

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Ruslan PACEVIČ

METHODS AND DISTRIBUTED SOFTWARE
FOR VISUALIZATION OF CRACKS
PROPAGATING IN DISCRETE PARTICLE
SYSTEMS

DOCTORAL DISSERTATION

TECHNOLOGICAL SCIENCES,
INFORMATICS ENGINEERING (07T)

Vilnius 2015

Doctoral dissertation was prepared at Vilnius Gediminas Technical University in
2011–2015.

Scientific Supervisor

Assoc. Prof. Dr Arnas KAČENIAUSKAS (Vilnius Gediminas
Technical University, Informatics Engineering – 07T).

The Dissertation Defense Council of Scientific Field of Informatics Engineering
of Vilnius Gediminas Technical University:

Chairman

Prof. Dr Habil. Romualdas BAUŠYS (Vilnius Gediminas Technical
University, Informatics Engineering – 07T).

Members:

Prof. Dr Habil. Rimantas BARAUSKAS (Kaunas University of
Technology, Informatics – 09P),
Dr Robertas DAMAŠEVIČIUS (Kaunas University of Technology,
Informatics Engineering – 07T),
Asoc. Prof. Dr Raimundas MATULEVIČIUS (Tartu University,
Informatics Engineering – 07T),
Prof. Dr Olegas VASILECAS (Vilnius Gediminas Technical University,
Informatics Engineering – 07T).

The dissertation will be defended at the public meeting of the Dissertation Defense
Council of Informatics Engeering in the Senate Hall of Vilnius Gediminas Technical
University at 9 a. m. on 20 November 2015.

Address: Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
Tel.: +370 5 274 4956; fax +370 5 270 0112; e-mail: doktor@vgtu.lt

A notification on the intend defending of the dissertation was send on 19 October 2015.

A copy of the doctoral dissertation is available for review at VGTU repository
http://dspace.vgtu.lt and at the Library of Vilnius Gediminas Technical University
(Saulėtekio al. 14, LT-10223 Vilnius, Lithuania).

VGTU leidyklos TECHNIKA 2343-M mokslo literatūros knyga

ISBN 978-609-457-855-7

© VGTU leidykla TECHNIKA, 2015
© Ruslan Pacevič, 2015
ruslan.pacevic@vgtu.lt

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Ruslan PACEVIČ

DISKREČIŲJŲ DALELIŲ SISTEMOSE
SKLINDANČIŲ PLYŠIŲ VIZUALIZAVIMO
METODAI IR IŠSKIRSTYTOJI
PROGRAMINĖ ĮRANGA

DAKTARO DISERTACIJA

TECHNOLOGIJOS MOKSLAI,
INFORMATIKOS INŽINERIJA (07T)

Vilnius 2015

Disertacija rengta 2011–2015 metais Vilniaus Gedimino technikos universitete.

Mokslinis vadovas

doc. dr. Arnas KAČENIAUSKAS (Vilniaus Gedimino technikos
universitetas, informatikos inžinerija – 07T).

Vilniaus Gedimino technikos universiteto Informatikos inžinerijos mokslo
krypties disertacijos gynimo taryba:

Pirmininkas

prof. habil. dr. Romualdas BAUŠYS (Vilniaus Gedimino technikos
universitetas, technologijos mokslai, informatikos inžinerija – 07T).

Nariai:

prof. habil. dr. Rimantas BARAUSKAS (Kauno technologijos
universitetas, informatika – 09P),
dr. Robertas DAMAŠEVIČIUS (Kauno technologijos universitetas,
informatikos inžinerija – 07T),
doc. dr. Raimundas MATULEVIČIUS (Tartu universitetas,
informatikos inžinerija – 07T),
prof. dr. Olegas VASILECAS (Vilniaus Gedimino technikos
universitetas, informatikos inžinerija – 07T).

Disertacija bus ginama viešame Informatikos inžinerijos mokslo krypties
disertacijos gynimo tarybos posėdyje 2015 m. lapkričio 20 d. 9 val. Vilniaus
Gedimino technikos universiteto senato posėdžių salėje.

Adresas: Saulėtekio al. 11, LT-10223 Vilnius, Lietuva.
Tel.: (8 5) 274 4956; faksas (8 5) 270 0112; el. paštas doktor@vgtu.lt

Pranešimai apie numatomą ginti disertaciją išsiųsti 2015 m. spalio 19 d.

Disertaciją galima peržiūrėti VGTU talpykloje http://dspace.vgtu.lt ir
Vilniaus Gedimino technikos universiteto bibliotekoje (Saulėtekio al. 14,
LT-10223 Vilnius, Lietuva).

v

Abstract

Scientific visualization is becoming increasingly important in analyzing and
interpreting numerical and experimental data sets. Parallel computations of
discrete particle systems lead to large data sets that can be produced, stored and
visualized on distributed IT infrastructures. However, this leads to very
complicated environments handling complex simulation and interactive
visualization on the remote heterogeneous architectures. In micro-structure of
continuum, broken connections between neighbouring particles can form complex
cracks of unknown geometrical shape. The complex disjoint surfaces of cracks
with holes and unavailability of a suitable scalar field defining the crack surfaces
limit the application of the common surface extraction methods. The main
visualization task is to extract the surfaces of cracks according to the connectivity
of the broken connections and the geometry of the neighbouring particles. The
research aims at enhancing the visualization methods of discrete particle systems
and increasing speed of distributed visualization software.

The dissertation consists of introduction, three main chapters and general
conclusions. In the first Chapter, a literature review on visualization software,
distributed environments, discrete element simulation of particle systems and
crack visualization methods is presented. In the second Chapter, novel
visualization methods were proposed for extraction of crack surfaces from
monodispersed particle systems modelled by the discrete element method. The
cell cut-based method, the Voronoi-based method and cell centre-based method
explicitly define geometry of propagating cracks in fractured regions. The
proposed visualization methods were implemented in the grid visualization e–
service VizLitG and the distributed visualization software VisPartDEM. Partial
data set transfer from the grid storage element was developed to reduce the data
transfer and visualization time.

In the third Chapter, the results of experimental research are presented. The
performance of e-service VizLitG was evaluated in a geographically distributed
grid. Different types of software were employed for data transfer in order to
present the quantitative comparison. The performance of the developed
visualization methods was investigated. The quantitative comparison of the
execution time of local Voronoi-based method and that of global Voronoi
diagrams generated by Voro++ library was presented. The accuracy of the
developed methods was evaluated by computing the total depth of cuts made in
particles by the extracted crack surfaces. The present research confirmed that the
proposed visualization methods and the developed distributed software were
capable of visualizing crack propagation modelled by the discrete element method
in monodispersed particulate media.

vi

Reziumė

Mokslinis vizualizavimas tampa vis svarbesniu analizuojant sudėtingas
priklausomybes skaičiavimų ir eksperimentų rezultatuose. Diskrečiųjų dalelių
sistemų lygiagretūs skaičiavimai generuoja didelius duomenų kiekius, kurie
saugomi ir vizualizuojami išskirstytose informacinių technologijų
infrastruktūrose. Dideli, geografiškai išskirstyti duomenų kiekiai reikalauja
sudėtingos programinės įrangos efektyviems skaičiavimams ir interaktyviam
vizualizavimui išskirstytose heterogeninėse architektūrose. Diskrečiųjų elementų
metodu modeliuojant kontinuumo mikrostruktūrą, tarp dalelių nutrūkusios
jungtys gali sudaryti sudėtingos formos plyšius, kurių geometrija nėra žinoma.
Sudėtinga plyšių forma su skylėmis ir apibrėžiančio skaliarinio lauko nebuvimas
riboja standartinių paviršių ištraukimo metodų taikymo galimybes. Vizualizuojant
plyšius, reikia sukonstruoti plyšių paviršių geometriją iš tarp dalelių nutrūkusių
jungčių topologijos ir kaimyninių dalelių pozicijų. Disertacijos tikslas yra
patobulinti diskrečiųjų dalelių sistemų vizualizavimo metodus bei padidinti
metodų realizacijos išskirstytoje programinėje įrangoje greitaveiką.

Disertaciją sudaro įvadas, trys pagrindiniai skyriai ir bendrosios išvados.
Pirmajame skyriuje apžvelgta vizualizavimo programinė įranga, išskirstytosios
vizualizavimo sistemos išteklių tinklo aplinkose, dalelių sistemų modeliavimas
diskrečiųjų elementų metodu ir plyšių, sklindančių dalelių sistemose,
vizualizavimo metodai. Antrajame skyriuje detaliai aprašomi metodai sukurti
vizualizuoti plyšius, kurie sklinda monodispersinėse dalelių sistemose,
modeliuojamose diskrečiųjų elementų metodu. Pažeistuose regionuose celių
kirtimo, Voronoi dekompozicijos ir celių centrų metodai geometriniais
primityvais apibrėžia sklindančių plyšių geometriją. Sukurti plyšių vizualizavimo
metodai įdiegti vizualizavimo e. paslaugoje VizLitG ir išskirstytojoje
vizualizavimo sistemoje VisPartDEM. Dalinio duomenų rinkinio parsiuntimo iš
išteklių tinklo duomenų saugyklos paslauga įdiegta VizLitG siunčiamų duomenų
kiekiui sumažinti ir vizualizavimui pagreitinti.

Trečiajame skyriuje aprašomi eksperimentinių tyrimų rezultatai. E. paslaugos
VizLitG greitaveika ištirta geografiškai išskirstyto išteklių tinklo atveju. Pateikti
duomenų siuntimo skirtinga programine įranga iš išteklių tinklo duomenų
saugyklos tyrimai. Skyriuje pateikti plyšių vizualizavimo metodų greitaveikos ir
tikslumo kiekybiniai palyginimai. Voronoi dekompozicijos metodo realizacijos
greitaveika palyginta su Voro++ bibliotekos greitaveika. Plyšių vizualizavimo
metodų tikslumas įvertintas apskaičiavus bendrą sukonstruotų paviršių
įsiskverbimo į daleles gylį. Tyrimų rezultatai parodė, kad pasiūlyti vizualizavimo
metodai ir sukurta programinė įranga tinka vizualizuoti plyšiams sklindantiems
monodispersinėse dalelių sistemose.

vii

Notations

Abbreviations

API – Application Programmin Interface;

CPU – Central Processing Unit;

DEM – Discrete Element Method

GB – Gigabyte;

GHz – Gigahertz;

GLSL – OpenGL Shading Language;

GPU – Graphics Processing Unit;

GridFTP – Grid File Transfer Protocol;

GUI – Graphical User Interface;

HDD – Hard Disk Drive;

HDF – Hierarchical Data Format;

HTTPS – Hypertext Transfer Protocol Secure;

JAX-WS – Java API for XML Web Services;

LFC – Logical File Catalog;

viii

MB – Megabyte;

MHz – Megahertz;

MIME – Multipurpose Internet Mail Extensions;

MPI – Message Passing Interface;

MVE – Multi-View Environment;

PC – Personal Computer;

RAM – Random-Access Memory;

SE – Storage Element;

SOAP – Simple Object Access Protocol;

SSL – Secure Sockets Layer;

vGPU – Virtual Graphics Processing Unit;

XML – Extensible Markup Language.

ix

Contents

INTRODUCTION .. 1
Problem Formulation .. 1
Relevance of the Thesis .. 2
The Object of the Research .. 2
The Aim of the Thesis .. 3
The Objectives of the Thesis .. 3
Research Methodology ... 3
Scientific Novelty of the Thesis ... 3
Practical Value of the Research Findings ... 4
The Defended Statements ... 4
Approval of the Research Findings .. 4
Dissertation Structure ... 5

