated implementations of various information visualization tech-
niques (e.g., bar charts, scatter plots, line charts, hyperbolic browser, parallel
coordinates, and cone trees) using the Three.js [Threejs, 2010] library (see fig-
ure 3.7). The authors demonstrate that their WebGL-based implementation is
capable of scaling to large data sets and achieves higher frame rates compared to
those based on SVG (e.g., D3 [Bostock et al., 2011]) or the 2D Canvas API [W3C,
2015].

3.6 ● Web-based Visualization Applications 53

Figure 3.9 — Examples of web-based 3D model visualizations (image: Top: [Pon-
chio and Dellepiane, 2015] © 2015 held by Owner/Author(s). Publication Rights
Licensed to ACM. Bottom: [Limper et al., 2014] © 2014 ACM).

Goecks et al. [2013] discuss various server and client web-framework com-
ponents for simplifying the creation of visual analysis applications for high-
throughput genomic data. They further describe how the components are used
to create several concrete applications. The components are implemented and
integrated into the Galaxy web platform [Goecks et al., 2010].

ManyEyes [Viegas et al., 2007] was a public information visualization website
that allows users to upload their data, visualize them, and finally annotate the
visualizations while sharing them with others.

Popular commercial cloud-based information visualization solutions include
Tableau Online [Tableau, 2013] and TIBCO Spotfire Cloud [TIBCO, 2014]. These
solutions provide Software as a Service (SaaS) tools for creating various interac-
tive visualizations using local or online data and allow sharing the visualizations
amongst users. These commercial solutions are usually designed to scale to
very large data sets and many concurrent users.

The X Toolkit [Haehn et al., 2014b] is a WebGL-based framework for interactive
visualization of medical data sets in the browser. The toolkit supports various
data formats and visualizations from the neuroimaging domain. Additionally,
it supports various data formats for surfaces and volumes. Using this toolkit,
Haehn et al. [Haehn et al., 2014a] developed a web-based application for collab-

54 Chapter 3 ● Remote Visualization

orative proofreading of brain data that supports 2D and 3D visualizations.

Cesium.js [Analytical Graphics, 2012] is a general library for geospatial data
visualization that relies on WebGL for fast rendering. It supports various
standard data formats as well as the glTF format [Khronos, 2015] for the
exchange of 3D data between client and server.

Jomier et al. [2011] discuss the integration of ParaviewWeb [Jourdain et al., 2010]
with a medical and scientific data management system (MIDAS) [Jomier et al.,
2009] for visualization of large data sets. The system uses a remote rendering
approach where images are rendered on the server and streamed to the client
for display. Their integration setup uses a client-server architecture between the
data management system and the visualization server. The user selects what
data to visualize through a web-based user interface of the data management
system. Subsequently, the visualization request is forwarded to the visualization
server. Badam and Elmqvist developed Polychrome [Badam and Elmqvist, 2014],
an application framework that allows synchronized interaction with web-based
visualization. This mainly focuses on the interaction side of visualization and
can be used for online collaboration as well as UI synchronization across devices
or remote control. Interaction mode extensions to X3D/X3DOM concerning
navigation and manipulation for web-based CAD applications are also described
by Mouton et al. [2014].

3.7 Conclusion and Challenges

This chapter has provided an overview of previous work on the area of remote
visualization focusing on web-based, grid-based, and cloud-based visualization,
and web services. Since computing resources employed in remote visualization
are distributed and heterogeneous, research on this topic has also attempted
to apply the concept of web services to visualization in these computing envi-
ronments. The chapter has discussed both early approaches using SOAP-based
web services and the recent trend towards RESTful web services. Efficient
data encoding and transfer techniques for interactive local rendering in the
browser have also been discussed. Finally, the chapter has discussed visualiza-
tion applications in various domains including volume, geospatial, particle, and
information visualization.

3.7.1 Conclusion

Motivated by rapidly growing data sets from simulations, sensors, and other
digital information sources, remote visualization is gaining a renewed interest

3.7 ● Conclusion and Challenges 55

and strives to leverage powerful computation resources to enable scientists and
engineers to make sense of the massive data sets.

The main challenges for remote visualization are still bandwidth and latency.
Of the two main challenges for remote visualization, bandwidth has received
the most attention through various compression techniques (e.g., LZ4 [Collet,
2011] and ZFP [Lindstrom, 2014]) and video encoding techniques. Latency
has not been adequately addressed. This makes latency reduction and latency-
tolerant techniques an important agenda for research in interactive remote
visualization.

There has been much improvement on the computational resources available
on the client side. It is now common for mobile devices (e.g., smartphones,
tablets, and laptops) to be equipped with multi-core CPUs and graphics cards
that can handle computational tasks that a few years ago were restricted to
desktop computers. As the trend towards collaborative research and mobile
researchers accelerates, visualization techniques that harness the power of
mobile devices and server-side technologies (e.g., cloud computing) will become
more attractive.

Remote visualization with remote rendering and image/video streaming is
based on the assumption that the client machines do not have enough computa-
tional power to perform rendering at interactive frame rates. However, this is
now changing due to improvements on CPU and GPU technology on mobile
devices and networking technology. Hybrid visualization approaches, where
expensive preprocessing steps are offloaded to the server or cloud and render-
ing is performed in the client, are more promising because they exploit the
entire spectrum of the available computational resources. Moreover, rendering
on the client side addresses the problem of network latency, which is crucial for
interactive visualization.

As the data sets continue to grow, even if it becomes possible to visualize
all the data, the images generated may become hard to comprehend due to
limitations of the human visual system [Healey and Enns, 2012; Kastner and
Ungerleider, 2000]. Rather than trying to visualize all the data at once, query-
based visualization techniques [Sanderson et al., 2012; Gosink et al., 2008;
Stockinger et al., 2005] that extract only a subset of the data relevant for the
task at hand will gain importance. By selecting only a subset of the data,
less bandwidth is used and computation requirements for local rendering are
minimized.

Visualization of large data sets may require data management capabilities
similar to those available in databases. Building visualization algorithms on
top of a data management and analysis platform would spare the visualization
algorithms from data management issues and challenges of the heterogeneity

56 Chapter 3 ● Remote Visualization

of the data sources. The visualization layer would focus only on mapping
and rendering steps of the visualization pipeline. Data access and filtering
can be handled by a separate data service layer that hides the differences of
data sources and presents a uniform data access interface to the visualization
layer. Scientific databases like SciDB [Stonebraker et al., 2013] that combine data
management and analysis capabilities can be exploited for remote visualization
of large data sets.

RESTful services [Pautasso, 2014] have become a predominant approach for
implementing web services due to their simplicity and for effectively leveraging
the web infrastructure for scalability and performance. The introduction of
WebGL [Khronos, 2011b, 2013] in the web browsers combined with modern
web technologies introduced in HTML5 [W3C, 2017] standard have given
the browser the capability to become a preferred platform for deployment of
interactive graphics applications. Given the ubiquity of browsers across different
devices, visualization tools can harness all the computational resources available
to support collaborative visualization for research teams that are geographically
distributed. By combining mobile, web, and cloud computing technologies,
complex problems can be tackled by bringing together experts across the globe
to work on a problem and, thus, accelerate scientific discovery.

3.7.2 Challenges

As discussed in section 3.4, grid and cloud computing are the two platforms for
scaling the server side infrastructure to support high demanding computations.
With current technological trends, cloud computing is likely to become the
dominant server side infrastructure for processing and storage of large amounts
of data. Therefore, cloud-based visualization would be the dominant form of
remote visualization whereby, data storage and computationally demanding
preprocessing is done at the server and the rendering is performed in a browser
supporting GPU-based rendering.

The main challenge for cloud-based visualization is limited support for GPU
access from the virtual machines. Although the rendering part can be shifted
to client devices (the majority of which are currently fitted with GPUs), still
GPU access in the cloud is important for visualization techniques that depend
on technologies like CUDA and OpenCL for more demanding computations
(e.g., preprocessing). As discussed in section 3.4.2, a preferred approach for
interactive cloud-based visualization is cloud computation with client-side
rendering. Interactive cloud-based visualization can benefit by leveraging GPU
acceleration in the cloud the same way cloud gaming is benefiting from GPU
acceleration (e.g., rendering and video encoding done on the GPU) [OTOY,
2013; Shea et al., 2013; Chen et al., 2011].

3.7 ● Conclusion and Challenges 57

Another challenge is that existing visualization tools were not designed for
virtualized and elastic computing infrastructures. For these applications to be
deployed in the cloud and to take advantage of its elasticity benefits (ability
to scale down and up depending on current workload), redesigning them into
the so called Cloud-Native Applications [Andrikopoulos et al., 2013] would be
required. Moreover, visualization tools will need to be easily integrated with
other tools (e.g., simulation and analysis tools) to support seamless analysis
workflows and relieve researchers from manual integration of different tools.
Service-oriented software techniques can also prove helpful in this regard.
Different tools running on different platforms and written in different program-
ming languages should be able to communicate and share their data based on
standard communication protocols.

C
h

a
p

t
e

r

4
GPU-based Molecular Data
Visualization in the Browser

The visualization of molecular data in the browser has attracted researchers
since the beginning of the web. The browser provides a portable platform
for deploying applications that run across devices from workstations to smart-
phones.

Researchers in the field of biochemistry, for example, analyze the behavior of
proteins. In order for them to understand the functionality of proteins, the
visualization of protein structures is important. Most of the tools developed to
support this task were implememented for the desktop platforms [Humphrey
et al., 1996]. Efforts to extend these tools to the browser, until recently, has been
challenging due to limited rendering capabilities in the browser as discussed in
chapter 3.

One of the popular web-based molecular viewer is Jmol [Jmol, 2009]. This
viewer is implemented as a Java Applet. Despite its popularity, its performance
has been hampered by lack of support in modern browsers. To solve this
problem, a re-implementation based purely on JavaScript, called JSMol [JSmol,
2013] has been introduced. However, as mentioned in chapter 3, it can only
support visualization of small molecules.

The advent of WebGL has led to research interest in GPU-based molecular visu-
alization tools that exploit the capabilities provided by the modern browsers.
Given that the GPU is optimized for rendering triangles, most existing web-
based molecular viewers use polygon rendering techniques to visualize molecu-

60 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

lar structures [Di Benedetto et al., 2010; Pettit and Marioni, 2013; Li et al., 2014;
Rose and Hildebrand, 2015].

One of the models for visualizing molecular structures is the space-fill model.
In this model, each atom of the molecule is represented as a sphere where
the center of an atom maps to the center of the sphere and the atomic radius
(Van-der Walls radius of an element for that particular atom) is mapped to the
radius of the sphere.

Since each atom is represented as a sphere, classically these spheres have to be
tessellated into triangles before they can be rendered. This essentially limits the
visualization to molecules with only a small number of atoms because in order
to obtain high quality images, a large number of triangles is required to obtain
a smooth surface. As mentioned in chapter 3, this is challenging especially
in JavaScript because its performance is usually slow compared to compiled
languages and therefore tessellating thousands of spheres would be slow. The
resulting data would also create a communication bottleneck between the CPU
and the GPU, depending on the dataset size. Moreover, polygon rendering
techniques do not generate high-quality images compared to those obtained
by performing ray-object intersection using the implicit surface equation of the
sphere.

This chapter describes an implementation of the techniques for visualization of
molecular structures in the web browser using GPU-based ray casting. The work
discussed in this chapter has been published in a paper [Mwalongo et al., 2014].
Figure 4.1 shows some visualizations rendered using techniques described in
this chapter.

4.1 GPU-based Ray Casting

GPU-based ray casting is considered as the state-of-the-art technique for the
visualization of molecular structures. It enables high-quality images and allows
interactive rendering of molecules with very large number of atoms [Grottel
et al., 2015]. This is achieved by leveraging the power of the GPU that can run
thousands of threads in parallel.

GPU-based ray casting renders the model by performing ray-sphere intersection
tests for each atom in a fragment shader. A proxy geometry that covers the
whole object is rendered and the implicit description of the object is sent to
the shader. For a sphere, for example, only the center and radius are needed.
In the fragment shader, a ray from the camera position through the current
fragment is constructed and intersected with the object, similar to ray tracing
without secondary rays. Local lighting (e.g., Blinn-Phong-shading) can be used
to render the object. This method, first introduced by Gumhold [2003] and Klein

4.1 ● GPU-based Ray Casting 61

Figure 4.1 — Visualization of spacefilling model for proteins using our WebGL
glyph ray casting method. Left: A lactamase (PDB ID: 1M40; 5,712 atoms),
middle: a large ribosomal subunit (PDB ID: 1N8R; 90,418 atoms). The imple-
mentation of the sphere ray casting described in this paper is similar to volume
ray marching. The image to the right shows a WebGL volume rendering of the
approximate electron density distribution of an insulin protein (PDB ID: 1RWE,
823 atoms; volume resolution: 99×74×95 voxels).

and Ertl [2004], has been used for rendering molecular models (e.g., [Reina and
Ertl, 2005; Sigg et al., 2006]) and is also used in popular molecular visualization
tools like VMD [Humphrey et al., 1996].

Moreover, by using the compact, implicit description of the geometry for
rendering on the GPU, less data has to be transferred from the CPU to the
GPU, thus minimizing the bandwidth usage. This is critical in the browser
environment whereby in order to obtain much performance, more computations
have to be pushed to the GPU and less data has to be uploaded to the GPU so
that the CPU code has more time handling user interaction events.

Performing ray-sphere intersection is computationally expensive and, therefore,
benefits from acceleration structures to speed up the computation. There are
several acceleration structures that can be used, each with different performance
characteristics [Wald et al., 2007].

Generating these structures is done in a preprocessing step. This step can
introduce significant computational overhead, especially for dynamic data
in which case the acceleration structure has to be generated in each frame.
However, for static data, as it is in our case, this overhead is incurred only
once.

In our implementation we use a 3D grid data structure due to its low computa-
tional overhead in creating the data structure and traversal of the data structure
during rendering in the fragment shader.

A different technique that does not require an acceleration structure uses a
proxy geometry for each sphere. The center of the sphere and its radius are sent

62 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

to the GPU for each atom and the proxy geometry for each sphere is rasterized
to generate fragments that cover the bounding box of each atom in screen
space. In the fragment shader, a ray is cast for each fragment and a ray-sphere
intersection is performed.

Since behind each proxy geometry there is a single sphere, no traversal is
required in the fragment shader. Thus, this approach reduces the overhead
of traversing the grid acceleration structure. However, to get correct intersec-
tions, the fragment shader requires the capability of writing the fragment depth
(gl_FragDepth). This capability is not part of the WebGL 1.0 [Khronos, 2011b]
standard, but is provided as an extension. However, at the time of implementa-
tion, this extension was not yet supported by the browsers, so a technique first
proposed by Lindow et al. [2012] was adopted to suit the WebGL constraints.
The ability to replace the depth value in the fragment shader is now part of the
standard in WebGL 2.0.

4.2 Acceleration Data Structures

1) Grid Data (3D Array flattened to 1D Array)

<X,Y,Z> <X,Y,Z> <X,Y,Z> <X,Y,Z> <X,Y,Z> ...

[Y0] [Y1] [Y2] [Y3] [Y4] ...

where:
X – atomsCount
Y – startListIndex
Z – voxelID

2) Atoms List (1D Array)

where:
X – atom index in the
 “Atom Positions” array

<X> <X> <X> <X> <X> ...

indices

[X4] ...
<x,y,z,r> ...

3) Atoms Positions

[X3][X1] [X2][X0]
<x,y,z,r><x,y,z,r><x,y,z,r><x,y,z,r>

where:
(x,y,z) – atom center
 r – atom radius

4) Atoms Colors
where:
(r,g,b) – red, green, blue [X4] ...

<r,g,b> ...
[X3][X1] [X2][X0]

<r,g,b><r,g,b><r,g,b><r,g,b>

Figure 4.2 — Data structures for the grid that is used for ray casting the spheres.
The atoms (position in R

3 and radius) and their colors (RGB) are also stored on
the GPU and referenced by the grid [Mwalongo et al., 2014].

As mentioned above, the acceleration data structure is usually built in a prepro-
cessing step. The structures used are as shown in Figure 4.2. In our prototypical

4.3 ● Implementation 63

implementation, which is described in the next section, the data structures are
created on the server and sent to the client in JSON format for rendering. Once
the data is received on the client, it is decoded, packed as textures and then
uploaded to the GPU for rendering.

4.3 Implementation

The visualization processing pipeline is implemented using a client-server ar-
chitecture. The server performs the preprocessing steps and the client performs
the rendering and handles user interactions. The choice of a client-server ar-
chitecture allows to offload costly computations to the server, and reduces the
computation load on the client. Performing the preprocessing on the client was
also implemented in order to compare the performance with that of performing
the preprocessing on the server. Performing the preprocessing on the server
performed better than the alternatives (see section 4.4). Figure 4.3 and Figure 4.4
show an overview of the implementations of the two approaches.

preload vertex & fragment
shader from server

send PDB ID to server

parse data and create
the textures

send data to GPU & render

load protein data
from data bank

extract atom coordinates

format data and send
it to the client

client server

create grid data structure

sort atoms into the grid

Figure 4.3 — Server-side preprocessing.