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS AND
VISUALIZATION METHODS ... 7
1.1. Overview of Visualization Software ... 7
1.2. Distributed Environments for Visualization .. 10
1.3. Discrete Particle Systems .. 14
1.4. Extraction and Visualization of Crack Surfaces .. 18
1.5. Conclusions of Chapter 1 and Formulating Task for the Dissertation 21

x

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR
DISCRETE PARTICLE SYSTEMS .. 23
2.1. Cell Attribute- and Cell Cut-based Methods ... 23

2.1.1. Cell Attribute-based Method.. 24
2.1.2. Cell Cut-based Method .. 28

2.2. Voronoi-based Method .. 32
2.3. Cell Centre-based Method ... 38
2.4. Distributed Visualization Software ... 40

2.4.1. Grid Visualization e-service VizLitG .. 41
2.4.2. Distributed Visualization Software VisPartDEM 44

2.5. Implementation of Crack Visualization Methods .. 46
2.6. Conclusions of Chapter 2 .. 49

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION
METHODS AND THE DEVELOPED SOFTWARE.. 51
3.1. Description of Visualized Data Sets .. 51
3.2. Performance of Distributed Visualization Software and Partial Data Set

Transfer .. 57
3.2.1. Performance of VizLitG Including Partial Data Set Transfer 57
3.2.2. Performance of VisPartDEM Including Parallel Visualization 66

3.3. Performance of Crack Surface Generation and Visualization 71
3.3.1. Visual Results of the Proposed Methods ... 71
3.3.2. Performance Analysis .. 76
3.3.3. Accuracy .. 85

3.4. Conclusions of Chapter 3 .. 86

GENERAL CONCLUSIONS ... 89

REFERENCES ... 91

A LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF
THE DISSERTATION ... 99

SUMMARY IN LITHUANIAN ... 101

ANNEXES1 .. 115
Annex A. Declaration by the author of the thesis ... 116
Annex B. The coauthor’s agreements to present publications for the dissertation

defence ... 117
Annex C. Copies of scientific publications by the autor on the topic of the

dissertation ... 121

1 The annexes are supplied in the enclosed compact disc

1

Introduction

Problem Formulation

Visualization plays an important role in the numerical analysis cycle, which
consists of data preparation, computations, graphical analysis of the numerical
results and further correction of design variables (Hansen et al. 2005). Numerical
simulations of discrete particle systems (Cundall et al. 1979) and modern physical
experiments lead to large data sets that present challenges to researchers.
Scientific visualization is becoming increasingly important in analyzing and
interpreting numerical and experimental data sets to make decisions in high
technology design. However, large data sets and a complex visualization process
present challenges to the developers of interactive visualization systems.
Distributed visualization allocates different parts of the machine processing and
the provided services to different computers in order to improve performance. A
lot of industrial applications are solved on computer clusters and grid. With the
power of the grid, scientists are able to perform simulations at previously
impossible and unexplored problem scales. However, this leads to very
complicated environments handling complex simulation and interactive
visualization on the remote heterogeneous architectures.

Discrete particle computations are based on the positions of particles and
forces acting between them (Cundall et al. 1979). 1D connections between

2 INTRODUCTION

neighbouring particles are not well suited for the reliable interpolation and
common visualization methods used in 3D. Micro-structure of continuum can be
modelled by discrete particle system and the defects between the pairs of the
neighbouring particles are identified via the broken connections (Rojek et al.
2011). The defects can form complex cracks of unknown geometrical shape. The
main visualization task is to extract the surfaces of cracks according to the
connectivity of the broken connections and the geometry of the neighbouring
particles. The complex disjoint surfaces of cracks with holes and unavailability of
a suitable scalar field defining the crack surfaces limit the application of the
widely used surface extraction methods. Moreover, the fixed connectivity of the
moving particles prevents direct application of the commonly used methods for
generation of Voronoi decompositions (Aurenhammer 1991) or Delaunay
triangulations (Amenta et al. 2001).

Relevance of the Thesis

Visualization is used for analyzing the data and presenting the results across a
wide range of disciplines in science and industry (Hansen et al. 2005). However,
large data sets and a complex visualization process require considerable
development efforts and impressive computing resources. Distributed
visualization systems and services for analysis of large data sets are deployed on
modern IT infrastructures, such as computer clusters, grids and clouds. Efficient
data transfer between remote components of distributed infrastructure is very
important in order to achieve interactive visualization rates.

Fracture of materials presents challenge for visualization as well as for a wide
range of other multi-disciplinary sciences. Cracking is a very common
phenomenon investigated by a wide research community in different scientific
areas (Gobron et al. 2001). Crack formation is often observed in building
constructions, in ceramics (Uematsu 2014), in drying processes (Kitsunezaki
2011) and in complicated failure of powder agglomerates (Khanal et al. 2009).
The absence of the explicitly defined crack surfaces limits a visual analysis of the
computed results and complicates the understanding of the investigated fracture
phenomena. Moreover, the crack surface geometry accurately defined by graphics
primitives can be exported to engineering software for following analysis at the
macro-level.

The Object of the Research

The object of research – visualization of discrete particle systems by using
distributed software.

INTRODUCTION 3

The Aim of the Thesis

The research aims at improving the visualization methods of discrete particle
systems and increasing speed of distributed visualization software.

The Objectives of the Thesis

In order to achieve the aim, the following have to be solved:
1. To analyze technologies of distributed visualization software and

visualization methods for extraction of crack surfaces from discrete
particle systems.

2. To develop software implementation, which allows reducing
communication between remote components of gLite/EMI grid
infrastructure, and investigate its performance.

3. To develop visualization methods for extraction of crack surfaces from
discrete particle systems.

4. To implement the developed methods into distributed visualization
software.

5. To investigate and compare the speed of the implementation of the
developed visualization methods.

6. To investigate the accuracy of the developed visualization methods.

Research Methodology

Methods of comparative and literature analysis methods were used to analyze the
research object. Methods of computer graphics and computational geometry are
used to develop visualization methods for crack propogating. The methods of
experimental research have been used for examining performance of proposed
methods and developed software.

Scientific Novelty of the Thesis

The main scientific contributions of the presented research are as follows:
1. The original implementation of partial data set transfer from gLite/EMI

grid storage elements has been developed to reduce the communication
between remote components of grid infrastructure in the case of
interactive visualization.

2. Novel visualization methods based on Voronoi and geometric cell centre
decompositions have been proposed for extraction of crack surfaces from
monodispersed particle systems. The local decompositions must be

4 INTRODUCTION

constructed according to the fixed connectivity of the moving particles,
therefore, the commonly used methods for generation of Voronoi
decompositions or Delaunay triangulations cannot be applied.

Practical Value of the Research Findings

The designed visualization software is employed for analysis of computational
results of large discrete particle systems that can be useful for developing high
technology in Lithuania. The novel Voronoi and cell centre-based methods can be
used by researchers of fracture mechanics and the material sciences to speed–up
the design of new structures and materials. Moreover, the commercial finite
element analysis software, which is widely used by engineers, can import only
continuously defined crack surfaces represented by curves or polygon meshes.
The successful research into the problems of extraction and visualization of crack
surfaces can help to fill the gap between the industrial requirements and the
research results. The developed methods are implemented in the software, which
is investigated in the project “Research and development of technologies for
virtualization, visualization and security e-services” (VP1-3.1-ŠMM-08-K-01-
012).

The Defended Statements

1. The developed partial data set transfer from gLite/EMI grid storage
elements is able to decrease visualization time reducing the data size
transferred between remote components of grid infrastructure.

2. The proposed visualization methods are capable of extracting crack
surfaces and visualizing crack propagation modelled by the discrete
element method in monodispersed particulate media.

Approval of the Research Findings

Research results related to the dissertation subject are published in 6 scientific
publications. Three of them are published in reviewed scientific journals and are
included in the Thomson Reuters Science Citation Index.

The results of the diseration were presented at five conferences. Four of them
are presented at international scientific conferences:

• The Fourth International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering (PARENG2015). March 24–27, 2015,
Dubrovnik, Croatia.

• 7th World Congress on Particle Technology (WCPT7), 2014 May 19–22,
Beijing, China.

INTRODUCTION 5

• The Third International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering (PARENG2013), 2013 March 25–27,
Pécs, Hungary.

• 18th International Conference on Information and Software Technologies
(ICIST 2012). September 13–14, 2012, Kaunas, Lithuania.

• LMA IIth conference of young scientists on “Fizinių ir technologijos
mokslų tarpdalykiniai tyrimai”. February 14, 2012, Vilnius, Lithuania.

Dissertation Structure

The dissertation consists of introduction, three main chapters, general
conclusions, references, a list of publications by the author on the topic of the
dissertation and a summary in Lithuanian. The total scope of the dissertation is
126 pages, 10 equations, 63 figures and 6 tables. For the purpose of the present
dissertation, references were made to 110 source papers.

6 INTRODUCTION

7

1
Overview of distributed visualization

systems and visualization methods

In this Chapter a literature review on state-of-the-art visualization software,
distributed environments and common visualization techniques is presented.
Discrete Element Method (DEM) for crack propagation in discrete particle
systems is introduced to formulate crack visualization problem and to discuss
output datasets and resulting difficulties. Finally, surface extraction and crack
visualization methods that can be applied in the case of DEM are reviewed and
discussed.

Parts of this Charpter are published in (Kačeniauskas and Pacevič 2011),
(Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015), (Kačeniauskas et al.
2012), (Kačeniauskas et al. 2013), (Pacevič and Kačeniauskas 2015).

1.1. Overview of Visualization Software

Visualization is used for analyzing the data and presenting the results across a
wide range of disciplines (Hansen et al. 2005). Computers are used to create visual
images from the data, while the human mind is used to make inferences from this
imagery in order to better understand the data. Some standalone visualization

8 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

systems, toolkits and packages should be overviewed in order to choose the most
appropriate platform for the efficient development of distributed visualization
systems. In the dawn of the visualization era, creating visualizations meant
programming using a low-level graphics library. A new approach was brought
forward by the Application Visualization System (AVS) (Favre et al. 2005). AVS
(later called AVS Express) is a modular visualization environment (MVE)
providing an application development environment for visualization using a
visual network editor. Over 800 developed modules are available in AVS/Express
visualization system. Other MVEs have significantly smaller number of modules
(about 200). AVS/Express Multipipe Edition is a version of AVS/Express, which
contains multi-pipe rendering extensions for use in virtual environments. It is
targeted at high-level SGI systems running IRIX and clusters of Windows-based
PCs.

OpenDX (Thompson et al. 2000) is a modular visualization system based on
the dataflow model. The visualization pipeline is processed by the modules of the
dataflow graph, which are arranged according to the desired output. This MVE
originally began as the IBM commercial product Visualization Data Explorer, but
was offered by IBM as an Open Source project in 1999. OpenDX is the best-
known open-source package in the category of MVEs. High efficiency of the
software is achieved by optimized cashing and hardware rendering by means of
OpenGL (Shreiner et al. 2013). OpenDX can access modules on remote hosts by
DXLink. Distributed memory architectures can be employed as well as shared
memory supercomputers.

IRIS Explorer (Foulser 1995) is another MVE based on the dataflow model.
IRIS Explorer uses Open Inventor (Wernecke 1994) for lower level rendering.
The system provides a large selection of modules, listed in the Librarian, which
the user launches into the workspace (Map Editor) and connects together with
wires to form a dataflow pipeline, or map. The system can be extended by users
adding their own code as modules and integrating them into IRIS Explorer using
the provided API. This system provides a mechanism to allow modules within a
pipeline to be run on a number of remote computing resources. IRIS Explorer
transparently manages the data transfer between resources as the data passes along
the pipeline, using shared memory for modules connected together on the same
host and through sockets for modules connected across host boundaries.

SCIRun (Parker et al. 1995) is an MVE developed at the Scientific
Computing and Imaging (SCI) Institute at University of Utah. It allows the user
to connect a set of pre-written routines together in a workspace to form a dataflow
network. These routines execute as independent threads within a single executable
in contrast to other MVEs, which run modules as individual processes. SCIRun
has been targeted at shared memory parallel systems. To extend beyond this
limitation, more recent implementations of SCIRun have employed “bridging”.

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 9

SCIRun has been used for computational steering within the Uintah, which is
designed to run on massively parallel distributed memory architectures.

Visapult (Bethel et al. 2000) is a visualization framework with the ability to
render a huge amount of data sets (of the order of 1-5 Tb). Visapult uses parallel
rendering hardware to carry out the high speed rendering processes. Using Cactus
(Thomas et al. 2010) the data are distributed amongst many parallel nodes for
volume rendering. The rendered subset of 2D image is sent to the client for local
rendering.

Chromium (Humphreys et al. 2002) is an open source graphics library, which
allows distributed network rendering for OpenGL applications. It does this by
intercepting OpenGL API calls (Shreiner et al. 2013), and then modifying,
deleting, replacing or augmenting them. Thus, for distributed rendering, the
commands are split across a collection of graphics cards. A particular feature of
Chromium is that it is non-invasive, because no modification or even
recompiliation of the application is required.

pV3 (Haimes 1994) is a library for the real-time visualization of large-scale
transient (unsteady) systems. Based on an earlier system called Visual3, it has
been re-designed specifically for the multi-processing visualization of data
generated in a distributed compute arena. One of its design goals is to allow the
compute solver to run as independently as possible thus for example, pV3 can be
configured to plug into the simulation, display the transient data, and unplug from
the calculation. pV3 provides a centralized interface to a distributed computation.
Computational steering is also supported by pV3.

Covise (Collaborative Visualization Environment) (Wright et al. 1997) falls
into the modular visualization environment category. It allows a user to run
modules both locally and remotely, employing a data manager process on each
host to manage the flow of data beween modules. Like other distributed MVEs,
such as IRIS Explorer (Foulser 1995), modules connected together on the same
host communicate data through shared memory, while modules connected beween
hosts pass data via the local data managers. A company named Vircinity is
marketing several versions of Covise that offers collaborating visualization.

Ensight (CEI 2009) is a standalone application aimed at the visual analysis
and post-processing of engineering data. An advanced version of the package
(called Ensight Gold) incorporates extra features for handling large data sets
including parallel processing, multi-pipe rendering for output to immersive
environments, and collaboration. Ensight offers a standard set of visualization and
plotting algorithms with interfaces to several engineering solvers for CFD and
FEA problems but, being aimed at end-users rather than developers, is not
extensible. No new algorithms can be added, although users can create their own
readers to import data in custom formats.

10 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

Amira (Stalling et al. 2005) is an highly interactive object-oriented
visualization system, based on Open Inventor (Wernecke 1994). Unlike many of
the other visualization systems, it is not based on a dataflow model. Because data
are passed between modules as C++ objects (as in a normal C++ program), there
is no overhead for module communication. Users can extend Amira (adding new
modules, data classes, editors and I/O methods) by deriving from an existing C++
class. Amira users create applications via a visual programming interface by
connecting Amira modules together.

VisAD (Hibbard et al. 2005) is a Java component library for interactive and
collaborative visualization and analysis of numerical data. It makes use of Java’s
RMI technology, which allows methods of remote Java objects to be invoked from
other Java virtual machines, possibly on different hosts. VisAD applications can
run in any of three networked modes: standalone, server or client. The
construction of distributed applications in VisAD is facilitated by its event-driven
design.

VTK (Kitware 2010; Schroeder et al. 2006) is an open source, object–
oriented software system providing a toolkit for 3D computer graphics, image
processing and visualization. It consists of a C++ class library, together with
several interface layers including Tcl/Tk, Java and Python, which can be used to
access the classes and build applications. More than 2000 separate classes,
including several hundred data processing filters, are available in the toolkit. VTK
supports a wide variety of visualization algorithms including scalar, vector,
tensor, texture, and volumetric methods; and advanced modelling methods like
implicit modelling, polygon reduction, mesh smoothing, cutting, contouring and
Delaunay triangulation. VTK is based on the dataflow model supporting reference
counting, which allows data to be shared instead of duplicated. Modules are
connected with each other to form a visualization pipeline. VTK supports portable
multithreading for shared memory implementation and portable distributed
parallel processing based on MPI (Gropp et al. 1996). Likewise, a sort-last,
parallel rendering class is provided that uses inter–processor communication to
collect and then composite parallel renderings into a final image (Moreland et al.
2001). An open-source, turnkey application ParaView (Ayachit 2015), designed
for large data visualization using distributed parallel processing, is built on the top
of VTK.

1.2. Distributed Environments for Visualization

Scientific visualization is becoming increasingly important in analyzing and
interpreting numerical and experimental data sets. However, large data sets and a
complex visualization process require considerable development efforts and

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 11

impressive computing resources. Distributed visualization allocates different parts
of the machine processing to different computers.

Grid Visualization Kernel (GVK) (Kranzlmuller et al. 2002) based on the
Globus middleware (Foster et al. 2001) has been developed in EU CrossGrid
project (2002). In concrete, the concept of GVK can be divided into two main
parts: the interface between the simulation and the visualization, and the
implementation of the visualization pipeline. The interface to GVK is established
via available visualization toolkits. Well known example is the OpenDX
visualization software (Thompson et al. 2000). The difference between the
traditional approach and the GVK visualization services is that some modules of
the dataflow graph are replaced by corresponding GVK modules. The advantage
of this approach is that it enables the user to define arbitrary visualization pipeline
configurations using the well-known dataflow approach. The pipeline can be split
at any point, and the processing modules can be distributed across the grid as
desired.

The portal GridSphere (Russell et al. 2004) providing interface for grid
visualization was developed in the FP5 GridLab project (2003–2005). Data
Management and Visualization Work package of the project provides the services
that are needed by the grid to manage public and user-private files and creates a
framework that enables applications to stream data for visualization purposes.

A lot of scientific applications of visualization (Wood et al. 2007) were
demonstrated in projects supported by UK e-Science Core Programme. gViz
(Visualization Middleware for e-Science) (Brodlie et al. 2003) had two main
targets: first, to grid-enable two existing visualization systems, IRIS Explorer
(Foulser 1995) and pV3 (Haimes 1994), so that visualization tools are available
as early as possible for users of computational GRID; second, to develop some
longer term thinking on distributed and collaborative visualization, where XML
languages (Evjen et al. 2007) are used to describe visualization data, and
visualization programs themselves. The modules of IRIS Explorer in a network
can be distributed across a set of grid resources (Li et al. 2005), but controlled
from the desktop. This is achieved in a secure manner using Globus middleware
(Foster 2005). The COVISA (Wright et al. 1997) collaborative facilities become
immediately available. An important application of this is in computational
steering, where the simulation model runs on a remote server, but is controlled
from the desktop. The grid-enabled version of pV3 is created by replacing its
PVM-based communications with a web service mechanism using the gSOAP
package (Robert A. Van Engelen 2002). The distributed computation provides a
web service offering data for visualization and the pV3 “servers”, then connect to
this as web service clients. gSOAP provides an efficient C/C++ web service
implementation. The use of an XML language to describe visualization data

12 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

promises to lead to better inter-operability of visualization systems, and the more
effective development of new visualization software.

The grid-Aware Portals toolkit (GAPtk) project (Nagella et al. 2005) aimed
to provide scientists with a set of visualization utilities based on the Web and grid
services (Li et al. 2005) model along with appropriate APIs that will enable them
to exploit the power of the grid their data analysis. The layered architecture of the
toolkit consists of a set of interfaces on the client side, which talks to the GAPtk
server using SOAP (Englander 2002); the server communicates with the grid
using Globus (Foster 2005). The toolkit was used to provide visualization
capabilities within the GODIVA project, which was investigating ocean
circulation and its effect on climate change.

The main aim of the project Visual beans (Cooper 2002) was to investigate
the role of component technology together with advanced middleware
platforms to support the construction of dynamically adaptable distributed
cooperative visualization software. The project developed and extended a
middleware platform called TOAST (which is CORBA-based (Brose et al.
2001)). A number of experimental systems were constructed as demonstrators
and proof-of-concept implementations of the framework and visualization
components, the latter constructed using VisAD visualization software
(Hibbard et al. 2005).

The goal of the ICENI (Mayer et al. 2005) project was the provision of high-
level abstractions for scientific computing, which will allow users to construct and
define their own applications through a graphical composition tool. The project
aimed to deliver this environment across a range of platforms and devices on the
grid using a scheduling service. ICENI was being implemented in Java and JINI,
but was able to interoperate with the Open Grid Services Architecture (OGSA).
One of the applications of ICENI is computational steering and visualization
(Stanton et al. 2002). The ICENI framework is used to link together a visualization
client and server, and to pass data to the server from a running application. The
visualization server hands the data off to a renderer (current demos are based on
VTK (Kitware 2010)), which can then send the graphical output back to the
visualization client. This can either be done using standard OpenGL remote
rendering, or using Chromium (Humphreys et al. 2002). The ICENI project has
also made use of the way Chromium can be configured with the ACE networking
framework (Schmidt 2009) in order to send its graphics as a video stream directly
to a multicast address; this effectively provides a bridge between Chromium’s
distributed rendering and the Access Grid.

VISPORTAL (Bethel et al. 2003) was built by upon the Grid Portal
Development Toolkit (GPDK) (Novotny 2002). The Visualization Group of
Lawrence Berkeley National Laboratory and National Energy Research Scientific
Computing Center efforts explores ways to deliver advanced remote/distributed

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 13

visualization capabilities through a Grid-enabled web-portal interface. The effort
focuses on latency tolerant distributed visualization algorithms and GUI designs
that are more appropriate for the capabilities of web interfaces. The developed
clients involve very thin GUIs such as Java applets lauched by the web-browser
on the client machine that provide a front-end for massively parallel or
distributed/multi-tier visualization back-ends like Visapult (Bethel et al. 2000) or
offscreen rendering pipe access. Finally, the thick clients simply use the portal as
a broker for locating remote data or services that extend the capabilities of a
standalone tool like OpenDX (Thompson et al. 2000) or AVS Express (Favre et al.
2005). Eventually the VisPortal framework will migrate to a portlet OGSA model
offered by GridSphere (Russell et al. 2004).

Cactus (Thomas et al. 2010) is an open source problem solving environment
designed for scientists and engineers. Cactus consists of a central core component,
called the flesh, and a set of modules called thorns. The thorns implement a range
of computational codes, which can run on distributed computing resources while
being connected to, and orchestrated by, the flesh. The flesh controls when thorns
will execute and how data is routed between them. Cactus builds on the Globus
Toolkit (Foster 2005) to provide secure access to remote resources, together with
secure communications and job scheduling on remote resources. It also uses a
number of other standard libraries and toolkits such as PETSc (Brune et al. 2014)
for scientific computation and HDF5 (Folk et al. 2011) for data output.
Visualization is provided via standard products such as OpenDX (Thompson et al.
2000), Amira (Stalling et al. 2005) and IRIS Explorer (Foulser 1995). These
systems effectively operate as thorns connected to the Cactus system via special
modules written for each system, which are able to read the data formats exported
by Cactus (for example, HDF5) using the Cactus API.