The server creates a 3D uniform grid structure by sorting the atoms in each cell
of the grid. We use a compact grid data structure as proposed by Lagae and
Dutré [2008]. The data structure uses two static arrays for storing a concatenated
list of atoms in each cell and another array for the grid itself. Each cell stores

64 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

preload vertex & fragment
shader from server

send PDB ID to server

create grid data structure

sort atoms into the grid

parse data and create
the textures

send data to GPU & render

load protein data
from data bank

extract atom coordinates

format data and send
it to the client

client server

Figure 4.4 — Client-side preprocessing. The dashed green box highlights the
part of the computation that is shifted between the client and the server.

the starting index of the list of atoms and the total number of the atoms that
overlap it. They used a special sentinel value to indicate where the list for each
voxel ends. Since we store the number of atoms in each cell, we do not have to
use such a sentinel to indicate where one list ends in the concatenated array.
The number of atoms in each cell is used to iterate through the atom list during
the traversal stage.

Two approaches can be used to sort the atoms in each cell of the grid. The first
approach uses sphere-box intersection test [Larsson et al., 2007]. This algorithm
computes a sphere-box intersection test with each cell for every atom. The atom
is added to a particular cell only if it intersects it. However, this method has the
disadvantage of performing many sphere-cell intersection tests and can affect
the performance significantly especially for large molecules.

The second approach uses a bounding-box method [Pharr and Humphreys,
2010]. This method first finds the bounding box of each atom and then the atom
is added to every cell of the grid that is covered by the extents of the bounding
box. Although this algorithm can add more atoms even in cells where the atom
does not overlap the cell, it avoids many cell-sphere intersection tests.

Each cell of the grid stores the number of atoms that overlap that cell and

4.3 ● Implementation 65

the start index of the first atom in the list of atoms for that cell. The atom
positions are parsed from a PDB file that can be automatically downloaded
from the RCSB Protein Data Bank [Berman et al., 2000] or from a file stored
locally. In addition to sorting the atoms in the grid data structure, the server
also assigns the color to each atom depending on the chosen coloring mode. In
our implementation, we use the CPK coloring scheme [Koltun, 1965], which
assigns a specific color to each element. Because WebGL 1.0 does not support
3D textures, the data is linearized and packed into an array and sent to the
client including the bounding box of the molecule.

The client decodes the received data and creates textures that are uploaded to
the GPU. In WebGL 1.0, only 2D textures are supported. Therefore 1D and 3D
textures are packed as 2D textures and address translation is used to access
the correct values from the textures in the fragment shader (see Figure 4.5).
3D textures have now become a part of the standard in WebGL 2.0 [Khronos,
2013].

Figure 4.5 — Fragment shader code for accessing voxel data from the grid data
structure. Because WebGL 1.0 does not support 3D textures, the data is packed
as 2D textures (image source: Mwalongo et al. [2014]).

All the data required for rendering is stored as 2D textures, as this is the only
type supported by WebGL. Grid data is stored as 2D GL_RGB texture, the atoms
list is stored as 2D GL_LUMINANCE texture, atom positions and radii are stored
in a single 2D GL_RGBA texture, and colors of atoms are stored as a 2D GL_RGB
texture.

To initiate the rendering pipeline, the front-faces of the bounding box of the
molecule are rendered. The grid traversal and ray-sphere intersection tests are
performed in the fragment shader. For each fragment, a ray originating from
the eye position through the center of the current fragment position is generated
and each cell is visited using the traversal algorithm introduced by Amanatides
and Woo [1987]. If the cell has no atoms, the traversal proceeds to the next cell
in the same direction, otherwise a ray-sphere intersection is performed for all
the atoms that are found in that cell. The nearest intersection point from the ray

66 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

Table 4.1 — Performance measurements for the client-side preprocessing and
the server-side preprocessing. All times are given in milliseconds (ms). The
grid density was set to 5 for all tests.

Client-side Server-side WebGL OpenGL

PDB ID #Atoms Preproc. Mem. Loading Preproc. Mem. Loading Rendering Rendering Grid Res.

1CCN 327 17 37 kB 8 2 65 kB 10 427 fps 452 fps 11×13×10
1OGZ 944 35 49 kB 12 2 185 kB 20 291 fps 376 fps 18×14×17
1M40 5 712 248 291 kB 49 7 1.7 MB 108 122 fps 156 fps 28×26×37
1AF6 10 050 309 526 kB 68 12 2.3 MB 140 126 fps 159 fps 38×39×32
1N8R 90 418 2 240 5.4 MB 345 65 20 MB 1 800 30 fps 47 fps 65×82×82

origin is kept along the way. The traversal is terminated when it reaches the
end of the bounding box.

To optimize performance, the ray can be terminated early once the nearest
intersection point is found. The intersection point is shaded using Blinn-Phong
shading model. If the traversal reaches the end of the bounding box without
hitting any atom, then the current fragment is discarded.

4.4 Results and Discussion

We measured the rendering performance as well as the times for preprocessing
and data transfer using several protein data sets from the RCSB Protein Data
Bank [Berman et al., 2000].

The test platform was a Windows 7 PC with an Intel Core i7-2600 (3.4 GHz),
8 GB RAM and an NVIDIA GeForce GTX 560 Ti. We used the Tomcat 7 web
server and the Mozilla Firefox web browser (version 27.0.1 using WebGL 1.0
without ANGLE binding and WebGL GLSL ES 1.0). The canvas size was set to
768×768 pixels for all measurements.

Table 4.1 shows the results of our performance measurements for client-side
preprocessing as well as server-side preprocessing. Preproc. is the time required
to sort all the atoms in the grid, excluding the time to calculate the grid
parameters. Mem. denotes the amount of memory that is transferred from
the server to the client. Loading is the time for downloading the data used in
creating the textures from the server to the browser of the client (the server and
the client have the same hardware and are connected to a local gigabit Ethernet
network). The time does not account for the loading of other files making up
the page, like the shaders, which are all loaded in the browser when the page is
first accessed. WebGL Rendering is the time for rendering the protein in the GPU.
We calculate this time by forcing the draw calls to block (using glFinish()) and
measure the elapsed time for the draw calls. Grid Res. gives the grid resolution,
that is, the number of cells in the x, y, and z dimension.

4.4 ● Results and Discussion 67

Figure 4.6 — Left: Structure of large ribosomal subunit in complex with vir-
giniamycin M (PDB ID: 1N8R) with 90 418 atoms (image source: Mwalongo
et al. [2014]). Right: Visualization of the crystal structure of the asymmetric
GroEL-GroES-(ADP)7 chaperonin complex (PDB ID: 1AON) with 58 674 atoms.

Figure 4.7 — Visualization of an insulin protein (PDB ID: 1RWE, 823 atoms).
The cutout to the right shows a close-up view. Our shader-based WebGL ray
casting generates pixel-accurate spheres and correct sphere-sphere intersections
(image source: Mwalongo et al. [2014]).

The performance results given in Table 4.1 show that it is feasible to achieve
high-quality images at interactive frame rates even for molecules with a large
number of atoms (see Figure 4.6). A close-up view of the visualiazion of a
small protein shown in Figure 4.7 highlights the visual quality of the images
generated by the WebGL-based ray casting described in this chapter.

68 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

Another observation of the results in Table 4.1 shows that the grid resolution
influences the performance of the rendering speed. High grid resolution results
in large number of cells that can increase the grid traversal time in the fragment
shader. On the other hand, low grid resolution results in fewer cells but can
result into more atoms in a single cell, thus increasing the computation time for
ray-sphere intersection in each cell. Therefore, choosing the right grid resolution
is important in order to achieve better performance.

The grid resolution is influenced by the grid density, which is defined as the
ratio of cells and primitives, given as ρ = M/N where M is the number of cells
and N is the total number of primitives (in our case spheres). Several studies
(see e.g., [Haines, 2001], [Shirley, 2002], and [Wald et al., 2006]) have shown
that a number between 2 to 10 gives good performance. In our prototypical
implementation we used 5 as the grid density, which gave good results in our
measurements. Increasing this value increases the grid resolution and, hence,
the number of grid cells. Consequently, it would result in higher times to
traverse the grid and more data to transfer (due to the duplication of atoms in
adjacent grid cells). In contrast, lower density values would result in larger grid
cells that contain more atoms in a single cell. In this case, more unnecessary
sphere intersection tests per cell would have to be computed in the fragment
shader, which would also lower the performance. Moreover, the WebGL security
model [Khronos, 2011c] discourages long running shaders as a mechanism
to prevent itself from denial of service attacks. Therefore browsers usually
terminate long running shaders, leading to lost WebGL context.

In order to evaluate the WebGL rendering speed, we implemented the sphere
ray casting algorithm as a desktop application using C++ and OpenGL 2.0 with
GLSL 1.3 shaders, which is a basis for WebGL 1.0. The frame rates can be found
in the OpenGL Rendering column in Table 4.1. The performance of the WebGL
rendering is comparable to the OpenGL rendering, which is a promising result
for interactive web-based visualization.

As mentioned in section 4.3, we implemented two approaches involving server-
side and client-side preprocessing. The server side was implemented using
Java, while the client side was implemented using JavaScript. Table 4.1 allows
us to compare the performance of the two approaches. The results show that
performing preprocessing on the server side gives considerably better perfor-
mance compared to the one performed on the client side. As the algorithmic
implementation is the same, this difference in performance may be attributed
to the difference in language efficiency as Java in general performs better than
JavaScript.

On the aspect of data transer, time taken for sending data from the server to
the client is higher when the preprocessing is done on the server compared to

4.4 ● Results and Discussion 69

when it is done on the client. This is expected since the preprocessing stage
generates additional data structures (i.e., the grid data structure and the atoms
list), which add to the size of the data sent to the client. Moreover, higher data
transfer times can be attributed to the additional processing done by the server
to generate the data structures—data transfer times include preprocessing time
by the server. For our tests in a local network environment, the combined
times for preprocessing and downloading of the data to the client was lower
if server-side preprocessing is used (see Table 4.1). If the network connection
is slow, however, the data transfer times can of course predominate for large
data.

Nevertheless, we argue that the server-side preprocessing is superior to the
client-side one, not only for our intended use case, but also because it was faster
in all our tests. Server-side preprocessing approach allows us to guarantee that
large molecules can be visualized because the faster server application executes
the heavy computations. The server might even offload these computations to a
dedicated compute cluster or cloud. In addition, our solution has only moderate
hardware requirements on the client side, which makes it even feasible for
mobile devices with less computational power than a desktop PC. Additionally,
the server-side preprocessing can involve special hardware capabilities like
CUDA computations that would not be possible on a client using a JavaScript
application.

As mentioned in Section 4.1, the sphere ray casting method we use is concep-
tually similar to modern, GPU-based volume ray marching as, for example,
presented by Krüger and Westermann [2003]. Congote et al. [2011] described
how to implement volume ray marching using WebGL 1.0, which also poses
difficulties since there is, for example, no native support for 3D textures. The 3D
volume has to be stored in one or more 2D textures—similar to the grid in our
implementation—and the trilinear interpolation of the voxel values has to be
implemented in the fragment shader. We included a volume rendering similar
to the one described by Congote et al. [2011] into our WebGL visualization. Fig-
ure 4.1 shows a screenshot of our volume rendering. Volumetric representations
of a molecule can, for example, show the electron density distribution or can
be used to extract a smooth molecular surface. The volume rendering can be
combined with geometric models such as the triangle rendering of the Cartoon
representation shown in Figure 4.8, which are rendered to a Framebuffer Object
prior to the ray marching. The required volume data sets can, for example,
be generated using the VolMap Tool in VMD [Humphrey et al., 1996], which
can also be used to generate triangulated models such as the aforementioned
Cartoon representation.

This chapter has presented techniques that demonstrate the feasibility of imple-

70 Chapter 4 ● GPU-based Molecular Data Visualization in the Browser

Figure 4.8 — Volume rendering of an insulin protein (PDB ID: 1RWE, cf. Fig. 4.7)
combined with a triangulated Cartoon representation. The volume data set
is the same as shown in Figure 4.1 using a different transfer function (image
source: [Mwalongo et al., 2014]).

menting GPU-based ray casting for molecular visualization using WebGL 1.0.
The results show that large protein structures can be visualized at interac-
tive frame rates compared to classical rendering using triangulated spheres.
To achieve this, costly preprocessing computations need to be offloaded to
a server and generation of the geometry for visualization has to be done on
the GPU. Generating the geometry on the GPU using GPU-based ray casting
technique does not only allow less data to be sent to the GPU but also generates
high quality images compared to techniques that rely on polygonal surface
approximations.

In order to efficiently use the bandwidth between server and client, efficient
data formats are required. In this implementation, JSON was used because
it is more efficient compared to popular formats like XML and it is also easy
to parse the data on the client using built-in browser functions. For more
optimizations, binary formats using typed arrays are preferred because they are
not only bandwidth efficient but also do not incur much decoding penalty on
the client before they can be uploaded to the GPU. By sending data encoded

4.4 ● Results and Discussion 71

in the format that is close to the format required by WebGL buffers, the data
can immediately be uploaded to the GPU with minimal processing required.
Additionally, using WebSocket [Fette and Melnikov, 2011] as the application
communication protocol can improve latency, since it provides a full-duplex
communication channel compared to the HTTP protocol [Fielding, 2000], which
provides only a half-duplex communication channel. These optimizations are
used in a technique that is discussed in chapter 5.

C
h

a
p

t
e

r

5
GPU-based Remote Visualization of

Dynamic Molecular Data on the
Web

Visualization of dynamic data from molecular dynamics simulations is crucial
for understanding many functional aspects of molecules. By visualizing data
resulting from these simulations, scientists can gain insight into the structure
and dynamics of molecular mechanisms at atomic level. In order to get accurate
results, simulation models require many time steps [Frenkel and Smit, 2001].
The data resulting from these simulations contain, at least, the position of
each atom at every time step of the simulation and is normally written to
a file that is usually called a trajectory. However, in order to reduce storage
requirements, the data are usually not written after every time step. After the
simulation completes, this trajectory file can then be loaded for analysis using a
visualization tool like VMD [Humphrey et al., 1996] or MegaMol [Grottel et al.,
2015].

Advances in computing technology have made it possible to simulate very
large and complex molecular systems with longer simulation time. These
simulations usually require powerful computational resources involving clusters
of computers. Consequently, the massive data produced become infeasible to
be moved to a different machine for visualization. In order to visualize these
large data, a different approach is needed that does not require moving the raw
data at once from the storage server to the client.

74 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

As discussed in chapter 3, the browser has become a preferred platform for
deployment of visualization tools because of its ubiquity and advances in
web technologies including GPU-access in the browser through JavaScript.
Despite these advances, existing web-based molecular viewers (e.g., [Jmol,
2009; JSmol, 2013; Pettit and Marioni, 2013; Li et al., 2014]) are still limited to
static data and molecules with small number of atoms. Although Jmol [Jmol,
2009] can support playing animations and movies created from a number of
supported trajectory files, it suffers from security issues because of its plugin-
based technology. JSmol [JSmol, 2013] alleviates the problem of plugins but it
cannot handle the visualization of large molecules and molecular trajectories
because most processing is performed on the CPU using JavaScript rather than
on the GPU.

Moreover, all these tools use triangulated spheres for rendering, which does not
scale well when visualizing molecules with large number of atoms as discussed
in chapter 4. This approach becomes even more challenging when used for
dynamic data, which can potentially change in every frame. Since the spheres
have to be tessellated before rendering, many triangles are needed for a molecule
with a large number of atoms, This can affect the rendering performance
because of large data uploads to the GPU. Moreover, to obtain quality images
with polygon-based rendering, fine tessellation is required which results into
more triangles being generated. This does not only cause heavy computations
to be performed on the CPU but also causes CPU-GPU bandwidth problems.
Therefore, in order to be able to build interactive visualization tools that support
large dynamic data, rendering techniques that avoid heavy computations on the
CPU and send less data to the GPU are required. Browser-based visualiazion
of large dynamic molecular data also requires efficient data transfer between
server and client.

This chapter discusses an implementation of a web application that supports
interactive visualization of large dynamic molecular data in the browser. Tech-
niques described in this chapter exploit modern web standards like web socket,
web workers, typed arrays, and GPU-based ray casting to enable visualization
of large dynamic molecular at interactive frame rates. In order to save band-
width, quantization techniques are applied to reduce the amount of data that is
transferred to the client. The results discussed in this chapter were published in
a paper at the Web3D conference [Mwalongo et al., 2015] and was subsequently
extended as a journal paper [Mwalongo et al., 2016a].

5.1 ● Overview 75

5.1 Overview

The application follows a client-server architecture as shown in Figure 5.1. The
client initiates the interaction by sending a request URI to the server. The server
responds by sending HTML, CSS, JavaScript, and WebGL shader files to the
client. These files constitute the client-side of the application. Other parameters
like data to be visualized and visualization options like coloring mode can also
be encoded in a URI and sent to the server anytime during interaction.

After receiving the files, the client establishes a WebSocket connection with the
server. This connection is used for transferring the raw data for visualization.
The format for the transferred data is as shown in Figure 5.2. The data format
can encode both triangulated surfaces and parameters for implicitly defined
surfaces, for example, atom centers and radii. When only one type of the data
is present, the field for the number of elements on the missing type is set to
zero. The format is encoded so as to ensure that there is minimal processing
done on the client before the data are uploaded to the GPU. By ensuring less
computation in JavaScript on the client side, performance is improved. This is
crucial for dynamic data that can potentially change in every frame.

5.2 Implementation

As discussed in section 5.1, the application follows a client-server architecture.
The server side consists mainly of a WebSocket server and a data management
component based on an existing visualization framework called MegaMol [Grot-
tel et al., 2015]. MegaMol was extended by adding a WebSocket server com-
ponent on top of its data management component in order to support data
transfer to the client in the browser using the WebSocket protocol.

The WebSocket server includes a HTTP server that responds to initial requests
that results into the files forming part of the client side of the application to be
sent to the client. Client-side application includes HTML5, CSS, JavaScript, and
WebGL shader files. One of the JavaScript files sent to the client contains code for
establishing a WebSocket connection back to the server. Once the connection has
been successfully established, the data transfer between client and server begins.
Data requests from the client are received by the WebSocket server component,
which then forwards them to the data management component.

The data management component loads the frames into memory from a trajec-
tory file and encodes each single frame in a binary byte array data format as
shown in Figure 5.2 and sends it to the client for rendering. Each frame consists
of data for a single time step of a simulation.

76 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

Transferable
Object WebSocket

HTTP

Client Server

Listen
Parse

Request

Open
WebSocket

Open
WebSocket

Display
HTML

Listen

Extract
Data

Create
ByteArray

Parse
Response

Extract Data

Render

Complete
Data

Upload Data

New Data?

Yes

No

Send
Resources

Request
URI

Request
Data

Listen

Send
ByteArray

Listen

PostMessage

Figure 5.1 — Our application architecture. Thin arrows represent control flow
within server or client, respectively. Bold arrows represent data flow between
memory spaces according to the protocol/interface illustrated by the colored
boxes (HTTP, WebSocket, Transferable Object). The entry point for the user is
the request URI in the client.

The rendering stage of the visualization pipeline is implemented on the client
in order to ensure interactivity. Only the data that is necessary for the kind of
rendering requested by the client is sent to the client. Requests for new frames
of data from the server are controlled by the client. The client always notifies
the server of its readiness to receive new data once it has issued a draw call to
the GPU; this way the client is not overloaded by data from the server, and also
ensures that all frames are rendered.

In order to decouple the rendering thread and the data fetching thread, the
fetching of data is implemented in a web worker. This separation is important
for performance reasons, given that JavaScript is generally single-threaded.
Therefore, to allow the user interface to remain responsive, all long-running
code paths need to run outside the main thread. Network communication is an
example for such a long-running path that would stall the main thread while
waiting for data transmission to complete. The communication between client
and server using WebSocket happens on the web worker on the client side.

5.2 ● Implementation 77

...

BoundingBox

SphereCount

SphereData

VertexCount

VertexData

TriangleCount

VertexIndices

BoundingBox: 4 floats (center XYZ, longest edge);
SphereCount: 1 unsigned int;
SphereData: SphereCount × 13 bytes: 3 unsigned shorts + 1 float + 3

unsigned bytes
(center XYZ, radius, color RGB);

VertexCount: 1 unsigned int;
VertexData: VertexCount × 17 bytes: 3 unsigned shorts + 3 unsigned

bytes + 2 floats
(position XYZ, color RGB, normal nXnY);

TriangleCount: 1 unsigned int;
VertexIndices: TriangleCount × 3 unsigned int.

Figure 5.2 — Memory layout for the data buffer sent by the server. Each square
represents a block of four bytes (e.g., a floating point value or an unsigned
integer). Half-squares represent two bytes (unsigned shorts), quarter-squares a
single byte.

Once the data is received from the server in the web worker, they are posted
to the main thread for rendering. Since web workers and the main thread do
not share memory and communicate only by passing messages, copying large
amounts of data between them can lead to significant penalty on performance
and memory. Therefore a feature called transferable objects is used for data
transfer between the web worker and the main thread. This capability allows
the ownership of the memory to be transferred instead of copying the data.
This decoupled and asynchronous communication between rendering and data
fetching is crucial because it allows the rendering thread to continue rendering
the data that has already been uploaded to the GPU without being stalled by
the network transfer delays. Moreover, the user can continue interacting with
the visualization while new data is being transferred.

5.2.1 Data Encoding and Quantization

The data encoding format as shown in Figure 5.2 encodes both implicit and
explicit geometry. The data for implicit geometry, in our case spheres, consists
of the bounding box, number of spheres, and sphere data comprising of sphere
centers and their radii, and colors. The bounding box is required for the camera
setup at the client.

Our explicit geometry is a set of triangles whose encoded data consists of

78 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

the number of triangles, vertices, indices, and the vertex data themselves that
consist of position, color, and normal of each of each vertex. An important
consideration for data encoding is to ensure efficient data transfer through
the Internet and less computational burden on the client. This is the reason
why we use a binary byte array format representation for efficient data transfer
and ease of decoding in the client before uploading the data to the GPU for
rendering.

In order to further save bandwidth and reduce transfer times we employ data
quantization in addition to using an efficient binary format for encoding the
data. Atom positions are encoded using 16 bits instead of the usual 32 bits.
Therefore, rather than using 12 bytes per atom, we use only 6 bytes per atom,
thus cutting down the memory by half. This is possible because the position
data can be encoded at lower precision without affecting the image quality.

The quantization is done by normalizing the atom position with respect to
the bounding box of the molecule and scaling the results within the range of
unsigned short integers. The scaled values need to be clamped to fit the integer
range from the original floating point values. This of course introduces a small
quantization error whose magnitude depends on the size of the bounding box.
However, this error is negligible and does not affect our results.

The radii are stored as single precision floating point values and the color
information is reduced to a single byte per channel. This reduces the number
of bytes to only 13 from 28 bytes when simply using single precision floating
point values for all elements.

Similar to the atom data, vertex positions are also quantized to relative coordi-
nates inside the bounding box, while color precision is reduced to single bytes
per channel. Additionally, the third component of the normal is omitted and
reconstructed from the first two, reducing vertex data in total from 36 bytes to
only 17 bytes. Since the transferred data contain triangulated surfaces and atom
data that are mapped to describe implicit surface of a sphere for each atom, the
client side implements two rendering approaches: GPU-based ray casting for
atom data and normal triangle rasterization for the triangle meshes.

5.2.2 WebGL GPU-based Ray Casting

GPU-based ray casting is used to render implicit surface of the spheres. As
explained in chapter 4, this rendering technique has the advantage of producing
high quality images and reduces the amount of data transferred to the GPU
because only the parameters defining the implicit sphere are uploaded, thus
saving the CPU-GPU bandwidth. The implementation described in chapter 4
maintained compatibility with WebGL 1.0 while the implementation in this

5.2 ● Implementation 79

chapter uses a feature of WebGL 2.0, available as an extension in WebGL 1.0,
to write the fragment depth (gl_FragDepth) to the depth buffer in order to
get perspective-correct depth values for the spheres. This implementation is
also simpler compared to the one used in the previous chapter. Moreover,
this technique is suitable for dynamic data because it does not require any
acceleration structure that may cause preprocessing overhead as discussed in
chapter 4. Using acceleration structures would require that the structures be
generated for every frame, thus increasing computational time.

Before rendering, the data format as described in section 5.2.1 has to be
decoded. Since the data is heterogeneous, there are two options that can be
used to decode the data. One option is to create different typed array views to
a single ArrayBuffer object representing the raw binary data. Each view starts at
a different byte offset where the particular data type begins. Another option
is to use the DataView object. However, due to quantization, the layout in the
raw data becomes non-uniform, making decoding the data using these objects
slow. This slowness could probably be due to differences in byte-alignment
between the raw data and the typed array views. We, therefore, directly copied
the raw bytes from the raw binary data into an ArrayBuffer object using bitwise
operators.

To render the spheres using GPU-based ray casting [Gumhold, 2003], proxy-
geometry data for the atoms are stored in a single vertex buffer object (VBO).
A rectangular proxy-geometry is used and, therefore, each atom requires two
triangles. In the vertex shader, a screen-space bounding box of each sphere is
calculated for generation of fragments during rasterization step. This is done in
order to avoid expensive computations in the fragment shader for all the frag-
ments that are not covered by the sphere. That means the rasterizer generates
fragments covering only the projected bounding box of the sphere.

In the fragment shader, a ray is cast for each fragment and a ray-sphere inter-
section test is performed. If the ray hits a point on the surface of the sphere,
then that point is shaded and becomes the color of the fragment. If the ray
does not intersect a sphere, then the fragment is discarded. Additionally, the
perspective correct depth value is written to the gl_FragDepth. This requires an
extension gl FragDepthEXT in WebGL 1.0, but in WebGL 2.0 it is part of the core
standard.

5.2.3 Triangle Rendering

For rendering triangles, there are two ways that they can be defined: using
only vertex positions or vertices together with an index buffer that defines the
triangles and references the vertices. When triangles are defined using only
vertex positions, the TriangleCount field is set to zero. Therefore, each triangle is

80 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

Figure 5.3 — The visualization of the capsid of a papillomavirus (PDB ID:
3IYJ) consisting of 1.3 million atoms. On the right hand the user interface for
adjusting the rendering modes and parameters is shown.

constructed using three consecutive vertices and the value for TriangleCount is
found by dividing the number of vertices by three.

In the case where the triangles are defined using vertices together with an index
buffer that references the vertices, the field of TriangleCount is given explicitly.
Multiplying this field by three gives the value of IndexCount. This means that
three vertex indices are stored for each triangle. This way of defining triangles
has the advantage of storing each vertex only once, thus reducing the data
size.

Both triangle formats can directly be rendered by WebGL using drawArrays
or drawElements. Since each vertex in the raw data has a 17 bytes after quan-
tization, padding is done to insert additional bytes between vertices in order
to meet WebGL requirements of having 4-byte alignment vertices in the vertex
buffer. Aside from adding additional padding between vertices before sending
the data to the GPU, no further processing is required in JavaScript, as the
index data is simply sliced from the server response as a Uint32Array sub-array,
while the position, color, and normal data are sliced from the server response
as a Uint8Array sub-array. Both arrays are uploaded to the GPU as separate
buffer objects. Figure 5.4 shows a combination of raycast spheres and a triangle

5.2 ● Implementation 81

mesh.

Figure 5.4 — GPU-based sphere ray casting combined with triangle rendering.
The image shows a ligand (triangle surface) which is interacting with a receptor
(spheres).

5.2.4 Deferred Shading

Deferred shading allows separation of geometry processing and shading cal-
culations into different passes [Saito and Takahashi, 1990]. This technique
decouples scene complexity from shading computations by ensuring that shad-
ing calculations are performed only for visible fragments. We use this technique
to implement toon shading effects [Saito and Takahashi, 1990] for illustra-
tive rendering and screen-space ambient occlusion (SSAO) [Kajalin, 2009] for
enhancing depth perception of molecular structures [Tarini et al., 2006] (see
Figure 5.5).

In the first pass, which is a geometry pass, the geometry data is rendering and
the data required for shading calculations is written to a G-buffer—a frame-
buffer object with multiple textures attachments. In our case, the data written
includes the camera-space position, depth value, albedo color, and camera-space
normals. At the time of the implementations we used the WEBGL_draw_buffers
extension to enable writing to multiple render targets in a fragment shader with
a single draw call. This improves performance because it avoids using multiple
passes to write each render target separately. This extension is part of the core
specification in WebGL 2.0 [Khronos, 2013]. In the shading pass, a screen-filling

82 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

Figure 5.5 — Different postprocessing effects via deferred shading. From
left to right: toon shading (silhouettes and quantized screen space ambient
occlusion) without colors, toon shading with colors, local lighting and screen
space ambient occlusion. The ambient occlusion emphasizes protrusions and
depressions (image source: [Mwalongo et al., 2016a]).

quad is rendered, and shading is done in the fragment shader using surface
information written in the G-Buffer during the geometry pass as input.

To implement toon shading, an additional render pass computes the depth
gradient from the linear depth texture stored in the G-Buffer. This is required
because shading calculations for toon shading effects rely on the gradient of the
depth texture. This additional render pass takes the linear depth texture from
the G-Buffer as input and writes the depth gradient values to another texture.
This texture is then used by another shading pass for drawing depth-dependent
silhouettes around objects [Saito and Takahashi, 1990].

Screen-Space Ambient Occlusion (SSAO) computation requires three additional
passes per rendered frame. The first pass computes per-pixel ambient occlusion
factors. This is done by first randomly rotating and orienting a precomputed
and randomly generated hemispherical sampling kernel along the surface
normal for each pixel. Then for each sample for the respective value stored in
the depth texture of the G-Buffer depth values are compared to find samples
contributing to an occlusion factor for the given pixel. Depth information
and surface normals are taken from the G-Buffer. The two last passes filter
these results using a separated Gaussian blur in order to smooth the image by
removing noise in the image by the randomly generated sampling kernel in the
first path.

The main limitations of implementing these two techniques is the limited
framebuffer layouts in WebGL that may result into more GPU memory being
used than necessary. For example, although a single value is computed as an
ambient occlusion factor for SSAO computations, this value is stored in an
RGB texture. Another limitation of WebGL is the lack of support for non-static

5.3 ● Results and Discussion 83

Table 5.1 — The systems used for performance measurement including their
specifications. The clients were both running Chrome (v.41.0) using ANGLE
binding with D3D11 enabled. The WiFi speed of the Laptop was rated at 65
MBit during testing.

System CPU RAM GPU OS Network

Server Intel Core i7-2600 (3.4 GHz) 8 GB GeForce GTX 560 Ti Windows 7 Pro x64 GBit LAN
Laptop Intel Core i7-3520M (2.90 GHz) 8 GB GeForce GT 640M LE Windows 8.1 Pro x64 WiFi/GBit LAN
PC Intel Core i7-2600 (3.40 GHz) 16 GB GeForce GTX 660 Ti Windows 8.1 Enterprise x64 GBit LAN

loop control variables. This makes it challenging, for example, to dynamically
control the quality of SSAO and the image smoothing by manipulating the
radius and the size of the sampling kernel in real-time.

5.3 Results and Discussion

Performance test results focused on transfer times and rendering rates because
these are the important parameters for interactive remote visualization. There-
fore, we evaluated how fast the data can be transferred from the server to
the client and whether rendering speed could maintain interactivity for large
dynamic data sets. Molecular datasets used for the tests are from the protein
data bank [Berman et al., 2000] and from project partners. The canvas size for
all test runs was set to 1280 × 720 pixels. The rendering of the largest molecule
of our test dataset (1.3 million atoms) is shown in Figure 5.3.

The test environment included a desktop machine as a server and laptop and a
desktop PC as clients in LAN (Gigabit LAN) and Wi-Fi (for Laptop) network
environments as shown in Table 5.1. Our tests measured transfer and rendering
times for data with quantization and without quantization. These tests were
done for both clients, i.e., the PC and Laptop client. The results for these tests for
data with quantization and without quantization are shown in Table 5.2.

Rendering performance results of the PC and Laptop client for data without
quantization are shown in Table 5.3. This table shows results for two graphics
cards: the Intel integrated (HD4000) graphics card and the Nvidia GPU (in
parentheses). The rendering times of these two clients for data with quantization
are shown in Table 5.4. In both cases, rendering was done using GPU-based
sphere ray casting.

Results in Table 5.2 show a significant difference in transfer times from server
to client between LAN and WiFi connections. This can be attributed to the
difference in bandwidths of the two connections. Having significant differences
in the transfer times between LAN and WiFi also suggests that the application is
bandwidth-limited. Transfer time is taken as the time from when the WebSocket

84 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

Table 5.2 — Performance results showing Transfer times for the Laptop client
machine for various molecules in both LAN and WiFi network environments.
All transfer times are averages over 100 transfers given in milliseconds (ms).
Values in parentheses show results for optimized data layout.

LAN WiFi

Molecule Name PDB ID #Atoms Transfer(ms) Transfer(ms) Memory

peptide simulation — 100 6.16 (6.83) 7.5 (8.39) 2.8 (1.3) kB
lipase simulation 2VEO (added H2) 6,626 15.94 (8.05) 45.11 (22.9) 185.5 (86.2) kB
lipase + solvent sim. 2VEO, solvent 38,789 55.89 (12.49) 234.66 (96.31) 1.09 (0.5) MB
mottle virus sim. — 214,440 234.94 (45.6) 1,212 (407.47) 6.0 (2.8) MB
simian virus 1SVA (× 60) 958,980 1,039 (191.1) 5,598 (2,242) 26.8 (12.5)MB
papillomavirus 3IYJ (× 60) 1,356,840 2,121.9 (284.4) 6,976 (3,179) 38.0 (17.6)MB

Table 5.3 — Rendering performance of the GPU ray casting in frames per
second for various molecules using the PC and Laptop client machines (frame
rates given include the data upload to the GPU.). Note that Rendering frame
rates for the Laptop client are given in frames per second (fps) for the Intel
integrated (HD4000) graphics as well as for the Nvidia GPU (in parentheses).
The largest data set could not be visualized using the Intel GPU. We noticed
that, in contrast to the PC client and the Intel GPU, the performance using
the Nvidia GPU drops after a time when the visualization is running. This is
probably due to thermal limitations of the laptop chassis that causes the GPU
to throttle its clock speed.

PC Laptop

Molecule Name PDB ID #Atoms LAN LAN WiFi Memory

peptide simulation — 100 59.24 59.0 (60.5) 59.0 (60.4) 2.8 kB
lipase simulation 2VEO (added H2) 6,626 58.99 37.5 (60.3) 37.97 (60.1) 185.5 kB
lipase + solvent sim. 2VEO, solvent 38,789 58.17 15.17 (51.8) 15.33 (59.9) 1.09 MB
mottle virus sim. — 214,440 44.88 2.52 (10.8) 2.50 (40.0) 6.0 MB
simian virus 1SVA (× 60) 958,980 41.33 1.31 (4.3) 1.31 (15.6) 26.8 MB
papillomavirus 3IYJ (× 60) 1,356,840 38.62 - (3.6) - (14.9) 38.0 MB

object in the client sent the request to the server up to when the data is entirely
received by the client for processing.