RealityGrid (RealityGrid 2005) was a project, which aims to examine how
scientists in the condensed matter, materials and biological sciences communities
can make more effective use of the distributed computing and visualization
resources provided by the grid. RealityGrid is making use of visualization as part
of distributed applications in which the simulation in one place communicates
with the visualization in another and a steering client in a third. The RealityGrid
steering architecture is built around a library, calls to which are embedded into
each of the three components (simulation, visualization and client). Because of
difficulties experienced in integrating existing MVEs into larger distributed
applications, RealityGrid has selected VTK (Kitware 2010; Schroeder et al. 2006)
as a lower-level environment, along with enabling technologies such as VizServer
(SGI 2009) and Chromium (Humphreys et al. 2002). In addition, ICENI, which
use much of the same technology is being used to enable collaborative
visualization and computational steering within RealityGrid.

14 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

Grid Visualization System (Naregi 2005) for distributed massive data was
developed in by National Institute of Informatics and NEC in 2005. Generalized
grid visualization services were adopted for various visualization functionalities
provided by various visualization tools. Image based remote parallel visualization
based on MPI was employed. FUJITSU corporation developed collaborative
visualization grid environment VizGrid (Matsukura et al. 2004) for natural
interaction between remote researchers.

The NVIDIA grid hardware serves as the foundation for their on-demand
Gaming as a Service (GaaS) solution. NVIDIA GRID vGPU (Nvidia 2014)
technology brings the benefit of NVIDIA hardware-accelerated graphics to
virtualized solutions on cloud infrastructures (Mohammad et al. 2012). Amazon
EC2 GPU Instance Type G2 provides graphics as a service (Yegulalp 2013) on
AWS cloud platform that includes Nvidia GPUs.

1.3. Discrete Particle Systems

The discrete element method (DEM) referred to the original work of Cundall and
Strack (Cundall et al. 1979) has been extensively used in numerical analyses of
discrete particle systems from the perspective of science and engineering. The
main advantage of the DEM is a possibility to model highly complex discrete
particle systems using the basic data on individual particles and avoiding
oversimplifying assumptions of continuum. The method allows the simulation of
motion and interaction between the particles, taking into account the microscopic
geometry and various constitutive models.

The DEM has been extensively applied to examine different phenomena
inside the granular materials. The granular flow from hoppers and silos has a wide
range of applications in industry (Zhu et al. 2008). The study of the bulk material
pressure on the walls of a hopper is very important for hopper design (Goda et al.
2005). The prediction of the discharge rate is of importance for the effective
operation and control of a transport system and is difficult due to inhomogeneous
solid distribution, irregular velocity profile and diverse particle size (Kruggel et al.
2009). It is very important to understand the microscopic structure and its relations
to the governing mechanisms (Parisi et al. 2004). DEM simulation takes into
account the discrete nature of granular materials, and therefore is very effective
for this purpose. The combined approach of DEM and averaging method offers a
convenient way to link fundamental understanding generated from DEM-based
simulations to engineering application often achieved by continuum modelling
(Zhu et al. 2007). Over the past decade, the DEM was utilised in a variety of
industrial applications (Cleary 2009; Radeke et al. 2010).

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 15

The main advantage of using DEM for simulation of granular systems is that,
by tracking the motion of each individual particle, the detailed information about
the system behaviour across a range of time- and length-scales can be obtained.
However, the simulation of systems at this level of detail has the disadvantage of
making DEM computationally very expensive. DEM simulations on a single
workstation or ordinary PC tend to be limited to systems of several tens of
thousands of particles and short time intervals. The recent simulation of large-
scale systems is performed by employing the parallel computation techniques,
though the number of the used particles was still much smaller than that required
in industry where typically over a billion particles are dealt with. Distributed or
parallel DEM computations have become an obvious option for rapidly increasing
computational capability, along with recent remarkable advances in distributed
software systems and computational infrastructures like computer clusters, grids
and clouds.

Several different particle- and lattice-based approaches (Zhu et al. 2008)
have been developed in the frame of DEM applied to the simulation of solids and
structures. Particle-based approach (Kačianauskas et al. 2010; Walther et al.
2009) is, actually, a rather straightforward extension of the original DEM. A solid
is replaced with a composition of discrete particles, where the presence of the
cohesive forces acting between the particles and various mechanisms of their
linkage and detachment may be allowed (Markauskas et al. 2009). The approach,
where the continuum may be represented by the material particles, interacting via
the network elements, is referred to as the lattice-based model. A comprehensive
review of the planar elastic lattice models for micro-mechanical applications is
given by (Ostoja-Starzewski 2002). The lattice-based DEM (Kozicki et al. 2008;
Lilliu et al. 2003) has been extensively applied to the simulation of heterogeneous
solids to study their dynamic deformation behaviour and fracture problems. The
simplest lattice – based DEM models for continuum exhibit structural analogy and
equivalence to frame or truss structures that are widely modelled by the finite
element method (Barauskas et al. 2004). However, the lack of highly accurate and
reliable solutions at the industry level limits the use of DEM models in the
commercial codes.

The dynamic behaviour of the non-cohesive frictional visco-elastic particle
system can be simulated by the discrete element method. This system consists of
the finite number of deformable spherical particles with the specified size
distribution and material properties. Any particle i in the system of N particles
undergoes the translational and rotational motion, involving the forces and torques
originated in the process of their interaction. Although a description of the
translational motion is always independent of the particle shape and is written in
a linear form, the rotational motion is of the same character only for a perfectly
symmetric shape, such as sphere, where the inertia tensor is defined by a single

16 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

parameter. Finally, the motion of the i-th contacting spherical particle in time t is
described as follows:

i

i

i

dt

d
m F

x
=

2

2

 (1.1)

i

i

i

dt

d
I T

θ
=

2

2

 (1.2)

where mi, and Ii are the mass and the moment of inertia of the particle,
respectively, while vectors xi and θi define the position of the particle centre and
the orientation of particle i. The vectors Fi and Ti present the sum of the contact
force and the gravity force as well as the respective torques:

gFF i

N

ijj
contiji m+= ∑

≠= ,1
,

 (1.3)

∑∑
≠=≠=

×==

N

ijj
contijcij

N

ijj
iji

,1
,

,1

FdTT (1.4)

where g is the acceleration due to the gravity, dij is the vector pointing from the
particle centre to the contact centre. The interparticle force vector Fij,cont ,
describing the contact between the particles i and j, may be expressed in terms of
normal and tangential components. The normal component, presenting a repulsion
force, comprises elastic and viscous ingredients, while the tangential component
reflects static or dynamic frictional behaviour. The static force describes friction
prior to gross sliding and comprises elastic and viscous ingredients, while the
dynamic force describes friction after gross sliding and is expressed by the
Coulomb’s law.

For evaluating the contact forces (1.3–1.4), all contacts between the particles
and their neighbours must be detected. A cell-based method (Han et al. 2007) is
used for contact detection. The numerical integration of the equations of motion
(1.1–1.2) is performed to obtain the dynamical state of all particles at the time t,
resulting from the action of the particle forces (1.3–1.4). The solution of these
equations is obtained by using the Verlet scheme.

The materials can be modelled using the elastic perfectly brittle model of
contact interaction. The lattice-based discrete element model assumes cohesive
bonding between the neighbouring particles (Rojek et al. 2011). These lattice
connections represented by springs can be broken under excessive loading, which
allows us to simulate initiation and propagation of the material fracture. When

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 17

two particles are bonded, the contact force in normal direction is calculated from
the linear constitutive relationships:

nnn, cont
uk=F (1.5)

where Fn,cont is the normal contact force, kn is the spring stiffness in the normal
direction, un is the normal relative displacement. The lattice connections are
broken instantaneously, when the interface strength is exceeded in the normal
direction by the tensile contact force. The failure criterion can be written as:

nn, cont
R≤F (1.6)

where Rn is the interface strength in the normal direction. Although a compressive
interaction force between the particles does not cause breakage of the connections,
the material damage under macroscopic compression can be represented properly
in the particle model. A compressive macroscopic load brings about tensile
interactions at the microscopic level, which may lead to connection failures.

After breakage of connections, a normal contact force is calculated, using the
Hertz contact model (Zhu et al. 2008). A frictional interaction can occur among
the particles in the case of compression. The limiting friction force is evaluated,
assuming the Coulomb model of friction:

n, contt, cont
FF µ= (1.7)

where µ is the Coulomb friction coefficient. The simple mathematical model
(1.1–1.7) of the lattice-based DEM is provided for the sake of completeness.
However, the simulation results will not be examined in detail because the
presented research is concentrated on the surface extraction and the proposed
visualization methods.

Fig. 1.1. Schematic representation of the lattice-based DEM model

18 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

DEM computations are based on the positions of particles and forces acting
between them. The lattices (Figure 1.1) employed in DEM computations are
assembled from the 1D springs or beams, which are not well suited for the reliable
interpolation and common visualization methods used in 3D. The data sets of
DEM include the positions, velocities and accelerations of particles as well as
their radii and material properties. The 1D connections between the neighbouring
particles represent the lattice topology. The fracture force limit and various forces
are used as the attributes of the connections. The most important attribute array
named the connection state indicates, when the lattice connection is broken.Based
on the described approach, the defects between the pairs of the neighbouring
particles are identified by the broken lattice connections (Lilliu et al. 2003;
Vadluga et al. 2009).

1.4. Extraction and Visualization of Crack Surfaces

Cracking is a very common phenomenon investigated by a wide research
community in different scientific areas (Gobron et al. 2001). Crack formation is
often observed in ceramics made through powder compaction process (Uematsu
2014), in drying processes (Kitsunezaki 2011), in soil (Valette et al. 2006) and in
complicated failure of powder agglomerates (Khanal et al. 2009). Geometric
models propose the algorithms for obtaining crack patterns close to those
produced by nature. The fracture models can be mapped onto the surface of the
object, while fractures are created procedurally (Gobron et al. 2001). In contrast,
physical approaches propose the models, which tend to accurately simulate the
dynamics of natural crack patterns. Federl and Prusinkiewicz (Federl et al. 2004)
used a physical approach to fracture modelling based on the finite element
method. Gobron and Chiba (Gobron et al. 2001) proposed a different approach
for simulating realistic propagation of various types of cracks on any triangulated
surface, which was based on their 3D cellular automaton model. O’Brien et al.
(Iben et al. 2009) succeeded in modelling brittle and ductile fractures by means of
the finite element method. Iben and O’Brien have extended the previously
presented methods in order to address the issue of quasi–static fractures (Iben
et al. 2009). The surface is discretized by means of the finite element method and
any 3D mesh can be cracked with an heuristic definition of stress fields. A
dynamic model of cracks development based on a 3D discrete shrinkage volume
propagation is proposed by Valette et al. (Valette et al. 2008). The DEM provided
the valuable insight into the fracture phenomena at the particle level (Rojek et al.
2011; Vadluga et al. 2009). Researchers used this method to study the damage of
heterogeneous solids such as concrete (Khanal et al. 2009) or rock (Rojek et al.

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 19

2011) and homogeneous materials such as ceramics (Tan et al. 2009) or glass
(Zang et al. 2007).

The problem of reconstructing a surface from a set of sample points is
motivated by numerous applications and, consequently, has always been a popular
field of research. Most surface reconstruction methods roughly fall into two major
categories: implicit surface methods (Fleishman et al. 2005; Kolluri 2008;
Rosenthal et al. 2008) and Delaunay-based methods (Amenta et al. 2001; Dey
et al. 2003; Labatut et al. 2009). A surface can be implicitly defined as a level-set
of the function allowing smooth and approximating surface reconstruction.
Moving least squares can handle a moderate amount of noise and be used to define
the implicit functions with the signed distance to local planes as local
approximants. Therefore, reconstruction guarantees are provided for sufficiently
dense and uniform point clouds (Kolluri 2008). An approach that directly extracts
smooth surfaces from unstructured point-based volume data without prior
resampling or mesh generation is proposed by Rosenthal and Linsen (Rosenthal
et al. 2008). Another most common approach to surface reconstruction is based
on the Delaunay triangulation: the underlying idea is that when the sampling is
noise free and dense enough, points close on the surface should also be close in
space. Among the Delaunay-based methods, the most well-known algorithms are,
preferably, the Crust (Amenta et al. 2001) and the Cocone (Dey et al. 2003)
families of algorithms. Power Crust (Amenta et al. 2001) relies on the power
diagram, the weighted Voronoi diagram of the poles. Labatut et al. (Labatut et al.
2009) formulate the reconstruction problem as an energy minimisation on the
Delaunay triangulation. In the case of lattice-based DEM methods, the discussed
surface extraction algorithms cannot be directly applied, because of the absence
of suitable data defining the crack surface and the complex nature of crack
surfaces, defined by the scattered results of numerical computations at the micro-
level. The holes and disjoint pieces of crack surfaces make surface extraction
extremely complicated.