Despite the transfer times showing a significance difference, the same is not
reflected in the rendering frame rates when using LAN and WiFi connections.
This shows that the decoupling of the data fetching thread and the rendering
thread works as expected. By running the data fetching thread in a web worker
and rendering in the main thread, data transfer times do not stall rendering.
The main thread continues to render the already received data while new data
is being fetched from the server in the background.

A significant improvement in frame rates was observed when the client is

5.3 ● Results and Discussion 85

disconnected from the server and consequently receives no buffer updates. This
suggests that the drop in the frame rates as data size increases is attributed to
client processing and data upload to the GPU.

In addition to using efficient data encoding format for data transfer in order
to save bandwidth, data compression could have been employed to further
alleviate the bandwidth problem. However, the additional time required for
compression and decompression could outweigh the benefits obtained from
reduced transfer time and lower memory footprint.

To find out the effect of quantization, transfer times were measured for data
with and without quantization. From the results (see Table 5.2), we note that
quantization had a significant impact on transfer times, by reducing the amount
of data transferred by almost 50 %. Quantization has an advantage compared
to normal compression schemes because the decoding can be done on the GPU,
thus significantly reducing decoding time. Even when done on the CPU in
JavaScript, the decoding time is minimal.

Despite our promising results, bottlenecks for interactive visualization of dy-
namic data sets lie not only in the still abstracted memory management in
JavaScript but rather in the communication cost between server and client, and
between the CPU and GPU. Moreover, extensions in web workers and WebGL
to allow data upload to the GPU from Web Workers could prove useful. Current
specifications and implementations do not allow uploading data to the GPU
or accessing WebGL functionality from a web worker. Although the use of
Transferable objects partly solves the problem of data transfer between a web
worker and the main thread, still this can prove challenging for larger datasets.
This can be seen in the drop of rendering frame rates (see Table 5.3) as the data
size increases, despite the rendering thread and data fetching being decoupled.
If data could be uploaded to the GPU directly from a web worker before ren-
dering, the main thread could be responsible only for user interactions and
handling of rendering commands.

As discussed in section 5.1, our application uses client-side rendering. A
possible alternative to our client-side rendering would be to transport the
images rendered at the server side. This approach, in contrast to our solution,
is extremely sensitive to bandwidth fluctuations. One needs to consider the
memory footprint even of compressed images in relation to the transfer of the
molecule data. For example, a 1280x720 image compressed as JPEG at 50%
quality requires 40KB. In order to get smooth interaction, at least 15 of these
images need to be sent to the client per second. This would require 600K/s of
constant and reliable bandwidth. Although our larger data sets exceed such size,
one has to consider the overhead for image compression and decompression
as well as the fact that for greater interactivity, we can just pause the requests

86 Chapter 5 ● GPU-based Remote Visualization of Dynamic Molecular Data
on the Web

Table 5.4 — Rendering performance of the GPU ray casting in frames per
second of various molecules using the PC and Laptop client machines with
the optimized data layout (frame rates given include the data upload to the
GPU.) Note that the shown Rendering frame rates for the Laptop client are for
the Nvidia GPU.

PC Laptop

Molecule Name PDB ID #Atoms LAN LAN WiFi Memory

peptide simulation — 100 59.95 59.80 59.84 1.3 kB
lipase simulation 2VEO (added H2) 6,626 59.95 59.80 59.80 86.2 kB
lipase + solvent sim. 2VEO, solvent 38,789 59.95 59.48 58.07 504.3 kB
mottle virus sim. — 214,440 44.40 43.02 40.43 2.8 MB
simian virus 1SVA (× 60) 958,980 19.93 20.50 24.82 12.5 MB
papillomavirus 3IYJ (× 60) 1,356,840 7.41 13.32 19.17 17.6 MB

for new data, which directly results in interactive frame rates. For example,
papillomavirus rendered up to about 53% faster when requests for new data
were paused; such an option is not available for image-based solutions.

Additionally, interaction is sensitive to the total round trip time between request
for an image with an updated viewpoint and the resulting rendering. Interac-
tively rotating a data set with significant lag can prove extremely challenging.
While this solution only requires a client capable of decompressing the image
data, the server needs to be equipped with a dedicated GPU. In cloud deploy-
ment scenarios, this is a challenge by itself since there are very few specialized
and extremely costly GPUs that allow for virtualization, reducing the number
of concurrent cloud instances per chassis drastically.

On the aspect of scalability, a client-side rendering method would scale better
than an image-streaming method because it does not create huge demands
in bandwidth and requires no server-side rendering infrastructure. In fact,
client-side rendering is central to the scalability of the web itself. It would have
required massive server infrastructure to host a web page that is accessed by
many users if the web page content was rendered on the server.

From the bandwidth requirements for dynamic data given in Table 5.2, we
can derive network requirements for our system. For example, in a GBit LAN
environment, there are about seven data updates per second for one user or one
data update per second for seven concurrent users per server for our largest
data set. If the data is static, this scales to seven new users per second, each one
receiving the data just once. Afterwards, each client can render the received data
interactively, in contrast to an image streaming method that would constantly
require transmission of new images from the server.

5.4 ● Conclusion 87

5.4 Conclusion

By leveraging the GPU, dynamic large molecules with more than one million
atoms can be rendered at interactive frame rates. These results demonstrate that
it is feasible to visualize large dynamic molecular data in the browser by using
WebGL GPU-based ray casting rendering technique combined with modern
web technologies in the browser. These client-side technologies make it possible
to render large datasets on the client while offloading demanding computations
to the server.

Moreover, interactive rendering frame rates require efficient binary data en-
coding format that minimizes the amount of data transferred, decoupling of
rendering and data fetching threads through web workers, and leveraging trans-
ferable objects for zero-copy between main thread and web worker. Processing
of binary data in the browser is made possible through typed arrays that are
part of the JavaScript language and supported by all modern browsers. A web
worker ensures that the main thread that is responsible for user interaction and
rendering is not stalled because of other long running computations. In order
to reduce round trip times to the server, and hence, reduce latency, full-duplex
and persistent connection between server and client is required. WebSocket
provides such a capability that allows both server and client to exchange data
in both directions at the same time.

Therefore, interactive visualization in the browser is achievable by leverag-
ing a combination of modern web standards in the browser combined with
GPU-based ray casting techniques for rendering. Our results indicate that,
although browser technologies and support of WebGL in modern browsers
are still evolving, their potential as a preferred platform for highly interactive
collaborative visualization systems is high. These web-based tools would allow
scientists at arbitrary locations to concurrently visually analyze the same data
and help accelerate the pace of scientific discovery. The application discussed in
this chapter can also be employed for remote simulation monitoring on mobile
devices. A scientist could connect a visualization tool running in a browser to
a simulation executing on a powerful server and monitor its execution in real
time. This would also provide immediate feedback compared to the traditional
approach where the visualization is run as a post-processing step.

The ability to run the same visualization applications across platforms ranging
from desktop PCs to smartphones from a single code base also simplifies
software maintenance and upgrades. Once a new version is uploaded to the
server, all clients have an immediate access to the new software. Additionally
this could also act as a driving force for scientists to share data and tools and
encourage collaboration across the globe.

C
h

a
p

t
e

r

6
Web-based Visualization of Bricked

Volumetric Data with Levels of
Detail

Visualization of volume data is important for understanding the internal struc-
ture of objects. These data can come from sources like sensors, medical scanners
or computer simulations. An example of volume data is medical datasets ob-
tained from MRI or CT scanners. Improvements in volume data acquisition
techniques and simulation technologies has led to huge growth in the size of
volumetric data. Remote visualization of these data, especially in web browsers,
poses a challenge in terms of bandwidth, latency, and computational power
at the client side. Although availability of GPU-capabilities in the browser
through WebGL allows the use of hardware-accelerated volume ray marching
for client-side rendering in the browser, network bandwidth and latency are
still the main bottlenecks, especially for large data. The bandwidth problem can
be partially remedied using compression. Most of these techniques require that
the whole data is transferred to the client at once. However, decompression of
large data sets in the client can introduce additional latency. Thus, compression
has to be applied with caution [Limper et al., 2013].

Image or video streaming is another popular approach for remote rendering,
where the server renders images and sends them to the client. The rendering
process can be optimized through adaptive sampling and compression for
efficient transfer of individual frames rendered by a server [Frey et al., 2015].

90 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

The amount of data transferred to the client in remote rendering approaches
can be reduced by employing volumetric depth images [Frey et al., 2013]. While
this is attractive for clients with limited rendering capabilities, it still requires
high bandwidth and low latency in order to ensure interactive visualization.
Furthermore, the server has to offer this type of rendering. Consequently, this
approach does not scale well for higher numbers of users.

Multi-resolution rendering and bricking techniques for visualizing large data
sets have been introduced on desktops and workstations [Engel et al., 2006;
Beyer et al., 2008, 2015]. For example, multi-resolution techniques have been
employed to reduce interaction latency by allowing the user to view a low-
resolution model during interaction and render a high-resolution model when
there is no user interaction [Engel et al., 2006]. Bricking techniques have mainly
been used for addressing the problem of visualizing large volume data by
allowing individual bricks to be streamed to the GPU from memory or local
disk [Beyer et al., 2015]. However, these techniques have not been fully exploited
in the browser.

Increasing capabilities in web technologies and availability of volume data on
the web, necessitates exploration of techniques for visualization of large volume
data on the web. Web-based techniques are attractive due to the ubiquity of
the browser across devices and platforms. Moreover, web-based techniques
can easily support collaborative visualization for teams that are geographically
distributed across the globe. Visualization of large volumetric data requires a
combination of techniques that allow efficient data transfer between client and
server and minimal processing on the client. Additionally, latency needs to be
minimized in order to ensure interactive visualization.

As discussed in chapter 3, current streaming and progressive data transfer
techniques in the browser [Ponchio and Dellepiane, 2015; Lavoué et al., 2014;
Sutter et al., 2014; Limper et al., 2014] have focused mainly on mesh data but
have not considered volume data.

Previous work on GPU-based volume rendering using WebGL has mainly
focused on techniques that allow visualization of volumetric data without
the use of 3D textures, since these techniques have been implemented using
WebGL 1.0, which has no support for 3D textures. However, WebGL 2.0 supports
3D textures. Congote et al. [2011] implemented a GPU-based volume ray
marching in WebGL to visualize medical volumes and weather radar volumetric
data sets at interactive frame rates. Due to lack of support for 3D textures
in WebGL 1.0, volumetric data is stored using a 2D texture atlas. Noguera
and Jimenéz [2012] also address the lack of 3D textures in WebGL 1.0 and in
mobile devices supporting OpenGL ES 2.0 by using 2D texture mosaics and
combine it with multi-texture support for storing large volume data by utilizing

6.1 ● Algorithmic Pipeline 91

Server

Client

Render

Load Brick Compress

SendWait

Request
Meta Data

Upsample

Queue
Upload WaitRequest Brick Wait

Webpage Decompress

Compress?

Cached?

Compressed?

Figure 6.1 — Algorithmic pipeline of our client - server architecture for the
bricked volume rendering.

all available texture units on the GPU. Movania and Feng [2012] implemented
a single-pass GPU-based ray caster in WebGL for visualization of medical
data sets. Yang et al. [2015] presented a specialized compression technique
for time-varying volumetric data that combines S3TC texture compression
with deflate compression for efficient transmission of volumetric data to the
browser. On the client side, the compressed data is inflated and uploaded to
the GPU as video textures, which are directly supported by WebGL. None of
these previous approaches uses multi-resolution volumes or bricking to address
network latency and bandwidth issues.

This chapter discusses a GPU-based volume ray marching technique that uses
a progressive data transfer utilizing multiple levels of detail and bricking for
interactive volume rendering of remote data sets. The technique combines
multi-resolution volumes and bricking to address the problem of interaction
latency and efficient data transfer in a network environment using WebGL 2.0.
The results discussed in this chapter were published in a paper at the VMV
conference [Mwalongo et al., 2018]

92 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

6.1 Algorithmic Pipeline

The algorithmic pipeline follows a client-server architecture. The server is
responsible for storing the volumetric data, generating the bricks of the different
levels of detail, and encoding the brick data before transferring them to the
client. The client is responsible for decoding the brick data and rendering. An
overview of the pipeline is shown in Figure 6.1.

The application allows the user to visualize volumetric data stored on the server
by providing a browser-based interface. First, a hierarchical multi-resolution
volume is computed on the server, where each level has half the resolution of
the previous level. Each level of detail is divided into uniformly sized bricks,
leading to short per-brick transfer times even for low network bandwidth.
By using a bricked multi-resolution volume representation, the user can start
viewing the lowest-resolution volume while the volume is being progressively
refined using higher-resolution bricks, which are asynchronously streamed
from the server in a background thread.

The interaction begins with the client requesting meta data about the volume
to be visualized via a web page. The server, upon receiving this request, first
checks whether the data set is already cached. If not, the data set is loaded, a
MIP-map-like level of detail pyramid is generated, and each level is bricked into
equally sized subvolumes. Optionally, the bricks are compressed to reduce the
memory footprint. Afterwards—or if the data was already loaded—the volume
meta data is sent to the client. These meta data include the original volume
resolution, the brick resolution, and the number of levels of detail.

The client can now use this information to allocate texture memory for the
whole volume. It also uses the meta data to generate requests for the bricks
from the server. The initially allocated texture is updated with the brick data as
it is received from the server. Receiving and decoding the brick data is done
asynchronously in a separate thread to avoid stalling the main thread.

The volume texture is rendered continuously as soon as the first brick is received,
processed, and uploaded. That is, the progressive refinement of the volume is
visible as soon as it is available on the GPU. Since the volume texture always
has the full resolution, the bricked structure of the data does not affect the
rendering.

6.2 ● Implementation 93

Data Brick ID Level

...

Data: (brickResx × brickResy × brickResz) unsigned byte
Brick ID: 3 unsigned bytes (idx, idy, idz)
Level: 1 unsigned byte

Figure 6.2 — Memory layout for brick data serialization between server and
client.

6.2 Implementation

The server side implementation uses Node.js runtime1 and the client side uses
JavaScript and WebGL 2.0. Using the same language in both client and server
simplified the prototype implementation. However, for efficiency reasons,
the server part can be implemented in any high-performance language like
C++.

After receiving the data from the server, the client decodes it using the Dataview
object in order to extract the volume header and the actual volume data from the
serialized format shown in Figure 6.2. The extracted data is used to create a 3D
volume texture that is uploaded to the GPU for rendering. Volume rendering is
initialized by first rendering a unit cube with back face culling enabled. The
vertex shader performs modelview and projection transformations while the
volume ray marching is done in the fragment shader.

6.2.1 Server-side Brick Generation

The brick generation is performed on the fly when any data of a particular
volume data set is requested for the first time by a client. After loading the
volume data set, the first step is to compute how many levels of detail have to
be generated. Similar to a classical 2D texture MIP map, each level has half
the resolution in each dimension as the previous level until the lowest level is
reached, which consists of just one brick. The voxel values of the lower levels are
computed by averaging the corresponding 2×2×2 voxel values of the previous
level. Each level is divided into fixed-size cubic bricks. We typically use a brick
resolution of 32×32×32 or 64×64×64 voxels, which results in a reasonably small
memory footprint per brick but also does not lead to too many HTTP requests
by the client for the entirety of the bricks. Once the volume is loaded from disk

1 https://nodejs.org/ (last accessed 04/15/2018).

https://nodejs.org/

94 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

and bricked, it is cached in memory and subsequent requests will directly get
the data of a particular brick.

The additional memory for storing the lower-resolution bricks is very low. Since
the resolution is divided by a factor of two in each dimension, the total memory
can be computed as Σ∞i=0 (1/8)i = 1 + 1/7. That is, the additional memory for all
lower levels equals 1/7 of the memory needed for the full volume.

The bricked volume data could also be precomputed and stored to disk to
eliminate the processing time when loading a new volume data set. However,
since the cost for preprocessing is only incurred once as explained above,
precomputing the bricks and storing them to disk was not considered for
implementation in the prototype.

6.2.2 Data Encoding and Transfer

The data format for sending the brick data from the server to the client is shown
in Figure 6.2. The serialized message starts with the actual data of the brick,
followed by the brick indices—i.e., the (x,y,z)-coordinates of the brick in the
current level—and the level of detail to which the requested brick belongs.
Since the bricks always have the same resolution, independent of the current
level, the messages always have the same size. All values are stored as byte
values (UINT8), that is, the current implementation can address 16k×16k×16k
volumes if 64×64×64 voxel bricks are used. The information about the brick
indices and level are needed since the receiving thread in the client cannot get
this information from the main thread. That way, incoming brick data can be
processed without stalling the rendering thread.

In order to keep the data that has to be transferred from the server to the client
as small as possible, we optionally use compression. The above mentioned
serialized brick data is compressed using the Snappy.JS library2. If compression
is used, the brick size is set to 64×64×64 voxels by default. Otherwise, the
amount of data to be transferred for each brick request would be very low.

6.2.3 Client-side Data Processing

After the client has requested a new data set and it was loaded and bricked
by the server, the client receives meta data about the data set (i.e., the voxel
resolution of the data set, the voxel resolution of the bricks, the number of
levels etc.). The client uses this information to allocate the required 3D texture
storage, which has the same resolution as the original volume data. We use
immutable textures, which are created using texStorage3D(), since these are
2 Snappy.JS https://github.com/zhipeng-jia/snappyjs (last accessed 04/14/2018).

https://github.com/zhipeng-jia/snappyjs

6.2 ● Implementation 95

more efficient than mutable textures as per WebGL 2.0 specification [Khronos,
2013]. After this, the volume bricks can be requested.

Each time a brick is received from the server, the corresponding texture memory
has to be updated with the new brick data. If the data was compressed for
transfer, it is of course first decompressed again. Since each brick has a different
footprint in the full volume depending on which level of the volume it is in,
the brick data has to be upsampled to the resolution of the original volume
before being sent to the GPU. During the upsampling, the information about
the level of the brick and the brick index is used to compute the corresponding
global voxel offsets in the full-resolution 3D texture. The data is upsampled
by duplicating the voxels by a factor that is computed as the ratio between the
resolution of the original volume data and the resolution of the volume at the
corresponding level of detail of the brick. Receiving and upsampling each brick
are performed by a web worker [W3C, 2015]. The transfer of data between this
worker and the main thread is done using transferable objects to avoid copying
of the data. This has already been discussed in chapter 5 for particle rendering.
Finally, the upsampled brick data is used to update the volume texture using
texSubImage3D().

6.2.4 Prioritization of Volume Bricks

The initial bricking described in section 6.2.1 allows the client to request the
data level by level, starting with the lowest resolution (just one brick) to get an
initial image very fast and adding higher-resolution data level by level until
the full resolution is reached. However, volume data often has regions that are
more important than others. That is, it can be worthwhile to transfer the bricks
out of order, so that more important bricks are available earlier in the client
than less important ones. Thus, important regions in the data set are available
for rendering sooner in full resolution.

Since it is hard to find a measure of importance that applies to all kinds
of data sets, we decided to use entropy as a measure of importance in our
prototype. That is, we compute the entropy of each brick and assign it as the
importance value of that brick. The reasoning behind this is that bricks with a
higher disorder and more diverse voxel values contain more information. Our
algorithmic pipeline would of course also work with other, arbitrary measures
of importance.

After assigning an importance value to each brick, a list consisting of pairs
of importance values and the corresponding brick indices—that is, the level
and (x,y,z)-coordinate of each brick—is generated. This list is sorted by the
importance values in ascending order. The client can now request this sorted
list and use it to prioritize the bricks. That is, the client can request the bricks

96 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

in the order of their importance. The only exception from this rule is the lowest-
resolution level consisting of just one brick. Since this brick should always be
transferred first to the client to give a first impression of the whole data set, it is
assigned the maximum importance value.

Note that the scheme described above can lead to bricks being requested
out of level order, that is, a brick from a lower level (with higher resolution)
can be received earlier than the corresponding brick with higher level (lower-
resolution), which overlaps with the first brick. In this case, it has to be ensured
that the lower-resolution brick does not overwrite the higher-resolution brick
(see Figure 6.3). We handle these cases by storing all bricks in an octree-like
data structure. If a brick is loaded and upsampled, we have to check recursively
whether one or more of its eight child nodes already contain brick data. If this
is the case, the respective areas are updated with the available high-resolution
bricks prior to uploading the volume to the GPU. To improve the performance
of this algorithm, we propagate the availability of high-resolution bricks to lower
levels, so we do not have to traverse the whole tree. The importance-based
prioritization of brick requests is of course only optional.

Figure 6.3 — Effects of importance-based prioritization of bricks. The lowest-
resolution brick (orange) always has the highest importance value and is re-
quested first. If the green brick has a higher importance than the blue one, it is
requested earlier. Since the blue brick is at a higher level and overlaps the data
of the already available green brick, the corresponding voxels in the 3D texture
used for rendering must not be overwritten by the values of the blue brick.
Note that the orange and blue voxels are upsampled to the original resolution
of the volume (green brick).

6.3 ● Results and Discussion 97

6.2.5 Client-side Rendering using WebGL

As mentioned at the beginning of this chapter, WebGL 2.0 [Khronos, 2013]
supports 3D textures and complex fragment shaders that allow for dynamic
loops. For the rendering, we implemented a basic 3D texture volume ray
marching [Engel et al., 2006] in WebGL. Only the front faces of the bounding
box of the volume are rendered in order to initiate the volume rendering. The
actual ray marching is performed in the fragment shader.

The user can switch between maximum intensity projection or a 1D transfer
function. All transfer functions used to generate images for this chapter were
constructed using the Inviwo visualization framework [Sundén et al., 2015] and
stored locally on the client as PNG images. We use a FileReader object of the
File API [W3C, 2013] to read the transfer function data from the local disk and
upload it to the GPU as a texture.

As observable in Figure 6.4, the aggregation of densities over resolution levels
cannot be properly performed via simple averaging. This has been investigated
in detail by Sicat et al. [Sicat et al., 2014]. They proposed to encode high-
frequency data in the lower resolutions via probability distribution functions
to obtain a scale-consistent rendering. Since this severely impacts the memory
requirements, the volume is represented via a Gaussian mixture model (GMM)
instead. The downside of this method is that the GMM fitting is extremely costly
and the rendering requires a density histogram instead of discrete density values
per voxel. Since the refinement of the volume converges rather quickly using
our bricked data transfer, we decided to use the straightforward averaging in
our prototype. Actually, the artifacts arising from lower-level data make it easy
for the user to spot locations where full-resolution data is still missing.

6.3 Results and Discussion

We measured transfer with and without decompression times on multiple
machines and various data sets. To account for different network connections,
we employed a workstation (custom built), a laptop (Microsoft Surface Book),
and a typical smartphone (Samsung Galaxy S7). We used the hazelnuts data
set (512×512×512 voxels, 128 MB; shown in Figure 6.5) for this test and varied
the size of the transferred bricks from 5123 (one brick) down to 643 (585 bricks
over all levels of detail). The results and the hardware specifications of our test
systems can be seen in Figure 6.6. Several interesting effects can be observed
in the resulting graphs. One, for local wired network, compression does not
improve the overall time. Although the Snappy compression results in roughly
half the data set sizes, the time required for decompression roughly equals
the time saved from shorter transmission. However, the improvements for

98 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

Figure 6.4 — Different snapshots of the bricked volume rendering method
showing the aneurism data set at different levels of detail. We use multiple
levels of detail of the volumetric data, which are divided into bricks and
progressively transferred to the client for rendering. The leftmost image shows
the lowest resolution while the rightmost image shows the final image with the
original resolution of the data set. The volume ray marching was implemented
in WebGL 2.0 and uses a simple 1D transfer function.

compressed data are significant for slower network speeds (WiFi and LTE). The
overall time for data transmission is reduced to less than 50% in all cases and
decompression times are negligible compared to transfer times. As expected,
the additional data needed for the levels of detail is so low that it does not affect
total transfer times significantly. That is, the total transfer time does not depend
on the chosen bricking for the two wireless connections. The variance of the
measurements in these cases can be attributed to constantly changing connection
quality, which we also observed in the connection properties. This is due to
taking the measurements in a real-world office environment. For example, in
the WiFi case, we observed speeds between 39 Mbit/s and 117 Mbit/s (average
was 72 Mbit/s). It is interesting to notice, however, that for the wired connection
the single brick and the smallest bricks behave differently. The slightly higher
transfer time for the single brick can be attributed to the fact that only a single
transfer is performed, while all other cases queue and execute several HTTP
requests that will be served concurrently. This means that we could still improve
the transfer of a whole volume even without levels of detail by bricking it all the
same. We hypothesize that the sudden increase of transfer time for the smallest
brick must stem from some inherent overhead in the HTTP requests that cannot
be mitigated by the low latency of wired networking.

Since the main target of our method are networked connections with lower
speed, not only the total transfer time, but also the per-brick transfer times
are important. These directly influence the time a user has to wait until the
visualization is available as well as the time it takes for each refinement of
the available data. As mentioned above, the total transfer time does not vary

6.3 ● Results and Discussion 99

Figure 6.5 — Visualization of an hazelnuts volume data set using maximum
intensity projection.

much over brick sizes, so the trade-off for having a quick response with lower-
resolution data is more than justified. Especially on a smartphone, where the
absolute transfer times are very high, quick response times are essential. Based
on our measurements, we therefore recommend the smallest brick size (643

voxels, compressed), which took about 20ms to transfer, in this case. For the
WiFi connection, a brick size of 1283 can be chosen to obtain comparable results
(19ms).

The rendering performance for the different client systems is shown in Figure 6.7.
Note that we use a logarithmic scale for the frames per second (FPS) values. In
addition to the hazelnuts, we also tested the engine data (256×256×128 voxels,
8 MB; see Figure 6.8) and the aneurism data (2563 voxels, 16 MB; see Figure 6.4).
For the frame rate measurements, we zoomed into the volume data sets until
they reached maximum screen coverage while still being fully visible. Perfor-
mance was measured after data set transmission was completed, although the
background transfer and texture updates did not affect performance noticeably.
The overall behavior of the different hardware is on par with expectations: while
our simple volume ray marching reaches very high frame rates on the current

100 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

0
1000
2000
3000
4000
5000
6000

off on off on off on off on

512 256 128 64

M
ill

ise
co

nd
s

Brick Side Length, SnappyJS Decompression

Intel Core i7-6700, Nvidia GeForce GTX
1080 GPU, Gigabit Network

Network transfer Network decompression

0
5000

10000
15000
20000
25000
30000

off on off on off on off on

512 256 128 64

M
ill

ise
co

nd
s

Brick Side Length, SnappyJS Decompression

Microso� Surface Book: Intel i7-6600U,
Nvidia GeForce GPU, WiFi

Network transfer Network decompression

0

50000

100000

150000

200000

off on off on off on off on

512 256 128 64

M
ill

ise
co

nd
s

Brick Side Length, SnappyJS Decompression

Samsung Galaxy S7: Samsung Exynos
Octa 8890, Mali-T880 GPU, LTE

Network transfer Network decompression

Figure 6.6 — Transfer and decompression times for the Hazelnut data set. The
machines used for testing are the same as in Figure 6.7 and off means no
compression.

6.3 ● Results and Discussion 101

1

10

100

1000

TF MIP TF MIP TF MIP

GTX 1080 Surface GeForce Mali T880

FP
S

GPU / Rendering Technique

Hazelnuts

Aneurism

Engine

Figure 6.7 — Performance of the WebGL volume renderer for different data sets
and rendering techniques: Maximum Intensity Projection (MIP) and volume
ray marching using a Transfer Function (TF). A canvas size of 1024×768 was
used. Frame rates were measured using the stats.js library (https://github.com/
mrdoob/stats.js/).

desktop hardware, smaller (and lower-power) devices still struggle with this
visualization technique. Especially the smartphone does not reach interactive
frame rates for the largest data set. On both PC systems, MIP is twice as fast
as using a transfer function. Interestingly, the performance of the smartphone
does not change significantly if using a transfer function. This means that the
dependent texture lookups have a much lower cost on the Mali architecture. The
hazelnuts data set has such low performance that the performance difference is
beyond measurement accuracy (1 vs. 2 FPS).

The prioritization scheme described in section 6.2.4 works well in conjunction
with the transfer of levels of detail. Figure 6.4 shows the effect of the entropy-
based prioritization of brick requests. In the intermediate snapshots, the central
region of the data set is available in full resolution very early, since these bricks
have the highest importance. As observable in the image, entropy is a very
effective measure of importance for this data set, since the aneurism is available
in high resolution first. Depending on the transfer function, this is not always
the case. If it is known beforehand, the server could compute the entropy with
respect to this classification. However, this is not applicable in an exploratory
application case, where the user interactively designs the transfer function.

While the aneurism example shows that the entropy-based importance is an
acceptable generic approach, more specific importance measures can be devised

https://github.com/mrdoob/stats.js/
https://github.com/mrdoob/stats.js/

102 Chapter 6 ● Web-based Visualization of Bricked Volumetric Data with
Levels of Detail

Figure 6.8 — Visualization of the engine volume data set using a transfer
function.

depending on the data sets and application domain. For known data sets,
expert annotations could be used to derive importance. An alternative could be
to use machine-learning-based classification, which is already routinely used in
medical imaging [Litjens et al., 2017], to identify important spots in the data. It
would also be possible to use a weighted sum of different importance measures
and allow an expert user to adjust the weighting in accordance with the task at
hand.

6.4 Summary and Conclusion

Minimizing latency and efficient use of network bandwidth is important for
interactive remote visualization in the browser. The work discussed in this
chapter has demonstrated the feasibility of visualizing volumetric data sets at
interactive frame rates using multiple levels of detail and bricking techniques
in the browser to address the problem of interaction latency and efficient use
of bandwidth. Combining levels of detail, bricking, and importance-based
streaming of compressed bricks to the client provides a base for visualization
of large volumetric data that is only limited by texture memory of the GPU.

6.4 ● Summary and Conclusion 103

Figure 6.9 — Visualization of the flower data set with 10243 voxels using a
transfer function. Our unoptimized WebGL 2.0 volume renderer reaches ∼2 fps
on a Nvidia GeForce GTX 1080, which would be the expected frame rate for a
similar desktop volume renderer.

By transferring individual bricks starting with the lowest level of resolution,
this technique allows the user to start interacting with the volume without
waiting for the entire volume to be transferred to the client. Moreover, this
minimizes latency and network bandwidth requirements. Although the use
of compression can improve transfer times, especially for slow networks as
discussed in section 6.3, its costs in terms of compression and decompression
time should be carefully weighed. Since the main focus for this work was
latency and bandwidth issues, acceleration strategies like early ray termination
and empty space skipping were not implemented. However, these techniques
could improve the rendering of large datasets like the flower in Figure 6.9. This
is left as future work.

C
h

a
p

t
e

r

7
Conclusion and Outlook

7.1 Conclusion

The work presented in this thesis has demonstrated the feasibility of interactive
web-based visualization of large scientific data sets including both static and
dynamic data without the use of plugins. This has been achieved through
exploiting modern web technologies like HTML5 and WebGL that enable im-
plementation of GPU-accelerated rendering techniques that were until recently
only confined to desktop platforms.

Interactive rendering in the browser requires efficient data encoding and net-
work data transfer techniques in order to minimize bandwidth usage and
decoding time on the client side. Data encoding formats that exploit typed
arrays and are GPU-friendly and allow the data to be uploaded to the GPU
with minimal processing on the CPU side.

The results have shown that GPU-based ray casting rendering techniques are key
to achieving interactive visualization in the browser. By generating geometry
data on the GPU from implicitly defined surfaces, much work is pushed to
the hardware thus avoiding doing heavy computations on the CPU that would
affect performance. This also allows less data to be uploaded to the GPU as
only the parameters of the implicit surface are transferred from the server to
the client and down to the GPU. This saving in bandwidth and avoiding doing
computations in the CPU makes rendering large data sets feasible. This is
especially critical for dynamic data that can potentially change in every frame.
Keeping computations on the CPU side to the minimum is important because

106 Chapter 7 ● Conclusion and Outlook

JavaScript is usually slow compared to compiled languages like C++.

Although heavy computations can be offloaded to a background process
through web workers, this helps only to keep the user interface responsive but
data upload remains a challenge because it has to be done on the main thread
that handles user interactions and rendering. This is challenging given the
single-threaded nature of JavaScript.

Another advantage of GPU-based ray casting rendering is high image quality.
Since ray-object intersections are evaluated per pixel, the produced images are
accurate (at the pixel level) and mathematically correct because the surface
points are sampled from a mathematical function definition of the surface. To
get similar image quality using polygon rendering requires huge number of
triangles to approximate smooth surfaces. This would in turn increase storage
and bandwidth requirements and affect rendering rates.

The problem of data upload to the GPU is critical for rendering dynamic data.
Rendering performance could be improved by exploiting web workers in the
browser for data upload to the GPU. Unfortunately, the WebGL standard does
not allow access of the WebGL context in the web worker; making it impossible
to do any WebGL related task on the web worker. This limitation makes it
difficult to decouple rendering and data upload tasks.

As discussed in chapter 5, data upload takes significant processing time and
affects rendering rates for dynamic data where new data has to be uploaded to
the GPU whenever there are data changes. Decoupling the rendering and data
upload tasks could allow one of these tasks to be performed in the web worker.
For example, if data could be uploaded to the GPU from a web worker and
rendering done on the main thread, the main thread could continue rendering
the old data and be notified to use the new data once the upload is complete.
Current efforts on standardization of Off screen canvas [WHATWG, 2018] could
help remove this limitation.

Efficient data encoding techniques are important for efficient use of network
and CPU-GPU bandwidth. Traditional solutions for bandwidth problems are
through compression. However, this approach may not always work well in the
browser because of the decompression time required to decompress the data.
Moreover, when decompression is done on the CPU, the CPU-GPU bandwidth
remains a bottleneck for rendering performance. Therefore, data encoding
techniques that require minimal processing on the client become important.
For example, as discussed in chapter 5, use of array buffers and quantization
techniques allows for efficient use of bandwidth and minimum processing
requirements on the CPU.

Hiding latency is another factor that is important in order to achieve interactive
rendering in the browser. Network latency is in large part addressed by ren-

7.1 ● Conclusion 107

dering on the local client rather than on the server. This is important because
it avoids round trip network latency for any rendering parameter changes.
However, data fetching and data updates still have to be communicated through
the network. Additionally, communication between data fetching and rendering
threads need to be asynchronous in order to avoid one thread stalling the
other.

Latency can also be minimized using bricked multi-resolution volume data
represention combined with progressive importance-based data transfer as
discussed in chapter 6. This allows the user to have the glimpse of the visual-
ization without waiting for the entire volume data to be fully loaded. Again
as discussed in chapter 5 and chapter 6, asychronous data fetching using web
workers plays an important role in client-side rendering in the browser because
it avoids stalling the main thread responsible for rendering.