Computer graphics scientists focus their attention on enhancing the realism
of natural scenes, while computational researchers concentrate on building
accurate numerical models. Furthermore, their principal aim is not closely related
to visually attracting results. In the DEM methods, cracks and the related
phenomena are often visualized in the most straightforward way. The particles
coloured depending on particular scalar attributes (Bertin 2010), such as the initial
high altitude or radii, are most common (Kačeniauskas, Kačianauskas, et al. 2011;
Rojek et al. 2011; Zang et al. 2007). The propagation of large cracks is illustrated
(Figure 1.2a) by using the rendered geometry of particles (Cusatis et al. 2006).
However, this technique can be applied only to large cracks, which are of the
particle size. In the case of smaller cracks, when some connections are already
broken, but gaps between particles remain significantly smaller than the particle

20 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

diameter, geometry of the neighbouring particles can not properly visualize crack

surface propagating in 3D. The coloured lattice connections (Karihaloo et al.

2003; Liu et al. 2007) can be treated as the main alternative to the rendered

particles. The broken connections between the neighbouring particles (Figure

1.2b) indicate the fractured regions, but do not provide any valuable information

about the formation of the crack surfaces.

 a) b)

Fig. 1.2. Crack propagation illustrated by using: a) the rendered geometry of particles,
b) the tubes on broken connections between the neighbouring particles

The main visualization task of the presented research is to construct the

surfaces of cracks from the broken lattice connections and the geometry of the

neighbouring particles. In 3D space propagating crack surface can be defined by

2D graphical primitives that contain more information than 1D graphical

representations employed in above discussed visualization methods based on

lattice connections (Figure 1.2). 2D graphical representations can be valuable until

gaps between the neighbouring particles exceed the particle diameter and material

starts crumbling. The complex disjoint surfaces of cracks and the unavailability

of a suitable scalar field defining the crack surfaces limit the application of the

widely used surface extraction methods. Thus, there is hardly any direct method

of constructing the surfaces of propagating cracks from individual defects

determined between the neighbouring particles and applying the available

visualization methods. Moreover, the commercial finite element analysis software

widely used by engineers can import only continuously defined crack surfaces

represented by usual graphic primitives. The successful research into the problems

of representation and visualization of crack surfaces can help to fill the gap

between the industrial requirements and the research results currently obtained in

the areas of fracture mechanics and material sciences.

The Voronoi diagrams can be applied to post processing of discrete particle

systems as well as to lattice forming. Given a set of primitives, the Voronoi

diagram partitions space into regions, where each region consists of all points that

are closer to one primitive than to any other. The Voronoi diagrams have

important applications in many sciences, including visualization of medical data

1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS 21

sets, proximity queries, spatial data manipulation, shape analysis, computer
animation, robot motion planning, modelling spatial structures and processes,
pattern recognition, locational optimization and selection in user interfaces
(Aurenhammer 1991; Klein et al. 2009). Fast and resolution independent
computation of the Voronoi treemaps, based on a combinatorial algorithm for the
weighted Voronoi diagrams, was presented by Nocaj and Brandes (Nocaj et al.
2012). GPU based computation of the 3D discrete Voronoi diagrams was used for
surface extraction by Rosenthal and Linsen (Rosenthal et al. 2009). A concept of
the Centroidal Voronoi tessellation was presented in the form of graphs in (Lu
et al. 2012). The edges of radical Voronoi diagrams were employed to construct
a beam-network model for autoclaved aerated concrete (Kadashevich et al. 2008).
Computational lattices for polydispersed particulate media are assembled
according to the Voronoi diagrams by (Cusatis et al. 2006). However, there were
no attempts to describe the contact surfaces of particles and to visualize the
propagating cracks by using local space decompositions based on the Voronoi
cells or the geometric cell centre. Moreover, no attempts were made to extract the
crack surfaces and explicitly define them by graphics primitives in the regions of
highly deformed computational lattices.

1.5. Conclusions of Chapter 1 and Formulating Task
for the Dissertation

1. The most of the overviewed grid environments for visualization are based
on the Globus middleware and its toolkit for service development. The
important Globus functionality cannot be accessed in the gLite grid
environment, therefore, most of the available visualization software
cannot be applied.

2. Moreover, it is difficult to find a general purpose grid visualization e–
service, which can visualize the results produced by engineering
applications at interactive rates on the gLite/EMI grid infrastructures.

3. The lattices employed in DEM computations of discrete particle systems
are assembled from the 1D springs or beams, which are not well suited
for the reliable interpolation and common visualization techniques used
in 3D.

4. The complex nature of cracks, propagating in particle media and the
unavailability of a suitable scalar field defining the crack surfaces limit
the application of the common surface extraction methods to
visualization of cracks, defined by the scattered results of numerical
computations at the micro-level. The holes and disjoint pieces of crack
surfaces make surface extraction extremely complicated.

22 1. OVERVIEW OF DISTRIBUTED VISUALIZATION SYSTEMS METHODS

5. There is hardly any direct technique of constructing the surfaces of
propagating cracks according to the connectivity of the broken lattice
connections and the geometry of the neighbouring particles. Moreover,
there were no attempts to visualize the propagating cracks by using local
space decompositions based on the geometrical cell centres.

In order to achieve the aim, the following have to be solved:
1. To develop software implementation, which allows reducing commu-

nication between remote components of gLite/EMI grid infrastructure,
and investigate its performance.

2. To develop visualization methods for extraction of crack surfaces from
discrete particle systems.

3. To implement the developed methods into distributed visualization
software.

4. To investigate and compare the speed of the implementation of the
developed visualization methods.

5. To investigate the accuracy of the developed visualization methods.

23

2
Visualization Methods and

Distributed Software for Discrete
Particle Systems

In this Chapter novel methods are introduced for visualization of crack surfaces
from monodispersed particle systems. The proposed methods for visualization of
cracks were implemented in the devbeloped prototypes of grid visualization e–
service VizLitG and the distributed visualization software VisPartDEM. Partial
data set transfer from the grid storage element was developed to reduce the
transferred data size and visualization time.

The methods presented in this Chapter are published in (Kačeniauskas and
Pacevič 2011), (Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015),
(Kačeniauskas et al. 2012), (Kačeniauskas et al. 2013), (Pacevič and
Kačeniauskas 2015).

2.1. Cell Attribute- and Cell Cut-based Methods

The cell attribute-based method and the cell cut-based method are developed for
visualization of cracks propagating in monodispersed particle systems. The cell
cut-based surface extraction method resulted as the extension of the cell attribute-

24 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

based method in order to define crack geometry by graphics primitives. The
developed visualization methods generate global or local space decompositions
from the 1D connections of the computational lattice. Generation of space
decompositions from lattice connections of lower dimensionality is a time-
consuming procedure. The commonly used mesh generation methods cannot be
applied because of highly different input data. The vertices of the cells are
determined by the particle positions. Moreover, one–dimensional lattice
connections should be employed as the edges of the newly generated cells and
local decompositions rather than global meshes should be used in order to save
computational resources.

2.1.1. Cell Attribute-based Method

The simple cell attribute-based method is proposed for visualization of cracks in
monodispersed particulate media. Figure 2.1 shows the application of the cell
attribute-based method in 2D. The cell attribute-based method covers the whole
computational domain by generated cells. The proposed method employs the one-
dimensional lattice connections as the edges of the newly generated cells. In
Figure 2.1, thin black lines represent the unbroken lattice connections, while thin
red lines represent the broken connections. The method simply calculates how
many 1D connections of the particular cell are broken and assigns this value to
the cell attribute. In this case, spatial crack representation can be visualized as the
scalar cell attribute by using colour mapping and predefined colour table. In
Figure 2.1, the triangles including only one broken connection are coloured in
cyan, while the cells that have two broken connections are coloured in yellow.
Triangles containing three broken connections are coloured in red, while cells that
have not broken connections are not displayed in Figure 2.1.

Fig. 2.1. Illustration of cell attribute-based method

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 25

The general scheme of the method is presented in Figure 2.2. Initially, the
data set is read by using a nearly standard reader. The cell attribute-based method
consists of two main blocks that can be implemented in software as one or several
filters. The first block generates the mesh topology from 1D connections of the
lattice employed in DEM computations. It is the most time consuming procedure,
which is performed only once. Usually, cells are generated before visualizing the
results of the first time step. Sometimes the mesh topology can be imported from
the non-standard DEM computations employing the mesh for the specific
computational purposes (Vadluga et al. 2009). The second block calculates the
cell attributes from the broken lattice connections. The method simply calculates
how many 1D connections of the particular cell are broken and assigns this value
to the cell attribute. Finally, the calculated cell attributes are mapped to the
predefined colours and rendered on screen by using the available mapper and the
renderer, respectively.

Fig. 2.2. Cell attribute-based visualization method

Figure 2.3 presents the method designed for generating the three–
dimensional mesh topology. During the preparation of data structures the lists of
the connected neighbours are assembled for all lattice points (particles). Then a
loop, running through all points, is started. In 3D, two types of cells are considered
to cover wider range of computational lattices. Thus, the generated 3D topology
consists from pyramids with triangular or quadrilateral bases, which are generated
in separate blocks of the method. In order to speed up computations, the point
triplets and the point quadruplets are generated for identifying all possible
triangular or quadrilateral bases, respectively.

26 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

Fig. 2.3. Generating the mesh topology in 3D

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 27

The following loop runs through the generated point triplets or point
quadruplets connected to the processed point. The important condition checks the
existence of the connections between the point triplet forming the base of the
pyramid. In the case of a pyramid with a quadrilateral base, this condition is more
complex, because it is necessary to check the absence of the diagonals of the
quadrilateral base. Moreover, this case is significantly more sophisticated,
because resulting octahedron with eight faces can be divided to two pyramids in
different ways. Thus, the additional loop, running through the points connected to
any point of quadrilateral base, is performed to find the whole octahedron. The
following condition checks the existence of the necessary octahedron connections.
Finally, in both cases, the main block creates the new cells if such tetrahedron or
octahedron has not been created yet. The octahedron is immediately divided into
two pyramids with the quadrilateral base, because they can be efficiently
processed by any visualization software.

Let N= {q1, q2, q3,…, qn} be a finite set of points, represented by centres of
particles, in a sub-domain Ω of the space R3. The method generates a partition of
the sub-domain Ω into the non-overlapping regions Ωi, such that:

∪ i
Ω=Ω (2.1)

where each Ωi is the 4 node tetrahedron or the pyramid defined by 5 nodes of N.
Initially, the generated tetrahedra satisfy the Delaunay conditions. Four non–
coplanar points qi, qj, qk and ql form a Delaunay tetrahedron D if and only if there
exists a location x∈Ω, which is equally close to qi, qj, qk and ql and closer to qi, qj,

qk , ql than to any other pm∈N. The location x is the centre of the sphere, which
passes through the points qi, qj, qk , ql and which contains no other points pm∈N.
However, after some period of time the particles move, the lattice deforms and
tetrahedra do not satisfy the Delaunay conditions in the highly fractured regions.