The HTTP protocol is a request-response protocol. The server replies only
in response to a client initiated request. Once all the resources associated
with a particular request have been sent to the client, the connection is closed.
This causes a new connection to be established for every new request to the
server. However, establishing a new connection for every request and one-way
communication between client and server introduces communication latency
and inefficient use of network resources. WebSocket addresses this inefficiency
by providing a bidirectional persistent communication channel between client
and server. Similar to HTTP, the request to establish a communication channel
is initiated by the client as a normal HTTP request but with header fields—
Upgrade whose value is set to "websocket" and Connection whose value is set
to "Upgrade". This indicates to the server that the client wants to upgrade the
HTTP connection to a web socket connection. Once the connection is established
the client and server can exchange data at any time.

This bidirectional persistent communication is important for visualization of
dynamic data that require constant data updates because it reduces latency
by avoiding the cost of establishing a new connection for every data update.
Moreover, the server can send the data to the client without the client requesting
it first.

Another important technique for hiding network latency is to overlap data
fetching with rendering. This is achieved by fetching data asynchronously in
the background using a web worker so that rendering is not stalled by data
fetches. The rendering thread continues to render the already received data
and then gets updated when new data arrives. Since web workers and main
thread do not share memory and communicate only through message passing,
using typed arrays to encode data is also important because this allows data
exchange with zero copy through transferable objects technique.

108 Chapter 7 ● Conclusion and Outlook

7.2 Outlook

The browser has great potential to become a preferred deployment platform
for visualization tools and services. Its ubiquity across operating systems and
devices, from smartphones to desktops is attractive for the increasingly mobile
and collaborative research work. Combing this with the advances in networking,
cloud computing, and mobile GPU technologies, it is more likely that future
visualization tools will be deployed in the cloud and consumed on various
devices through the browser. The cloud would become a shared virtual research
space where domain scientists and visualization researchers can share their
data and visualization tools to gain insight and accelerate scientific discovery.
As discussed in chapter 3, many visualization tools are already on the web
nowadays providing a basis for cloud-based visualization.

7.2.1 Visualization as a Cloud Service

The increasingly growing data sets due to the proliferation of digital devices
producing massive data sets have created a demand for cloud storage and
computational resources. A single machine is no longer sufficient for storage
and computational needs of these data sets. Since the data is already stored
in the cloud, it becomes natural to store the tools that process the data in the
cloud too. Moreover, a cloud service can also provide the necessary compute
power for users with low-end devices like tablets and smartphones.

The traditional approach to visualization as a post-processing step is becoming
impractical because of the inability to download the entire data from the cloud
and visualize it on the client. Therefore, a better approach would be to host
the visualization tools as services in the cloud and use client-side GPU-based
rendering for visualizing the data to support the analysis task at hand using data
streaming techniques. Since not all generated data may be useful, visualization
tools can be combined with analytics engines that can detect interesting patterns
in the data and send to the client only the interesting data for rendering. This
can be achieved through a data base management system that integrates data
management functionality with data analysis tools like SciDB [Stonebraker
et al., 2013].

Another important aspect is the need for visualizing data generated in real-time.
This would require a visualization service that is continuously running and
reacting to constant data updates in a streaming computational model. The data
are visualized on the fly as they are being generated because storing them first
would require huge storage. Moreover, for data that are produced in real-time,
visualizing them immediately is important for real-time decision making. In
cases of emergency situations where visualization can play an important role by

7.2 ● Outlook 109

helping rescue teams to understand an evolving situation, making fast decisions
can save lives. This could be helpful, for example, in flooding or earthquake
situations. A simulation model coupled with real data from affected areas can
feed data to the visualization service that can help to understand the situation
better for proper predictions and rescue planning and management.

The web service approach to building software has been introduced to address
the problem of software interoperability. RESTful web services have gained
attention and popularity due to their simplicity and well integration with
other web technologies. By building on top of existing web infrastructure,
RESTful web services benefit from reusing the existing infrastructure for better
performance and scalability. For example, the GET method of the HTTP
protocol is a read only operation and is highly optimized for performance
through different levels of caching from in browser caching to regional level
caching servers.

Exploiting web services for visualization tools would allow seamless integration
between visualization and data analysis tools through standardized interfaces.
In the era of big data, visualization tools alone may not be sufficient to help
make sense of the data; a combination of tools is required.

7.2.2 Collaborative Web-based Visualization

The increasing trend towards geographically distributed and collaborative
research teams, requires visualization tools that can support this kind of col-
laborative work. Cloud computing combined with web technologies provide
an ideal environment for deployment of such visualization tools. Current tech-
nological trends especially on mobile GPUs and web technologies suggest that
this trend will continue. At the same time massive data will continue to be
produced at increasing speeds in real-time from simulations, sensors and other
digital instruments. In order to gain insights from these data, teams of scientists,
who may be geographically distributed, would benefit from visualization tools
that can allow them to work together in real-time while exploring the same
data.

For example, a global team of health experts, could use a geospatial collaborative
visualization tool to study and share their insights about the spread of a disease
outbreak in real-time. This would allow them to make decisions faster than
they would if each person was working in isolation. Another collaboration that
would benefit from these tools is that of domain scientists and visualization
researchers. This would allow developers of visualization tools and users
of these tools to work together in close collaboration and help to accelerate
scientific discovery. Collaborative web-based visualizations would be ideal

110 Chapter 7 ● Conclusion and Outlook

in these scenarios because all these users may be using different devices and
running different operating systems.

The work presented in this thesis can serve as a basis for further research
to tackle these demanding challenges. Interactive visualization of large, real-
time data is a challenge of scale in computation, storage, and communication.
Scalable web-based visualization algorithms in all these three aspects will be
crucial to handle these challenges effectively.

Bibliography
J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing.

In , editor, EG 1987-Technical Papers, pages 3–10. Eurographics Association,
1987. 65

Amazon. Amazon Web Services (AWS)- Cloud Computing Services, 2006.
[Online]. Available: https://aws.amazon.com/, (last accessed 2018/08/31). 34

Amazon. Amazon S3, 2010. [Online]. Available: https://aws.amazon.com/s3/, (last
accessed 2018/08/31). 29

Analytical Graphics. Cesium - WebGL Virtual Globe and Map Engine, 2012.
[Online]. Available: https://cesiumjs.org/, (last accessed 2016/04/15). 54

K. Andrews and B. Wright. FluidDiagrams: Web-Based Information Visuali-
sation using JavaScript and WebGL. In N. Elmqvist, M. Hlawitschka, and
J. Kennedy, editors, EuroVis - Short Papers. The Eurographics Association, 2014.
50, 52

V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. How to adapt applica-
tions for the Cloud environment. Computing, 95(6):493–535, 2013. 57

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Comput-
ing. Communications of the ACM, 53(4):50–58, 2010. 33

BabylonJS. BabylonJS - 3D engine based on WebGL/Web Audio and
JavaScript, 2013. [Online]. Available: http://www.babylonjs.com/, (last accessed
2018/08/31). 19, 44

S. K. Badam and N. Elmqvist. PolyChrome: A Cross-Device Framework for
Collaborative Web Visualization. In Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces, ITS ’14, pages 109–118, New
York, NY, USA, 2014. ACM. 54

J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and D. Fellner. A
Scalable Architecture for the HTML5/X3D Integration Model X3DOM. In
Proceedings of the 15th International Conference on Web 3D Technology, Web3D
’10, pages 185–194, New York, NY, USA, 2010. ACM. 19, 20

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28(1):235–242, 2000. 3, 10, 46, 65, 66, 83

https://aws.amazon.com/
https://aws.amazon.com/s3/
https://cesiumjs.org/
http://www.babylonjs.com/

114 Bibliography

J. Beyer, M. Hadwiger, T. Möller, and L. Fritz. Smooth Mixed-resolution GPU
Volume Rendering. In Proceedings of the Fifth Eurographics / IEEE VGTC
Conference on Point-Based Graphics, SPBG’08, pages 163–170, Aire-la-Ville,
Switzerland, Switzerland, 2008. Eurographics Association. 90

J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-Art in GPU-Based Large-Scale
Volume Visualization. Computer Graphics Forum, 34(8):13–37, 2015. 90

M. Biasin. pv - WebGL protein viewer, 2013. [Online]. Available: https://github.

com/biasmv/pv, (last accessed 2016/01/27). 46

M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents. IEEE
Trans. Vis. Comput. Graphics, 17(12):2301–2309, 2011. 19, 44, 52

K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes, N. W. John,
M. W. Jones, M. Riding, and N. Roard. Visual Supercomputing: Technologies,
Applications and Challenges. Computer Graphics Forum, 24(2):217–245, 2005.
26

D. Brutzman and L. Daly. X3D: Extensible 3D Graphics for Web Authors. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. 48

M. Callieri, R. M. Andrei, M. Di Benedetto, M. Zoppè, and R. Scopigno. Visual-
ization Methods for Molecular Studies on the Web Platform. In Proceedings
of the 15th International Conference on Web 3D Technology, Web3D ’10, pages
117–126, New York, NY, USA, 2010. ACM. 46

N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the Google Chrome
Extension Security Architecture. In Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12), pages 97–111, Bellevue, WA, 2012. USENIX.
2

J. Chandler, H. Obermaier, and K. I. Joy. WebGL-Enabled Remote Visualization
of Smoothed Particle Hydrodynamics Simulations. In E. Bertini, J. Kennedy,
and E. Puppo, editors, Eurographics Conference on Visualization (EuroVis) - Short
Papers. The Eurographics Association, 2015. 47

S. M. Charters, N. S. Holliman, and M. Munro. Visualization on the grid: A
Web Service Approach. In Proceedings UK eScience third All-Hands Meeting,
pages 202–209, 2004. 27, 30, 31

K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei. Measuring the
Latency of Cloud Gaming Systems. In Proceedings of the 19th ACM International
Conference on Multimedia, MM ’11, pages 1269–1272, New York, NY, USA,
2011. ACM. 36, 56

https://github.com/biasmv/pv
https://github.com/biasmv/pv

Bibliography 115

S. Choy, B. Wong, G. Simon, and C. Rosenberg. The Brewing Storm in Cloud
Gaming: A Measurement Study on Cloud to End-user Latency. In Proceed-
ings of the 11th Annual Workshop on Network and Systems Support for Games,
NetGames ’12, pages 2:1–2:6, Piscataway, NJ, USA, 2012. IEEE Press. 36

Y. Collet. LZ4 - Extremely Fast Compression, 2011. [Online]. Available: http:

//cyan4973.github.io/lz4/, (last accessed 2016/04/15). 55

J. Congote. MedX3DOM: MedX3D for X3DOM. In Proceedings of the 17th
International Conference on 3D Web Technology, pages 179–179. ACM, 2012. 48

J. Congote, A. Segura, L. Kabongo, A. Moreno, J. Posada, and O. Ruiz. Interac-
tive Visualization of Volumetric Data with WebGL in Real-time. In Proceedings
of the 16th International Conference on 3D Web Technology, Web3D ’11, pages
137–146, New York, NY, USA, 2011. ACM. 25, 45, 48, 69, 90

B. J. d’Auriol. Serviceable Visualizations. The Journal of Supercomputing, 61(3):
1089–1115, 2011. 27

M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno. SpiderGL: A
JavaScript 3D Graphics Library for Next-Generation WWW. In Web3D 2010.
15th Conference on 3D Web technology, 2010. 44, 46, 60

A. Diehl, L. Pelorosso, C. Delrieux, C. Saulo, J. Ruiz, M. E. Gröller, and S. Bruck-
ner. Visual Analysis of Spatio-Temporal Data: Applications in Weather
Forecasting. Computer Graphics Forum, 34(3):381–390, May 2015. 51

J. Diepstraten, M. Gorke, and T. Ertl. Remote Line Rendering for Mobile Devices.
In Computer Graphics International, 2004. Proceedings, pages 454–461, June 2004.
25

M. Dowty and J. Sugerman. GPU Virtualization on VMware’s Hosted I/O
Architecture. SIGOPS Oper. Syst. Rev., 43(3):73–82, July 2009. 35

D. A. Duce and M. Sagar. skML a Markup Language for Distributed Collabora-
tive Visualization. In L. M. Lever and M. McDerby, editors, EG UK Theory and
Practice of Computer Graphics. The Eurographics Association, 2005. 31

K. Engel and T. Ertl. Texture-based Volume Visualization for Multiple Users on
the World Wide Web. In M. Gervautz, D. Schmalstieg, and A. Hildebrand,
editors, Virtual Environments, Eurographics, pages 115–124. Springer Vienna,
1999. 25

K. Engel, O. Sommer, C. Ernst, and T. Ertl. Remote 3D Visualization using
Image-streaming Techniques. In In ISIMADE - 11 TH Internationl Conference
on Systems Research, Informatics and Cybernetics, pages 91–96, 1999. 25

http://cyan4973.github.io/lz4/
http://cyan4973.github.io/lz4/

116 Bibliography

K. Engel, O. Sommer, and T. Ertl. A Framework for Interactive Hardware
Accelerated Remote 3D-Visualization. In W. de Leeuw and R. van Liere,
editors, Data Visualization 2000, Eurographics, pages 167–177. Springer Vienna,
2000. 25

K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-salama, and D. Weiskopf. Real-time
Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006. 11, 90, 97

T. Erl, R. Puttini, and Z. Mahmood. Cloud Computing: Concepts, Technology &
Architecture. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition,
2013. 33

C. Evangelinos and C. N. Hill. Cloud Computing for parallel Scientific HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate
Models on Amazon’s EC2. In In The 1st Workshop on Cloud Computing and its
Applications (CCA, 2008. 38

A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat. 3D Graphics on
the Web: A Survey. Computers & Graphics, 41:43 – 61, 2014. 19

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated Performance
Comparison of Virtual Machines and Linux Containers. In 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 171–172, March 2015. 38

I. Fette and A. Melnikov. The WebSocket Protocol, 2011. [Online]. Available:
http://www.rfc-editor.org/info/rfc6455, (last accessed 2018/07/31). 17, 71

R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000, AAI9980887.
28, 71

M. Figueiredo, J. I. Rodrigues, I. Silvestre, and C. Veiga-Pires. Web3D Visual-
ization of High Detail and Complex 3D-mesh Caves Models. In 2014 18th
International Conference on Information Visualisation (IV), pages 275–280, July
2014. 51

I. Foster. Globus Toolkit Version 4: Software for Service-oriented Systems. In
Proceedings of the 2005 IFIP International Conference on Network and Parallel
Computing, NPC’05, pages 2–13, Berlin, Heidelberg, 2005. Springer-Verlag. 30,
31

I. Foster. Globus Online: Accelerating and Democratizing Science through
Cloud-Based Services. Internet Computing, IEEE, 15(3):70–73, May 2011. 29

http://www.rfc-editor.org/info/rfc6455

Bibliography 117

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. 29

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. The International Journal of High Performance
Computing Applications, 15(3):200–222, Aug. 2001. 29

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid,
chapter 8, pages 217–249. Wiley-Blackwel, 05 2003. 29

I. Foster, Z. Yong, I. Raicu, and L. Shiyong. Cloud Computing and Grid
Computing 360-Degree Compared. In 2008 Grid Computing Environments
Workshop, pages 1–10. IEEE, Nov 2008. 33

D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press,
Inc., Orlando, FL, USA, 2nd edition, 2001. 73

S. Frey, F. Sadlo, and T. Ertl. Explorable Volumetric Depth Images from Raycast-
ing. In 26th SIBGRAPI - Conference on Graphics, Patterns and Images (SIBGRAPI),
pages 123–130, 2013. 90

S. Frey, F. Sadlo, and T. Ertl. Balanced Sampling and Compression for Remote
Visualization. In SIGGRAPH Asia 2015 Visualization in High Performance
Computing, SA ’15, pages 1:1–1:4, New York, NY, USA, 2015. ACM. 89

J. Gaillard, A. Vienne, R. Baume, F. Pedrinis, A. Peytavie, and G. Gesquière.
Urban Data Visualisation in a Web Browser. In Proceedings of the 20th Interna-
tional Conference on 3D Web Technology, Web3D ’15, pages 81–88, New York,
NY, USA, 2015. ACM. 51

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Ka-
plan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reit-
maier, M. Bebenita, M. Chang, and M. Franz. Trace-based Just-in-time Type
Specialization for Dynamic Languages. SIGPLAN Not., 44(6):465–478, June
2009. 2

G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A GPGPU Transparent
Virtualization Component for High Performance Computing Clouds. In
P. D’Ambra, M. Guarracino, and D. Talia, editors, Euro-Par 2010 - Parallel
Processing, volume 6271 of Lecture Notes in Computer Science, pages 379–391.
Springer Berlin Heidelberg, 2010. 35

A. S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1994. 8

118 Bibliography

J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: A Comprehensive Approach
for Supporting Accessible, Reproducible, and Transparent Computational
Research in the Life Sciences. Genome Biology, 11(8):R86, 2010. 53

J. Goecks, C. Eberhard, T. Too, A. Nekrutenko, and J. Taylor. Web-based Visual
Analysis for High-throughput Genomics. BMC Genomics, 14(1):1–11, 2013. 53

Google. Google Cloud, 2008. [Online]. Available: https://cloud.google.com/, (last
accessed 2018/08/31). 34

L. J. Gosink, J. C. Anderson, E. W. Bethel, and K. I. Joy. Query-Driven Visualiza-
tion of Time-Varying Adaptive Mesh Refinement Data. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1715–1722, Nov 2008. 55

J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber.
Scientific Data Management in the Coming Decade. SIGMOD Rec., 34(4):
34–41, Dec. 2005. 24, 38

S. Grottel, M. Krone, C. Muller, G. Reina, and T. Ertl. MegaMol—A Prototyp-
ing Framework for Particle-Based Visualization. Visualization and Computer
Graphics, IEEE Transactions on, 21(2):201–214, 2015. 3, 10, 60, 73, 75

S. Gumhold. Splatting Illuminated Ellipsoids with Depth Correction. In Pro-
ceedings of the Vision, Modeling, and Visualization Conference 2003 (VMV 2003),
pages 245–252, 2003. 60, 79

V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and
P. Ranganathan. GViM: GPU-accelerated Virtual Machines. In Proceedings
of the 3rd ACM Workshop on System-level Virtualization for High Performance
Computing, HPCVirt ’09, pages 17–24, New York, NY, USA, 2009. ACM. 35

R. B. Haber and D. A. McNabb. Visualization Idioms: A Conceptual Model for
Scientific Visualization Systems. In Visualization in Scientific Computing, pages
74–93. IEEE Computer Society Press, 1990. 8, 25, 30

D. Haehn, S. Knowles-Barley, M. Roberts, J. Beyer, N. Kasthuri, J. W. Lichtman,
and H. Pfister. Design and evaluation of interactive proofreading tools for
connectomics. Visualization and Computer Graphics, IEEE Transactions on, 20
(12):2466–2475, 2014a. 53

D. Haehn, N. Rannou, B. Ahtam, E. Grant, and R. Pienaar. Neuroimaging in
the Browser using the X Toolkit. Frontiers in Neuroinformatics, (101), 2014b. 53

E. Haines. Ray Tracing Roundtable Report. Ray Tracing News, 14(1), 2001. 68

https://cloud.google.com/

Bibliography 119

C. G. Healey and J. T. Enns. Attention and Visual Memory in Visualization and
Computer Graphics. Visualization and Computer Graphics, IEEE Transactions on,
18(7):1170–1188, July 2012. 55

O. Hendin, N. W. John, and O. Shocet. Medical Volume Rendering Over the
WWW Using VRML and Java. In Westwood, editor, Medicine Meets Virtual
Reality, pages 34–40, Amsterdam, 1998. IOS Press and Ohmsha. 25

N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in Cloud Computing: What
It Is, and What It Is Not. In Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13), pages 23–27, San Jose, CA, 2013. USENIX. 37

A. Herrera. NVIDIA GRID:Graphics Accelerated VDI with the Visual Perfor-
mance of a Workstation), 2013. [Online]. Available: http://www.nvidia.com/

content/grid/vdi-whitepaper.pdf, (last accessed 2018/09/01). 35

S. Heule, D. Rifkin, A. Russo, and D. Stefan. The Most Dangerous Code in
the Browser. In 15th Workshop on Hot Topics in Operating Systems (HotOS XV),
Kartause Ittingen, Switzerland, May 2015. USENIX Association. 2

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, pages 295–308,
Berkeley, CA, USA, 2011. USENIX Association. 38

X. Hou, J. Sun, and J. Zhang. A Web-based Solution for 3D Medical Image
Visualization. In Proceedings of the SPIE, volume 9418, page 8 pp., 2015. 49

C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. GamingAnywhere: An
Open Cloud Gaming System. In Proceedings of the 4th ACM Multimedia Systems
Conference, MMSys ’13, pages 36–47, New York, NY, USA, 2013. ACM. 35

W. Humphrey, A. Dalke, and K. Schulten. VMD – Visual Molecular Dynamics.
Journal of Molecular Graphics, 14:33–38, 1996. 10, 59, 61, 69, 73

P. Isenberg, N. Elmqvist, J. Scholtz, D. Cernea, K.-L. Ma, and H. Hagen. Collabo-
rative Visualization: Definition, Challenges, and Research Agenda. Information
Visualization, 10(4):310–326, Oct. 2011. 11, 24

H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, and S. Valette. A Web Interface
for 3D Visualization and Interactive Segmentation of Medical Images. In
Proceedings of the 17th International Conference on 3D Web Technology, Web3D
’12, pages 51–58, New York, NY, USA, 2012. ACM. 48, 50

http://www.nvidia.com/content/grid/vdi-whitepaper.pdf
http://www.nvidia.com/content/grid/vdi-whitepaper.pdf

120 Bibliography

B. Jenny, B. Šavrič, and J. Liem. Real-time Raster Projection for Web Maps.
International Journal of Digital Earth, 9(3):215–229, 2016. 51

S. Jeon and J. Choi. Reuse of JIT Compiled Code in JavaScript Engine. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 1840–1842, New York, NY, USA, 2012. ACM. 2

J. Jiménez, A. López, J. Cruz, F. Esteban, J. Navas, P. Villoslada, and J. R.
de Miras. A Web platform for the Interactive Visualization and Analysis of
the 3D Fractal Dimension of {MRI} Data. Journal of Biomedical Informatics, 51:
176 – 190, 2014. 48

Jmol. Jmol: An Open-source Java Viewer for Chemical Structures in 3D, 2009.
[Online]. Available: http://www.jmol.org/, (last accessed 2018/08/31). 10, 46,
59, 74

N. John, M. Aratow, J. Couch, D. Evestedt, A. Hudson, N. Polys, R. Puk, A. Ray,
K. Victor, and Q. Wang. MedX3D: Standards Enabled Desktop Medical 3D.
Studies in health technology and informatics, 132:189–194, 2007. 48

J. Jomier, S. R. Aylward, C. Marion, J. Lee, and M. Styner. A Digital Archiving
System and Distributed Server-side Processing of Large Datasets. In Pro-
ceedings of the SPIE 7264, Medical Imaging 2009: Advanced PACS-based Imaging
Informatics and Therapeutic Applications, volume 7264, 02 2009. 54

J. Jomier, S. Jourdain, U. Ayachit, and C. Marion. Remote Visualization of
Large Datasets with MIDAS and ParaViewWeb. In Proceedings of the 16th
International Conference on 3D Web Technology, Web3D ’11, pages 147–150, New
York, NY, USA, 2011. ACM. 25, 54

S. Jourdain, U. Ayachit, and B. Geveci. ParaViewWeb, A web framework for
3D Visualization and Data Processing. IADIS International Conference on Web
Virtual Reality and Three-Dimensional Worlds, 07 2010. 54

JSmol. JSmol: JavaScript-Based Molecular Viewer From Jmol , 2013. [Online].
Available: http://sourceforge.net/projects/jsmol/, (last accessed 2018/08/31).
3, 9, 46, 59, 74

V. Kajalin. Screen-Space Ambient Occlusion. In W. Engel, editor, ShaderX7 :
Advanced Rendering Techniques, pages 413–424. Charles River Media, 2009. 81

S. Kastner and L. G. Ungerleider. Mechanisms of Visual Attention in the Human
Cortex. Annual Review of Neuroscience, 23:315–341, 2000. 55

http://www.jmol.org/
http://sourceforge.net/projects/jsmol/

Bibliography 121

J. Kessenich, G. Sellers, and D. Shreiner. OpenGL®Programming Guide: The
Official Guide to Learning OpenGL®, Version 4.5 with SPIR-V. Addison-Wesley
Professional, 9 edition, 2016. 15

Khronos. Typed Array Specification, 2011a. [Online]. Available: http://www.

khronos.org/registry/typedarray/specs/latest/, (last accessed 2016/04/13). 17

Khronos. WebGL 1.0 Specification. http://www.khronos.org/registry/webgl/specs/

latest/1.0/, 2011b, (last accessed 2014/02/21). 2, 13, 16, 19, 24, 56, 62

Khronos. WebGL Security, 2011c. [Online]. Available: https://www.khronos.org/

webgl/security/, (last accessed 2015/03/13). 68

Khronos. WebGL 2.0 Specification, 2013. [Online]. Available: http://www.khronos.

org/registry/webgl/specs/latest/2.0/, (last accessed 2014/02/24). 2, 16, 24, 56,
65, 81, 95, 97

Khronos. glTF 1.0 Specification, 2015. [Online]. Available: https://github.com/

KhronosGroup/glTF/tree/master/specification, (last accessed 2016/01/28). 54

J.-S. Kim, N. Polys, and P. Sforza. Preparing and Evaluating Geospatial Data
Models using X3D Encodings for Web 3D Geovisualization Services. In
Proceedings of the 20th International Conference on 3D Web Technology, pages
55–63. ACM, 2015. 51

T. Klein and T. Ertl. Illustrating Magnetic Field Lines using a Discrete Particle
Model. In International Workshop on Vision, Modeling, and Visualization, pages
387–394, 2004. 61

D. Koch and N. Capens. The ANGLE Project: Implementing OpenGL ES 2.0 on
Direct3D. In P. Cozzi and C. Riccio, editors, OpenGL Insights, pages 543–570.
CRC Press, July 2012, http://www.openglinsights.com/. 15

K. J. Kohlhoff, D. Shukla, M. Lawrenz, G. R. Bowman, D. E. Konerding, D. Belov,
R. B. Altman, and V. S. Pande. Cloud-based Simulations on Google Exacycle
Reveal Ligand Modulation of GPCR Activation Pathways. Nature Chemistry,
6(1):15–21, Dec. 2013. 38

W. L. Koltun. Space Filling Atomic Units and Connectors for Molecular Models,
1965, US Patent 3,170,246. 65

S. Koulouzis, E. Zudilova-Seinstra, and A. Belloum. Data Transport Between
Visualization Web Services for Medical Image Analysis. Procedia Computer
Science, 1(1):1727 – 1736, 2010, {ICCS} 2010. 27, 32

http://www.khronos.org/registry/typedarray/specs/latest/
http://www.khronos.org/registry/typedarray/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/1.0/
http://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/webgl/security/
https://www.khronos.org/webgl/security/
http://www.khronos.org/registry/webgl/specs/latest/2.0/
http://www.khronos.org/registry/webgl/specs/latest/2.0/
https://github.com/KhronosGroup/glTF/tree/master/specification
https://github.com/KhronosGroup/glTF/tree/master/specification
http://www.openglinsights.com/

122 Bibliography

Y. Koval, H. Mendrul, A. Salnikov, I. Sliusar, and O. Sudakov. Interactive Dy-
namical Visualization of Big data Arrays in Grid. In Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications (IDAACS), 2015
IEEE 8th International Conference on, volume 1, pages 153–156, Sept 2015. 32

B. Kozlíková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum, I. Viola,
J. Parulek, and H.-C. Hege. Visualization of Biomolecular Structures: State of
the Art Revisited. Computer Graphics Forum, 36(8):178–204, 2016. 10

D. Kranzlmüller, P. Heinzlreiter, H. Rosmanith, and J. Volkert. Grid-Enabled
Visualization with GVK. In F. Fernandez Rivera, M. Bubak, A. Gomez Tato,
and R. Doallo, editors, Grid Computing, volume 2970 of Lecture Notes in
Computer Science, pages 139–146. Springer Berlin Heidelberg, 2004. 31

J. Krüger and R. Westermann. Acceleration Techniques for GPU-based Volume
Rendering. In Proceedings of the 14th IEEE Visualization 2003, pages 38–44, 2003.
69

A. Labour, M. Papakipos, S. Okasaka, and J. Timanus. Safe Browser Plugins
using Native Code Modules, Jan. 8 2013. [Online]. Available: https://www.

google.com/patents/US8352967, US Patent 8,352,967 (last accessed 2018/09/01).
2

A. Lagae and P. Dutré. Compact, Fast and Robust Grids for Ray Tracing.
Computer Graphics Forum (Proceedings of the 19th Eurographics Symposium on
Rendering), 27(4):1235–1244, June 2008. 63

T. Larsson, T. Akenine-Möller, and E. Lengyel. On Faster Sphere-Box Overlap
Testing. J. Graphics Tools, 12(1):3–8, 2007. 64

G. Lavoué, L. Chevalier, and F. Dupont. Progressive Streaming of Compressed
3D Graphics in a Web Browser, 2014. [Online]. Available: http://liris.cnrs.

fr/~glavoue/travaux/conference/SigTalk2014.pdf, (last accessed 2018/09/01). 90

H. Li, K. S. Leung, T. Nakane, and M. H. Wong. iview: An Interactive WebGL
Visualizer for Protein-Ligand Complex. BMC Bioinformatics, 15:56, 2014. 3, 46,
60, 74

M. Limper, S. Wagner, C. Stein, Y. Jung, and A. Stork. Fast Delivery of 3D Web
Content: A Case Study. In Proceedings of the 18th International Conference on 3D
Web Technology, Web3D ’13, pages 11–17, New York, NY, USA, 2013. ACM. 89

M. Limper, M. Thöner, J. Behr, and D. W. Fellner. SRC - a Streamable Format
for Generalized Web-based 3D Data Transmission. In Proceedings of the 19th
International ACM Conference on 3D Web Technologies, Web3D ’14, pages 35–43,
New York, NY, USA, 2014. ACM. 26, 43, 53, 90

https://www.google.com/patents/US8352967
https://www.google.com/patents/US8352967
http://liris.cnrs.fr/~glavoue/travaux/conference/SigTalk2014.pdf
http://liris.cnrs.fr/~glavoue/travaux/conference/SigTalk2014.pdf

Bibliography 123

N. Lindow, D. Baum, and H.-C. Hege. Interactive Rendering of Materials and
Biological Structures on Atomic and Nanoscopic Scale. Computer Graphics
Forum, 31(3):1325–1334, 2012. 62

P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2674–2683, 2014. 55

G. J. S. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez. A Survey on
Deep Learning in Medical Image Analysis. Medical Image Analysis, 42:60 – 88,
2017. 102

Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data.
Computer Graphics Forum, 32(3pt4):421–430, 2013. 50, 51

J. Lluch, R. Gaitán, M. Escrivá, and E. Camahort. Multiresolution 3D Rendering
on Mobile Devices. In V. Alexandrov, G. van Albada, P. Sloot, and J. Dongarra,
editors, Computational Science – ICCS 2006, volume 3992 of Lecture Notes in
Computer Science, pages 287–294. Springer Berlin Heidelberg, 2006. 25

B. Lorensen. On the Death of Visualization. In Position Papers NIH/NSF Proc.
Fall 2004 Workshop Visualization Research Challenges, 2004. 24

K. Matsuda and R. Lea. WebGL Programming Guide: Interactive 3D Graphics
Programming with WebGL. Addison-Wesley, 2013. 13

A. Mayorga and M. Gleicher. Splatterplots: Overcoming Overdraw in Scatter
Plots. IEEE Transactions on Visualization and Computer Graphics, 19(9):1526–1538,
Sept. 2013. 50, 51

M. McCann, B. Yoo, and D. Brutzman. Integration of X3D Geospatial in a
Data Driven Web Application. In Proceedings of the 19th International ACM
Conference on 3D Web Technologies, pages 145–145. ACM, 2014. 51

P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Com-
puting. Technical report, National Institute of Standards and Technology,
Gaithersburg, MD, United States, 2011. 33

D. Merkel. Docker: Lightweight Linux Containers for Consistent Development
and Deployment. Linux J., 2014(239), Mar. 2014. 38

Microsoft. Microsoft Azure Cloud, 2010. [Online]. Available: https://azure.

microsoft.com/, (last accessed 2018/09/01). 34

R. Moreno-Vozmediano, R. Montero, and I. Llorente. IaaS Cloud Architecture:
From Virtualized Datacenters to Federated Cloud Infrastructures. Computer,
45(12):65–72, Dec 2012. 34

https://azure.microsoft.com/
https://azure.microsoft.com/

124 Bibliography

C. Mouton, S. Parfouru, C. Jeulin, C. Dutertre, J.-L. Goblet, T. Paviot, S. Lamouri,
M. Limper, C. Stein, J. Behr, and Y. Jung. Enhancing the Plant Layout
Design Process Using X3DOM and a Scalable Web3D Service Architecture.
In Proceedings of the 19th International ACM Conference on 3D Web Technologies,
Web3D ’14, pages 125–132, 2014. 54

M. M. Movania and L. Feng. High-Performance Volume Rendering on the
Ubiquitous WebGL Platform. In High Performance Computing and Communica-
tion 2012 IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference on, pages 381–388, June
2012. 25, 45, 48, 49, 91

F. Mwalongo, M. Krone, G. Karch, M. Becher, G. Reina, and T. Ertl. Visualization
of Molecular Structures Using State-of-the-art Techniques in WebGL. In Pro-
ceedings of the Nineteenth International ACM Conference on 3DWeb Technologies,
Web3D ’14, pages 133–141, New York, NY, USA, 2014. ACM. 5, 9, 26, 39, 48,
60, 62, 65, 67, 70

F. Mwalongo, M. Krone, M. Becher, G. Reina, and T. Ertl. Remote Visualization of
Dynamic Molecular Data Using WebGL. In Proceedings of the 20th International
Conference on 3D Web Technology, Web3D ’15, pages 115–122, New York, NY,
USA, 2015. ACM. 5, 9, 26, 48, 74

F. Mwalongo, M. Krone, M. Becher, G. Reina, and T. Ertl. GPU-based Remote
Visualization of Dynamic Molecular Data on the Web. Graphical Models, 88:
57–65, 2016a. 5, 74, 82

F. Mwalongo, M. Krone, G. Reina, and T. Ertl. State of the art report in web-
based visualization. Computer Graphics Forum, 35(3):553–575, 2016b. 4, 23

F. Mwalongo, M. Krone, G. Reina, and T. Ertl. Web-based Volume Rendering
using Progressive Importance-based Data Transfer. In Beck, Fabian and Dachs-
bacher, Carsten and Sadlo, Filip, editor, Vision, Modeling and Visualization,
VMV18, pages 147–154. Eurographics Association, 2018. 6, 91

J. M. Noguera and J.-R. Jiménez. Visualization of Very Large 3D Volumes
on Mobile Devices and WebGL. In 20th WSCG International Conference on
Computer Graphics, Visualization and Computer Vision 2012, 2012. 48, 90