The calculation of the cell attributes from the broken lattice connections is
illustrated in Figure 2.4. The input array (S(i), i=1, …, M) indicates if the lattice
connection between two neighbouring particles is broken. M is the total number
of the lattice connections. The unity value of the array element means that the
connection is broken. The method calculates how many 1D connections of the
particular cell e are broken by using a simple formula:

∑
=

=

k

j

e jISa
1

))(((2.2)

where ae is the attribute of a cell Ωe from formula (2.1). k is the number of cell
connections. I is the array of global connection indexes of the cell e. In Figure 2.4,

28 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

the first loop runs through all cells of the newly generated mesh, while the second
loop runs through all connections (edges) of the considered cell. The following
block implements the trivial sum of the formula (2.2).

Fig. 2.4. Computation of cell attributes

The calculated value is assigned to the array of the cell attributes. Finally, the
array of the calculated attributes is incorporated in data structures. At the end of
the visualization pipeline (Figure 2.2) the calculated cell attributes are mapped to
colours by using the predefined lookup table.

2.1.2. Cell Cut-based Method

The cell cut-based surface extraction method resulted from the development of
the cell attribute-based method for crack visualization. The cell attribute-based
method does not define crack geometry, therefore, its functionality was extended
in the cell cut-based method. Moreover, the cell attribute-based method generates
global decomposition for whole solution domain, while the cell cut-based method
makes local decomposition and use the effective augmentation strategy.

Figure 2.5 illustrates the application of the cell cut-based surface extraction
method in 2D. Lines between centers of particles are connections of the
computational lattice. Black lines represent the unbroken lattice connections. Thin
red lines represent the broken lattice connections, while red tubes visualize cracks.
A simple cell cut-based method generates surfaces according to the information

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 29

about the way in which cracks cut cells of the local decomposition assembled from
the lattice connections. In 2D, the method simply connects middle points of the
broken connections.

Fig. 2.5. Illustration of cell cut-based method

The simplified schema of the cell cut-based surface extraction method is
presented in Figure 2.6. During the preparation of data structures, the lists of the
connected neighbours were assembled for all lattice nodes. The following module
generated a local space decomposition from the centres of the particles and the
one-dimensional lattice connections between the particles employed in the lattice-
based DEM computations.

A schema of the local decompositions method is presented in Figure 2.7.
Local decompositions were generated only in the fractured regions, which were
identified by marking the neighbourhood of the broken connections. In fact, these
nodes are the centres of the particles. Another loop runs through the marked nodes
to generate cells in the fractured regions. The developed method includes a very
important condition, which checks if the current node has been already processed
in the process of visualizing the preceding time steps. It saves computational
resources by employing the already available cells and augmenting the local
decomposition according only to the connections, which were broken during the
last time step.

Several types of higher dimensionality cells might be considered to generate
a suitable space decomposition based on the 1D connections of the processed
lattice. Therefore, a loop running through the considered cell types should be also
required. In our case, the generated 3D topology consists of the pyramids with
triangular or quadrilateral bases, which are treated as different cell types and
generated separately. To speed up computations, the node sets (triplets or
quadruplets) were generated for identifying all possible triangular or quadrilateral

30 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

bases. In the 2D case, the triangles were considered and the pairs of nodes were
generated.

Fig. 2.6. A simplified schema of the cell cut-based method

New cells were assembled from the lattice connections in a loop, running
through the generated node sets, which were connected to the node, considered in
the main loop through the marked nodes of the lattice. A complex condition checks
the presence of all connections in the assembled cell. The connections between the
nodes of a set, forming the base of the pyramid, as well as the connections between
the base of the pyramid and the considered node, were checked. In the case of a
pyramid with a quadrilateral base, this condition also checks the absence of the
diagonals of the quadrilateral base. Another condition checks if the current cell has
not been generated yet. If all conditions are satisfied,

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 31

Fig. 2.7. Generating local decompositions from the lattice connections

32 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

the cell is assembled from the relevant connections. The assembled cell should be
associated with the lattice connections that compose it in the case of using the
geometric cell centre-based visualization method. However, the surface extraction
based on the cell cut neither needs this association, nor executes. The following
module fills the data structures and augments the cell list, appending a new cell to
the list of the previously generated cells. It is worth noting that some cells of the
list had already been generated by visualizing the preceding time steps and do not
need to be generated at this stage. Finally, the loops through the generated node
sets, the considered cell types and the marked nodes were completed. The
resulting local decompositions cover the fractured regions and can be effectively
used for extracting the crack surfaces.

The main loop (Figure 2.6) runs through all cells of the resulting
decomposition. The method determined the graphics primitives required to
represent the part of the crack surface passing through the cell according to the
number and order of the broken connections. Initially, all possible topological
states of the surface cutting the cell were explored and stored in a case table
during the preparation of data structures. In the loop running through the cells,
the index for looking up the relevant topological state of the processed cell in
the case table was obtained. Another loop runs through all connections of the
processed cell for obtaining the midpoints of the broken connections. The
included condition checked if the processed connection was broken and
determined if the coordinates of the midpoint had to be calculated. Finally, the
graphics primitives were created according to the index of the state table. The
vertices of the generated primitives were placed at the calculated midpoints of
the broken connections. The main loop running through all cells of the local
decomposition was completed, when the crack surfaces were described by
graphics primitives in all cut cells.

2.2. Voronoi-based Method

The Voronoi-based method plots the crack on the extended contact surfaces
obtained from local decompositions. During DEM computations, the defects are
identified between the pairs of the neighbouring particles on the lattice
connections. The broken lattice connections should be directly mapped onto the
generated faces. The consistency of the generated faces of the Voronoi
decomposition and the relevant lattice connections should be verified in the case
of the highly deformed lattice. The standard methods for generating the global
Voronoi diagrams are hardly applicable to visualization of cracks, because they
use the coordinates of points, but do not take into account the lattice topology.

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 33

Figure 2.8 illustrates the application of the local Voronoi-based
decomposition in 2D. Lines between centers of particles are connections of the
computational lattice. Black lines represent the unbroken lattice connections,
while thin red lines represent the broken lattice connections. Thick tubes
represent the local Voronoi decomposition. Red tubes relevant to broken
connections visualize cracks, while blue tubes show other edges of the local
decomposition.

Fig. 2.8. Illustration of Voronoi-based method

A general schema of the method developed for generating the local Voronoi
decompositions is presented in Figure 2.9. The method can be divided to five
stages: preparation of data structures and kd-tree (K. Zhou et al. 2008),
identification of fractured regions that are necessary to cover by local Voronoi
decompositions, generation of Voronoi cells, validation of generated cells and
mapping of the attributes of the lattice connections onto the relevant edges of
Voronoi cells. Data structures for loops, running through the particle neighbours,
which are joined to the considered particle by the lattice connections, are prepared
at the beginning. The next module constructs the kd-tree (K. Zhou et al. 2008),
which is used for visual model validation at other stages of the method. A loop,
running through all lattice connections, starts the identification of fractured
regions. The following condition checks if the current connection is broken. The
cells of the local Voronoi decomposition are generated only around the end nodes
of the broken connections, therefore, the next loop runs through two end nodes of
the current connection. The next condition checks, if the current node has not been
processed yet, because the Voronoi cell can be already generated around this node
processing another broken connection attached to it. The following module
generates the Voronoi cell around the particle centre

34 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

Fig. 2.9. A general schema of the local Voronoi decomposition-based method

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 35

represented by the processed node of the current connection. Each Voronoi cell is

created around the node according to the available data on the node neighbours.

The implemented method (Rycroft 2009) is based on the clipping of the whole

domain by perpendicular planes drawn through the midpoints between the

considered node and its neighbours.

All faces of the generated Voronoi cell are validated by the orange module,

which will be described in the following text. The loop, running through the valid

faces of the generated Voronoi cell, finishes processing of the generated contact

surfaces. The following module maps the attributes of the lattice connections onto

the relevant suitable faces of the generated Voronoi cell. In the 2D case, the

attributes of the lattice connections are mapped onto the relevant edges of the cell.

When the Voronoi cells are created around both end nodes of all broken

connections, the main computations are finished. The last module prepares the

output for visual model validation. Three orange modules (Figure 2.9) implement

the model validation.

Fig. 2.10. An illustration of the inconsistencies between the lattice connections and the

faces of the local Voronoi decomposition in the region of the deformed lattice:
 a) the global Voronoi decomposition, b) the local Voronoi decomposition,

 c) the visual model validation of local Voronoi decomposition

Visualization of crack surfaces is a challenging problem, while the

application of the Voronoi decomposition-based methods is hardly possible in the

regions of the highly deformed lattice. It is worth mentioning that the most of

computational models also have limitations in such complex cases. In the lattice-

based DEM computations, the lattice topology does not change in time, while the

particles can significantly change their positions. The particles have more freedom

to move and to deform the lattice in the regions containing a lot of broken

connections. Thus, after a certain period of time, the lattice topology might

become inconsistent with respect to the cells of a standard Voronoi diagram.

Figure 2.10a illustrates the case, when the stationary lattice topology became

inconsistent with a changing global Voronoi diagram. Blue tubes represent the

36 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

edges of the generated decompositions, while red tubes visualize cracks relevant
to the broken lattice connections. The broken yellow connection of the stationary
lattice joins the centres of the particles 2 and 4, while the method for generating
the standard Voronoi diagram takes into account the fact that the distance between
the centres of the particles 1 and 3 is shorter and does not generate the edge
perpendicular to the broken connection. The available cyan edge represents the
contact surface between the particles 1 and 3. The observed inconsistencies do not
allow the direct mapping of the attributes of the lattice connections onto the
relevant edges of Voronoi cells. Therefore, the global Voronoi diagrams cannot
be applied to crack visualization in the regions of the highly deformed lattice.
Figure 2.10b shows that, in such regions, the local Voronoi decomposition
generated according to the stationary lattice topology contains the overlapped
cells and introduces the numerical error. Figure 2.10b also includes an explanatory
schema (two circles with centre points coloured in green and magenta) of visual
model validation, which will be explained later. Figure 2.10c demonstrates how
the visual model validation helps to indicate the regions of the highly deformed
lattice by plotting marked connections as yellow tubes. The model validation also
prevents the appearance of the overlapped cells.

The performed validation is based on the well-known property of the Voronoi
diagrams described as follows: for each vertex q of the Voronoi diagram, there
exists a unique empty sphere centred on q, which passes through at least four
nodes and is the largest empty sphere centred on q (Aurenhammer 1991; Klein
et al. 2009). Figure 2.11 presents the method for validation of each generated
Voronoi cell. A loop, running through all the vertices of the considered Voronoi
cell, starts the validation. The sphere is defined by the centre located in the
considered vertex and the radius, which is equal to the distance from the
considered vertex to the node representing the centre of the Voronoi cell. Figure
2.10b shows validation of two vertices of different Voronoi cells by using two
illustrative circles. The green circle is defined by the centre located in the
considered vertex (green point) and the radius equal to the distance from the vertex
to the node 1 in the centre of the Voronoi cell. The magenta circle is defined by
the centre located in the considered vertex (magenta point) and the radius, which
is equal to the distance from the vertex to the node 3 in the centre of the Voronoi
cell. The query to the initially prepared kd-tree structure provides the number of
nodes belonging to the solid sphere. The considered vertex is marked as suitable
for the Voronoi decomposition if none of the nodes of the lattice is located inside
the solid sphere. In other cases, the processed vertex does not satisfy the required
conditions of the Voronoi diagram. In Figure 2.10b, the lattice nodes 1, 2 and 4
are located on the green circle, but the node 3 violates the required condition,
because it is located in the interior of the circle. The lattice node 1 is located in
the interior of the magenta circle. Thus, both verified vertices are marked as

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 37

unsuitable for the Voronoi decomposition. Usually, this can be observed in the
regions of the highly deformed lattice, where the lattice connection cannot be
directly mapped onto the Voronoi face. The end of the loop, running through all
vertices of the considered Voronoi cell, finishes the consistency check.

Fig. 2.11. Validation of the faces of the local Voronoi decomposition

The following loop, running through all faces of the considered Voronoi cell,
is used to mark the suitable faces of the Voronoi cell and the appropriate
connections of the lattice. If the considered face is a boundary face, marking is

38 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

not performed. The next condition checks all the vertices of the considered face.
If all vertices have been marked as suitable, the entire face is marked as suitable.
Otherwise, the connection, corresponding to the considered face, would be
marked as belonging to the region of the highly deformed lattice, which could not
be accurately visualized by using the Voronoi cells. The end of the loop, running
through all faces of the considered Voronoi cell, finishes the marking, procedure.
In Figure 2.10c, the marked connections are plotted as yellow tubes, which
illustrates how the visual model validation helps to indicate the regions of the
highly deformed lattice. It is worth noting that all validation modules can be
removed from the pipeline to save computational time in the case of small
geometric deformations in the lattice. It is worth mentioning that in the areas of
the propagating cracks, the developed local Voronoi-based method generates
exactly the same decomposition as the Voronoi method (Rycroft 2009) until the
lattice topology is consistent with the cells of a standard Voronoi diagram.

2.3. Cell Centre-based Method

The cell centre-based method for extracting the crack surfaces was developed as
an alternative to the Voronoi-based method to extend crack visualization to the
regions of a highly deformed lattice.

Fig. 2.12. Illustration of cell centre-based method

Figure 2.12 shows the application of cell centre-based method in the 2D
region of deformed lattice. Thin red lines represent the broken lattice
connections, while red tubes visualize cracks. Black lines represent the
unbroken lattice connections. The initial space decomposition, which is
identical to the local decomposition generated by the cell-cut method, is
assembled from the lattice connections. The cell centre-based method also

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 39

generates an additional space decomposition represented by blue tubes in order
to increase the accuracy of the surface extraction and to visualize the fractured
regions covered by the highly deformed lattice, which is indicated by green
connections in Figure 2.12.

Fig. 2.13. The simplified schema of the cell centre-based method

40 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

The simplified schema of the developed method is presented in Figure 2.13.
The method starts from the module, which prepares the data structures for the
subsequent computations. Another module generates the initial local
decomposition from the lattice connections covering the fractured regions
(Figure 2.7). The next module marks the broken connections and their
neighbouring connections to identify the topology of the fractured regions.

In Figure 2.13, the loop, running through all lattice connections, starts the
generation of the geometry for the new local decomposition based on the
geometrical cell centres. A simple condition checks if the current connection has
been marked because a new decomposition is required only in the fractured
regions. The second loop runs through all cells, including the processed
connection. It is worth mentioning that the specific information about the cells
associated with the processed connection, is necessary only for the cell centre–
based method. The required list of indices of the cells is prepared in the orange
module (Figure 2.7). Another module calculates the geometric centre C of the
considered cell by using the formula for the centroid (Krantz et al. 2006) of a finite
set of k vertices:

k

xxx
C

k
+++

=

....

21 (2.3)

where x1; x2;...; xk, are the coordinates of vertices in R3. The end of the loop
running through all cells, including the marked connection, completes the
generation of vertices for the new face crossing the processed connection. Another
module forms the new face from the calculated centres of the cells associated with
the processed connection. Finally, the attribute values of the marked connection
were mapped onto the new face. The generated faces are represented by graphics
primitives. The generated faces are not joined to the cells around the centres of
the particles because this topology requires some additional storage. At the end of
the pipeline, the surfaces of the propagating cracks are visualized by colouring the
generated faces according to the values of the mapped attributes.

2.4. Distributed Visualization Software

The proposed methods for visualization of cracks were implemented in the grid
visualization e-service VizLitG and the distributed visualization software
VisPartDEM that were developed for remote visualization of discrete particle
systems.

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 41

2.4.1. Grid Visualization e-service VizLitG

The client-server architecture of the visualization e-service is based on the widely

recognized web standards. Java EE platform (Jendrock et al. 2010) provides the

tools for remote client-server communication. VizLitG is implemented in

GlassFish (Goncalves 2009) application server by using convenient tools such as

web service designer and web service tester that allow programmers to

significantly reduce the development efforts. The Message Authentication over

SSL mechanism of GlassFish is employed for security purposes. The server

authenticates a client of the visualization service by using a basic authentication

scheme including the name/password pair of credentials. Moreover, HTTPS

protocol using Secure Sockets Layer (SSL) version 2.0 is used for message

integrity and confidentiality. The e-service architecture and communication

schema are illustrated in Figure 2.14.

Fig. 2.14. The architecture and communication of grid

visualization e-service VizLitG

A visualization pipeline is distributed between the client and the server. A

visualization engine responsible for data filtering, mapping and rendering is

implemented as a part of the main service, which runs on a special User Interface

computer named UIG (User Interface for Graphics). Thus, a natural access to grid

resources is available for the service. User authentication and the full data set

transfer from SE are performed by traditional means available in gLite/EMI

distribution. The client implemented as Java application handles user interaction.

It consists of a GUI and a Remote Viewer. In order to simplify the installation of

the client for less experienced users, the client software is downloaded by Java

42 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

Web Start (Marinilli 2001). The client does not depend on hardware and operating
system, therefore, it can run on any PC.

A visualization network is interactively assembled from the provided
modules by using GUI. Tabular design of GUI fields simply illustrates the
dataflow. The resulting pipelines are described by XML language (Evjen et al.
2007) according to the developed schema. The main elements describe the
selected data, the included filters, the considered mappers and the specified
parameters of the renderer. Valid XML documents are automatically generated
and transferred from the client to the server by JAX-WS (Kalen 2009) Runtime
based on high-level SOAP protocol (Englander 2002). Data filtering, mapping and
rendering are always performed on the server, therefore, a sufficiently powerful
server is required in the case of a large number of simultaneously working users.
However, the latency of gLite/EMI resource broker (EGEE 2009; Kačeniauskas
et al. 2010) does not influence a visualization process.

Fig. 2.15. Visualization of hopper discharge by using GLSL shaders

The visualization engine of the VizLitG is based on VTK toolkit (Schroeder
et al. 2006). VTK objects are enwrapped by the Java programming language in
order to build the service running on UIG. High flexibility of e-service is achieved
retaining sufficient efficiency of the object-oriented library built by C++. GLSL
shaders (Figure 2.15) supported by VTK are implemented in VizLitG to improve
the performance of visualization and to exploit the increasing parallelism provided
by graphics processors. Vertex and fragment shaders (Biddiscombe et al. 2008)
are employed for fast rendering of heterogeneous particles on GPU. The
developed Remote Viewer transfers the final images from visualization engine to

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 43

the client and offers high remote interactivity for VizLitG users provided by VTK
widgets and GVid (Polak et al. 2008).

The developed GUI allows interactive data set selection. A simple tabular
design of GUI is programmed by using Java Swing (Zukowski 2005). To process
HDF5 (Folk et al. 2011) files automatically, data sets are stored in a predefined
structure, allowing the software to interpret the structure and contents of a file
without any outside information. HDF5 groups and data sets are automatically
processed, considering the values of HDF5 attributes. Time–dependent and time-
independent data are processed differently. Data sets varying in time are grouped
and stored according to the time step number. GUI separates geometry and
topology from the attributes such as scalars or vectors in order to emphasize their
different nature.

A special data service is developed to provide users with fast access to
interactively selected parts of data sets located in the experimental SE. The
experimental SE has the same hardware requirements as any SE of grid
infrastructure built by gLite. The standard software packages provided within
glite/EMI like Disk Pool Manager (DPM) Storage Element for disk and Disk Pool
Manager Storage Element for MySQL are installed on the experimental SE. The
only additional software running on the experimental SE is GlassFish application
server, which provides users of VizLitG with the developed Data Service (Figure
2.14) enabling a partial data transfer.

The Data Service is developed by using high-level means of GlassFish.
JAX-WS Runtime transfers metadata and the selected parts of the visualized
data sets between the service running on UIG and the Data Service running on
the experimental SE (Figure 2.14). The MIME multipart mechanism for binary
SOAP attachments (Englander 2002) was employed for sending binary data
between the developed services. LFC (Logical File Catalog) system (Kaci et al.
2010) is employed for browsing through the content of SE and identifying the
file. GUI provides interactive environment to VizLitG users and covers
unnecessary details of distributed services running on a heterogeneous grid
infrastructure.

Thus, remote instrumentation of the developed e-service provides users with
the flexible access to the remote data files located in SE. The whole data sets
located in SE can be transferred by traditional LFC (or LCG) means available in
glite/EMI distribution. Alternatively, files can be transferred by using GridFTP
tools available in the Java CoG Kit jGlobus module (Laszewski et al. 2001).
Moreover, transfer of interactively selected parts of data sets located in
experimental SE rather than the whole data files can save a significant amount of
visualization time and overcome difficulties related with a limited network
bandwidth.

44 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

2.4.2. Distributed Visualization Software VisPartDEM

The architecture of VisPartDEM (Figure 2.16) is designed for grid infrastructure
build by glite/EMI middleware, later adapted for Rocks clusters and graphics
workstation. Client software including GUI and Remote Viewer is downloaded
by using Java Web Start technology (Marinilli 2001). VisPartDEM client
implemented as Java application connects to any user interface (UI) by means of
JSCH library (JCraft 2014). Traditional glite/EMI commands for user
authentication and authorization, job submission and monitoring are enwrapped
by Java programming language. Considered visualization pipelines, JDL files and
shell scripts for running visualization engine are generated automatically in order
to submit job to grid. Finally, parallel visualization engine of VisPartDEM runs
on working nodes of any computing element while the compressed video stream
is efficiently transferred from the zero MPI node through the network and
displayed on the client by Remote Viewer.

Fig. 2.16. The architecture of VisPartDEM

Distributed visualization engine of VisPartDEM is based on VTK (Schroeder
et al. 2006). The graphics model in VTK is at a higher level of abstraction than
rendering libraries like OpenGL. This means that it is much easier to create useful
graphics and visualization applications. VTK applications are platform
independent, which is very attractive for heterogeneous grid architectures. Data
parallel model of VTK is employed for visualization of large discrete particle
systems. A large data set is partitioned into many independent subsets that are
processed in parallel (Figure 2.17). Copies of the same modules run on each CPU
and visualize independent subsets of data. Data parallel modules are usually
followed by a data parallel merge module that gathers the independently computed
results and merges them into a final result on a single processor. A sort-last parallel
rendering class inputs a z-buffer and image pair from each process by using MPI
communication and outputs a single composite result image to MPI process zero.

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 45

GUI of VisPartDEM is designed to cover from user unnecessary details and
complexities of heterogeneous grid infrastructure. The GUI allows interactive
browsing of storage element (SE) content and automatic data management. In
order to process HDF5 files (Folk et al. 2011) automatically, data sets are stored
in predefined structure allowing the software to interpret the structure and contents
of a file without any outside information. HDF5 groups and data sets are
automatically processed considering values of HDF5 attributes. XML interface
for remote data is developed to provide grid users with the interactive data set
selection. The interface program reads attributes from HDF5 file and writes
metadata to XML document, which also has predefined structure. Usually, large
HDF5 file containing data is dislocated in remote storage element, while small
XML file containing metadata on the data structure can be stored in any
convenient location (client PC, UI or even SE). Finally, XML file is processed by
GUI to display metadata in the corresponding fields and to provide users with the
ability to select data interactively.