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing System. In
Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International
Symposium on, pages 124–131, May 2009. 34

Bibliography 125

NVIDIA. NVIDIA GRID PC Streaming Service, 2015. [Online]. Available:
http://shield.nvidia.com/grid-game-streaming, (last accessed 2018/08/31). 36

OpenStack. OpenStack Open Source Cloud Computing Software, 2010. [Online].
Available: https://www.openstack.org/, (last accessed 2018/08/31). 34

OTOY. The Future of Cloud Gaming, 2013. [Online]. Available: http://www.otoy.

com/cgc/cloudgaming_2013.pdf, (last accessed 2015/07/09). 36, 56

G. Parulkar, J. Bowie, H.-W. Braun, R. Guerin, and D. Stevenson. Remote
Visualization: Challenges and Opportunities. In Proceeding Visualization ’91,
pages 340–344, Oct 1991. 26

C. Pautasso. RESTful Web Services: Principles, Patterns, Emerging Technolo-
gies. In A. Bouguettaya, Q. Z. Sheng, and F. Daniel, editors, Web Services
Foundations, pages 31–51. Springer New York, 2014. 28, 56

C. Pautasso, O. Zimmermann, and F. Leymann. Restful Web Services vs. "Big"’
Web Services: Making the Right Architectural Decision. In Proceedings of the
17th International Conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM. 28

J.-B. Pettit and J. C. Marioni. bioWeb3D: An Online WebGL 3D Data Visualisa-
tion Tool. BMC Bioinformatics, 14(1):185, 2013. 3, 60, 74

M. Pharr and G. Humphreys. Physically Based Rendering: From Theory to Im-
plementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2
edition, 2010. 64

A. Plesch and M. McCann. The X3D geospatial component: X3DOM imple-
mentation of GeoOrigin, GeoLocation, GeoViewpoint, and GeoPositionInter-
polator Nodes. In Proceedings of the 20th International Conference on 3D Web
Technology, pages 31–37. ACM, 2015. 51

F. Ponchio and M. Dellepiane. Fast Decompression for Web-based View-
dependent 3D Rendering. In Proceedings of the 20th International Conference
on 3D Web Technology, Web3D ’15, pages 199–207, New York, NY, USA, 2015.
ACM. 26, 41, 42, 53, 90

N. Rego and D. Koes. 3Dmol.js: Molecular Visualization with WebGL. Bioinfor-
matics, 31(8):1322–1324, 2015. 3, 46

G. Reina and T. Ertl. Hardware-Accelerated Glyphs for Mono- and Dipoles in
Molecular Dynamics Visualization. In Eurographics/IEEE VGTC Symposium on
Visualization, pages 177–182, 2005. 61

http://shield.nvidia.com/grid-game-streaming
https://www.openstack.org/
http://www.otoy.com/cgc/cloudgaming_2013.pdf
http://www.otoy.com/cgc/cloudgaming_2013.pdf

126 Bibliography

B. Resch, R. Wohlfahrt, and C. Wosniok. Web-based 4D Visualization of Marine
Geo-data using WebGL. Cartography and Geographic Information Science, 41(3):
235–247, 2014. 51, 52

L. Richardson, M. Amundsen, and S. Ruby. RESTful Web APIs. O’Reilly Media,
Inc., 2013. 28

A. S. Rose and P. W. Hildebrand. NGL Viewer: A Web Application for Molecular
Visualization. Nucleic Acids Research, 43(W1):W576–W579, 2015. 9, 46, 47, 60

T. Saito and T. Takahashi. Comprehensible Rendering of 3-D Shapes. Computer
Graphics (Proc. SIGGRAPH 1990), 24(4):197–206, 1990. 81, 82

A. R. Sanderson, B. Whitlock, O. Rübel, H. Childs, G. Weber, M. Prabhat,
and K. Wu. A System for Query Based Analysis and Visualization. In
K. Matkovic and G. Santucci, editors, EuroVA 2012: International Workshop on
Visual Analytics. The Eurographics Association, 2012. 55

A. Sarikaya and M. Gleicher. Using WebGL as an Interactive Visualization
Medium: Our Experience Developing SplatterJs. In R. Chang, C. Scheidegger,
D. Fisher, and J. Heer, editors, Proceedings of the Data Systems for Interactive
Analysis Workshop. IEEE, Oct 2015, DSIA ’15. 50

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit (4th ed.): An
Object-oriented Approach to 3D Graphics. Kitware, 2006. 31

S. Seely. SOAP: Cross Platform Web Service Development Using XML. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001. 28

R. Shea, J. Liu, E.-H. Ngai, and Y. Cui. Cloud Gaming: Architecture and
Performance. Network, IEEE, 27(4):16–21, July 2013. 35, 56

S. Shi. Reduce Latency: The Key to Successful Interactive Remote Rendering
Systems. In 2011 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pages 391–392, March 2011.
26

P. Shirley. Objects per Grid Cell. Ray Tracing News, 15(1), 2002. 68

R. Sicat, J. Krüger, T. Möller, and M. Hadwiger. Sparse PDF Volumes for Con-
sistent Multi-Resolution Volume Rendering. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2417–2426, 2014. 97

C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-based Ray-casting of
Quadratic Surfaces. In Proceedings of the 3rd Eurographics / IEEE VGTC Confer-
ence on Point-Based Graphics, SPBG’06, pages 59–65, 2006. 61

Bibliography 127

J. Snell, D. Tidwell, and P. Kulchenko. Programming Web Services with SOAP.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002. 30

K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek. XML3D:
Interactive 3D Graphics for the Web. In Proceedings of the 15th International
Conference on Web 3D Technology, Web3D ’10, pages 175–184, New York, NY,
USA, 2010. ACM. 19

K. Sons, C. Schlinkmann, F. Klein, D. Rubinstein, and P. Slusallek. xml3d.js:
Architecture of a Polyfill implementation of XML3D. In 2013 6th Workshop on
Software Engineering and Architectures for Realtime Interactive Systems (SEARIS),
pages 17–24, March 2013. 20

R. Stevens, M. E. Papka, C. Johnson, P. Baker, J. Leigh, and S. Uselton. Challenges
for Remote Visualization. In Proceedings of the Conference on Visualization ’01,
VIS ’01, pages 519–522, Washington, DC, USA, 2001. IEEE Computer Society.
26

K. Stockinger, J. Shalf, K. Wu, and E. Bethel. Query-driven Visualization of
Large Data Sets. In Visualization, 2005. VIS 05. IEEE, pages 167–174, Oct 2005.
55

M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database Manage-
ment System for Applications with Complex Analytics. Computing in Science
& Engineering, 15(3):54–62, 2013. 38, 56, 108

E. Sundén, P. Steneteg, S. Kottravel, D. Jönsson, R. Englund, M. Falk, and
T. Ropinski. Inviwo - An Extensible, Multi-Purpose Visualization Framework.
Poster at IEEE Vis, 2015. 97

R. Suselbeck, G. Schiele, and C. Becker. Peer-to-Peer Support for Low-Latency
Massively Multiplayer Online Games in the Cloud. In 2009 8th Annual
Workshop on Network and Systems Support for Games (NetGames), pages 1–2,
Nov 2009. 36

J. Sutter, K. Sons, and P. Slusallek. Blast: A Binary Large Structured Transmission
Format for the Web. In Proceedings of the 19th International ACM Conference
on 3D Web Technologies, Web3D ’14, pages 45–52, New York, NY, USA, 2014.
ACM. 26, 90

Tableau. Tableau Online, 2013. [Online]. Available: https://www.tableau.com/

products/cloud-bi, (last accessed 2018/08/31). 27, 34, 53

M. Tarini, P. Cignoni, and C. Montani. Ambient Occlusion and Edge Cue-
ing for Enhancing Real Time Molecular Visualization. IEEE Transactions on
Visualization and Computer Graphics, 12(5):1237–1244, 2006. 81

https://www.tableau.com/products/cloud-bi
https://www.tableau.com/products/cloud-bi

128 Bibliography

A. C. Telea. Data Visualization: Principles and Practice, Second Edition. A. K. Peters,
Ltd., Natick, MA, USA, 2nd edition, 2014. 7

Threejs. Three.js - javascript 3D Library, 2010. [Online]. Available: https:

//threejs.org/, (last accessed 2018/07/30). 19, 32, 44, 46, 49, 52

K. Tian, Y. Dong, and D. Cowperthwaite. A Full GPU Virtualization Solution
with Mediated Pass-through. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, USENIX ATC’14, pages 121–132,
Berkeley, CA, USA, 2014. USENIX Association. 35

TIBCO. TIBCO Spotfire Cloud, 2014. [Online]. Available: http://spotfire.tibco.

com/products/spotfire-cloud, (last accessed 2018/08/31). 27, 34, 53

J. Trapp and H.-G. Pagendarm. A Prototype for a WWW-based Visualization
Service. In W. Lefer and M. Grave, editors, Visualization in Scientific Computing,
Eurographics, pages 21–30. Springer Vienna, 1997. 25

C. Vecchiola, S. Pandey, and R. Buyya. High-Performance Cloud Computing: A
View of Scientific Applications. In Pervasive Systems, Algorithms, and Networks
(ISPAN), 2009 10th International Symposium on, pages 4–16, Dec 2009. 38

F. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. ManyEyes: a
Site for Visualization at Internet Scale. Visualization and Computer Graphics,
IEEE Transactions on, 13(6):1121–1128, Nov 2007. 11, 53

I. Virag, L. Stoicu-Tivadar, and E. Amǎricǎi. Browser-based Medical Visualiza-
tion System. In 2014 IEEE 9th International Symposium on Applied Computational
Intelligence and Informatics (SACI), pages 355–359, May 2014. 49

L. Vu, H. Sivaraman, and R. Bidarkar. GPU Virtualization for High Performance
General Purpose Computing on the ESX Hypervisor. In Proceedings of the
High Performance Computing Symposium, HPC ’14, pages 2:1–2:8, San Diego,
CA, USA, 2014. Society for Computer Simulation International. 35

W3C. Web Services Architecture, 2004. [Online]. Available: https://www.w3.org/

TR/ws-arch/, (last accessed 2018/09/01). 26

W3C. File API, 2013. [Online]. Available: https://www.w3.org/TR/FileAPI/, (last
accessed 2018/09/01). 97

W3C. HTML Canvas 2D Context, 2015. [Online]. Available: https://www.w3.org/

TR/2dcontext/, (last accessed 2018/09/01). 52

W3C. Web Workers: W3C Working Draft, 2015. [Online]. Available: https:

//www.w3.org/TR/workers/, (last accessed 2018/09/01]. 17, 95

https://threejs.org/
https://threejs.org/
http://spotfire.tibco.com/products/spotfire-cloud
http://spotfire.tibco.com/products/spotfire-cloud
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/FileAPI/
https://www.w3.org/TR/2dcontext/
https://www.w3.org/TR/2dcontext/
https://www.w3.org/TR/workers/
https://www.w3.org/TR/workers/

Bibliography 129

W3C. HTML 5.2 W3C Recommendation, 2017. [Online]. Available: https:

//www.w3.org/TR/html52/, (last accessed 2018/09/01). 2, 16, 24, 56

W3C. WebRTC 1.0: Real-time Communication Between Browsers, 2018. [Online].
Available: https://www.w3.org/TR/webrtc/, (last accessed 2018/09/01). 18

I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing Animated
Scenes Using Coherent Grid Traversal. ACM Trans. Graph., 25(3):485–493, July
2006. 68

I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and
P. Shirley. State of the Art in Ray Tracing Animated Scenes. In D. Schmal-
stieg and J. Bittner, editors, Eurographics 2007 - State of the Art Reports. The
Eurographics Association, 2007. 61

H. Wang, K. W. Brodlie, J. W. Handley, and J. D. Wood. Service-oriented Ap-
proach to Collaborative Visualization. Concurrency and Computation: Practice
and Experience, 20(11):1289–1301, 2008. 27

J. Webber, S. Parastatidis, and I. Robinson. REST in Practice: Hypermedia and
Systems Architecture. O’Reilly Media, Inc., 1st edition, 2010. 28

D. Weiskopf. GPU-Based Interactive Visualization Techniques (Mathematics and
Visualization). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 8

L. Wen, J. Jia, and S. Liang. LPM: Lightweight Progressive Meshes Towards
Smooth Transmission of Web3D Media over Internet. In Proceedings of the 13th
ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its
Applications in Industry, VRCAI ’14, pages 95–103, New York, NY, USA, 2014.
ACM. 26, 41

WHATWG. OffscreenCanvas, 2018. [Online]. Available: https://html.spec.

whatwg.org/multipage/canvas.html#the-offscreencanvas-interface, (last accessed
2018/09/01). 106

E. Wilde and C. Pautasso. REST: From Research to Practice. Springer Publishing
Company, Incorporated, 1st edition, 2011. 28

J. Wood, K. Brodlie, and H. Wright. Visualization over the World Wide Web
and Its Application to Environmental Data. In Proceedings of the 7th Conference
on Visualization ’96, VIS ’96, pages 81–ff., Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press. 25

J. Wood, K. Brodlie, J. Seo, D. Duke, and J. Walton. A Web Services Architecture
for Visualization. In IEEE Fourth International Conference on eScience ’08, pages
1–7, Dec 2008. 27, 30, 31

https://www.w3.org/TR/html52/
https://www.w3.org/TR/html52/
https://www.w3.org/TR/webrtc/
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface

130 Bibliography

X3DOM. Terrain of Puget Sound, 2017a. [Online]. Available: https://examples.

x3dom.org/BVHRefiner/BVHRefiner.html, (last accessed 2018/09/01). 22

X3DOM. Volume Visualization Medical Dataset, 2017b. [Online]. Avail-
able: https://examples.x3dom.org/volren/volrenOpacityTestTF_aorta.xhtml, (last
accessed 2018/09/01). 22

C.-T. Yang, H.-Y. Wang, W.-S. Ou, Y.-T. Liu, and C.-H. Hsu. On Implementation
of GPU Virtualization using PCI Pass-through. In 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science (CloudCom), pages 711–
716, Dec 2012. 35

Y. Yang, A. Sharma, and A. Girier. Volumetric Texture Data Compression
Scheme for Transmission. In Proceedings of the 20th International Conference on
3D Web Technology, Web3D ’15, pages 65–68, New York, NY, USA, 2015. ACM.
43, 91

W. Yoo, S. Shi, W. Jeon, K. Nahrstedt, and R. Campbell. Real-time Parallel
Remote Rendering for Mobile Devices using Graphics Processing Units. In
2010 IEEE International Conference on Multimedia and Expo (ICME), pages 902–
907, July 2010. 25

E. Zudilova-Seinstra, N. Yang, L. Axner, A. Wibisono, and D. Vasunin. Service-
oriented Visualization Applied to Medical Data Analysis. Service Oriented
Computing and Applications, 2(4):187–201, 2008. 27, 31

https://examples.x3dom.org/BVHRefiner/BVHRefiner.html
https://examples.x3dom.org/BVHRefiner/BVHRefiner.html
https://examples.x3dom.org/volren/volrenOpacityTestTF_aorta.xhtml

	Contents
	List of Figures
	List of Tables
	List of Abbrev. and Acronyms
	Acknowledgments
	Abstract
	German Abstract — Zusammenfassung
	1 Introduction
	1.1 Thesis Contributions
	1.2 Structure of the Thesis

	2 Fundamentals
	2.1 Introduction to Data Visualization
	2.1.1 Molecular Data Visualization
	2.1.2 GPU-based Volume Visualization

	2.2 OpenGL and WebGL Rendering
	2.2.1 OpenGL Rendering Pipeline
	2.2.2 WebGL Rendering Pipeline

	2.3 Modern Browsers and HTML5 Technologies
	2.4 Approaches for 3D Graphics in the Browser

	3 Remote Visualization
	3.1 Motivation
	3.2 Remote Rendering Approaches
	3.3 Visualization as a Web Service
	3.4 Scaling Server-side Infrastructure
	3.4.1 Grid-based Visualization
	3.4.2 Cloud-based Visualization
	3.4.3 Design Considerations for Cloud-based Visualization Service
	3.4.4 Resource and Data Management in the Cloud

	3.5 Interactive Web-based Visualization
	3.5.1 Data Encoding and Transfer Techniques
	3.5.2 Local Rendering in the Browser

	3.6 Web-based Visualization Applications
	3.7 Conclusion and Challenges
	3.7.1 Conclusion
	3.7.2 Challenges

	4 GPU-based Molecular Data Visualization in the Browser
	4.1 GPU-based Ray Casting
	4.2 Acceleration Data Structures
	4.3 Implementation
	4.4 Results and Discussion

	5 GPU-based Remote Visualization of Dynamic Molecular Data on the Web
	5.1 Overview
	5.2 Implementation
	5.2.1 Data Encoding and Quantization
	5.2.2 WebGL GPU-based Ray Casting
	5.2.3 Triangle Rendering
	5.2.4 Deferred Shading

	5.3 Results and Discussion
	5.4 Conclusion

	6 Web-based Visualization of Bricked Volumetric Data with Levels of Detail
	6.1 Algorithmic Pipeline
	6.2 Implementation
	6.2.1 Server-side Brick Generation
	6.2.2 Data Encoding and Transfer
	6.2.3 Client-side Data Processing
	6.2.4 Prioritization of Volume Bricks
	6.2.5 Client-side Rendering using WebGL

	6.3 Results and Discussion
	6.4 Summary and Conclusion

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook
	7.2.1 Visualization as a Cloud Service
	7.2.2 Collaborative Web-based Visualization

	Bibliography
	List of Todos