Fig. 2.17. Parallel visualization of compaction process by using 4 processes

The Remote Viewer of VisPartDEM employs GVid software (Polak et al.
2008) as video streaming module to provide grid users with the high interactivity
level. Interactive events and video stream generated by VTK are transferred
between the server and the client by using GVid. The most important VTK GLUT
classes, vtkGlutOpenGLRenderWindow and vtkGlutRenderWindowInteractor,
are renewed to support later VTK versions. As a result distributed visualization
engine VisPartDEM runs in parallel on working nodes while the video stream is
transferred through the network from 0-th MPI node and displayed on the client.

46 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

Thus, remote grid user has full interactivity provided by the Remote Viewer based
on GVid software and VTK widgets.

2.5. Implementation of Crack Visualization Methods

The crack visualization methods are implemented in the distributed visualization
prototypes VizLitG and VisPartDEM developed for interactive investigation of
discrete particle systems. Figures 2.18, 2.19 and 2.20 show general visualization
pipelines of the cell cut-based method, Voronoi-based method and cell centre–
based method, respectively.

Fig. 2.18. Visualization pipeline of cell cut-based method

Initially, all visualization pipelines read data sets from HDF5 files by using
the developed vtkHDF5Reader. Then, the specific modules of methods are
executed. The cell cut-based method consists of two main modules (Figure 2.18).
The first module generates cells of local decomposition from lattice connections
in the fractured regions. It is time consuming procedure, which use the effective
augmentation strategy. The second module produces graphics primitives

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 47

according to the index in the case table. In the case of Voronoi-based method
(Figure 2.19), local Voronoi decompositions are generated according to the input
array of attributes, referred to as the connection state, which identifies the broken
lattice connections. Then attributes of the connections are directly mapped onto
the relevant faces of the generated decomposition.

Fig. 2.19. Visualization pipeline of Voronoi-based method

The cell centre-based method consists of three main modules (Figure 2.20).
The first module generates cells of the first local decomposition, which is identical
to the decomposition produced by the cell cut-based method. It is worth
mentioning that topology of this decomposition does not change in time, therefore,
the effective augmentation strategy can be applied. The second module compute
the cell centres according to formula (2.3) and forms faces of the second
decomposition, which topology is similar to the Voronoi decomposition. The third

48 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

module copies attribute values from connections to corresponding faces of the cell
centre-based decomposition.

In the last stage of all methods, the generated faces or marked connections
are coloured and rendered. The users are able to select preferable branches of the
visualization pipeline by using GUI. The output of cell cut-based method is the
simplest, therefore, the pipeline contains only one branch (Figure 2.18). Various
graphical representations of crack surfaces may be considered by users. The edges
of resulting cracks can be thickened employing vtkTubeFilter. Finally, the
graphical primitives are coloured by using the vtkPolyDataMapper and rendered
by using vtkRenderer.

Fig. 2.20.Visualization pipeline of cell

centre-based method

The output of Voronoi-based method is more complex, because it can contain
the local decomposition and the results of visual model validation (Figure 2.19).
The first branch of the pipeline plots crack surfaces. The second branch shows the
local space decomposition of fractured regions. The last branch of the pipeline is

2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE… 49

responsible for graphical output of visual model validation. It shows the
connections that are inconsistent with the faces of Voronoi decomposition in the
regions of the highly deformed lattice. All branches of the visualization pipeline
can be combined and executed simultaneously. The lattice connections, the edges
of the faces and 1D cracks can be represented by tubes employing vtkTubeFilter.
The condition checks if tube representation is selected by users. Finally, the values
of the considered attributes are mapped onto colours by the vtkPolyDataMapper,
while graphical primitives are rendered by using vtkRenderer.

The output of the cell centre-based method can be visualized by two branches
of pipeline (Figure 2.20). The first branch of the pipeline plots crack surfaces,
while the second branch shows the local space decomposition of fractured regions.
The identical branches of the pipeline are encountered in the description of the
pipeline of the Voronoi-based method.

2.6. Conclusions of Chapter 2

1. The simple cell attribute-based method for visualization of cracks maps
broken lattice connections to newly generated cells. The spatial crack
representation is visualized as the scalar cell attribute, but exact geometry of
crack surface remains undefined.

2. The functionality of the cell attribute-based method is extended in the cell cut-
based method, which extracts crack surfaces as graphics primitives. The cell
cut-based method generates surfaces according to the information about the
way in which cracks cut cells of the space decomposition.

3. Faces of local Voronoi decompositions are used as extended contact surfaces
of neighbouring particles. Attributes from lattice connections are directly
mapped to relevant faces of Voronoi cells without any interpolation.

4. The Voronoi-based method cannot be applied in the highly deformed regions,
because of inconsistency between the lattice connections and the faces of the
Voronoi diagram. The procedure of visual model validation is developed to
identify the regions of a highly deformed lattice.

5. The cell center-based method, positioning the vertices of the generated local
decomposition in the geometric centers of cells, is developed to extend crack
visualization to the regions of a highly deformed lattice, where the Voronoi–
based method cannot be applied.

6. Interactively assembled visualization network of VizLitG is automatically
described by XML language according to the developed schema. Valid XML
documents are automatically generated on a client and transferred to the
server by JAX-WS. The XML documents govern assembling of visualization
pipelines from VTK filters in visualization engine.

50 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE …

7. Grid visualization e-service VizLitG provides GLSL shaders for fast
rendering of discrete particle systems on GPU.

8. Grid visualization e-service VizLitG provides interactive data selection,
partial data set transfer and flexible access of the remote data files located in
the grid storage elements.

9. Distributed architecture of VisPartDEM is designed for interactive
visualization on different infrastructures: grid, Rocks clusters and graphics
workstations. VisPartDEM offers high remote interactivity for grid users
provided by VTK widgets and GVid software.

10. Data parallel model for visualization of large discrete particle systems is
implemented in VisPartDEM software. Parallel visualization engine runs on
working nodes of any computing element while the compressed video stream
is efficiently transferred from the zero MPI node through the network and
displayed on the client by the Remote Viewer.

51

3
Experimental Research on the

Proposed Visualization Methods and
the Developed Software

In the third Chapter, the results of experimental research are presented. Datasets
resulting from DEM simulations are described. The performance of distributed
visualization software and partial data set transfer is investigated. The
performance and quantitative comparrison of crack surface visualization by using
the proposed methods is presented. The accuracy of the developed visualization
methods was evaluated by computing the total depth of cuts made in particles by
the extracted crack surfaces.

Experimental results presented this Chapter are published in (Kačeniauskas
and Pacevič 2011), (Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015),
(Kačeniauskas et al. 2012), (Kačeniauskas et al. 2013), (Pacevič and
Kačeniauskas 2015).

3.1. Description of Visualized Data Sets

In this subsection, descriptions of data sets for visualization benchmarks are
provided. Polydispersed particle systems are visualized by using VizLitG and

52 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

VisPartDEM to measure performance of partial data set transfer and parallel
visualization, respectively. Polydispersed particle systems are considered as a
pilot application for visualization due to a large number of particles that are
employed modelling actual industrial applications. The developed methods for
visualization of cracks, propagating in monodispersed particle systems, are tested
visualizing data sets of the uniaxial tension problem.

Visualization of polydispersed particle systems (Figure 3.1) is considered for
performance analysis of VizLitG. The investigated data sets result from the
solution of the tri-axial compaction problem (Kačianauskas et al. 2010) by the
discrete element method. The compacted granular material is represented as an
assembly of spherical non-cohesive visco-elastic frictional particles. The initial
state of the particulate material is generated, randomly distributing particles in a
three-dimensional computational domain. It imitates a representative macroscopic
region element and presents a box in the form of the cube. The compaction is
performed by the motion of the rigid walls of the box and is controlled in time by
a constant rate. The numerical solution of tri-axial compaction helps to evaluate
the unknown material properties. This is a significant problem often encountered
in the area of material sciences.

Fig. 3.1. Remote visualization of 202215 particles coloured

depending on the radii

The considered benchmark is based on the glyph generation, because
particles, velocities and accelerations are often represented by glyphs that can be

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 53

coloured depending on the investigated scalar values or oriented depending on the
examined vector values. Alternatively, particles can be rendered by GLSL shaders
to exploit the increasing parallelism of GPU.

Table 3.1. Data sets of polydispersed particle systems

Particles 50880 97036 147408 202215

Data set size, MB 1.753 3.337 5.067 6.948

HDF5 size, MB 11.663 22.227 33.756 46.300

Rendered cells 4884480 9315456 14151168 19412640

Rendered points 2544000 4851800 7370400 10110750

Glyph size, MB 232 443 673 923

Data sets of polydispersed particle systems are described in Table 3.1. The

first row shows the number of particles. The second row presents the size of VTK
object, which encapsulates the examined data set. Meaningful data is composed
of the positions of particles and their radii. This data is interactively selected and
transferred from the experimental SE employing the developed data service. The
complete numerical results include a lot of values of primary and derived variables
that are written in HDF5 (Folk et al. 2011) files. Spherical particles are
represented by spherical glyphs generated by using default VTK input parameters.
The last three rows show the information on the generated geometry of glyphs
that can be rendered on screen.

Fig. 3.2. The sizes of the considered data sets

54 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Figure 3.2 illustrates the sizes of the considered data sets. The size of HDF5
files (the curve HDF5) is larger than the size of the investigated data sets (the
curve DS), because the files include other data, which were not visualized in the
performed benchmark tests. The most important fact is that the size of the
rendered polygon mesh (the curve GL) is significantly larger than the size of the
investigated data set (the curve DS). Usually, the second-order difference can be
observed, for example, 6.948 MB and 923 MB. It makes the described benchmark
very specific and inconvenient for some visualization tools. On the contrary,
particle shaders can perform this benchmark very efficiently. Rather than
representing particles as glyphs, they are rendered directly to viewport as spherical
primitives, supplying only a position, radius and any scalar attribute mapped to
colour.

Fig. 3.3. Parallel computations of tri-axial compaction problem: particles coloured

according to process ID

Parallel visualization of polydispersed particle systems (Figure 3.3) of the tri-
axial compaction problem (Kačianauskas et al. 2010) is considered for
performance analysis of VisPartDEM. The visualization benchmark is based on
the glyph generation, because particles, computed velocities and obtained forces
are often represented by glyphs that can be coloured by investigated scalar values
or oriented by the examined vectors. The examined data sets contain 100036,
150119 and 200194 heterogeneous particles. Meaningful data are composed from
the positions of particles and their radius, therefore, the real sizes of the visualized
data are quite small (3.13 MB in case of 100036 particles). Numerical results
include a lot of values of variables that are written in HDF5 files, therefore, the
size of complete HDF5 file is equal to 21.39 MB in case of 100036 particles. The

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 55

total size of partitioned result files is up to 21.63 MB, which is close to the size of
the single file. The size of the single file containing the results of 150119
polydispersed particle system is equal to 32.09 MB, while the total size of 16
partitions is equal to 32.37 MB. In case of the polydispersed particle system
containing 200194 heterogeneous particles, the size of the single file is equal to
42.79 MB, while the total size of partitioned files is up to 43.07 MB. Particles are
represented by generated spherical glyphs. The size of the object, which
encapsulates data of generated glyphs, is equal to 326 MB in case of 100036
polydispersed particles. It makes the described benchmark very specific, because
a generated geometry is larger than the initial data set.

The data sets obtained in solving the uniaxial tension problem were
visualized to validate the effectiveness of the developed methods for visualization
of crack propagating in monodispersed particle systems. The considered DEM
model (Rojek et al. 2011) is able to describe the elastic solid problem exhibiting
non-uniform distribution of fracture force values. To illustrate the extraction of
crack surfaces fracture phenomena in the rectangular plate were considered to be
a two-dimensional benchmark. Two plate boundaries were clamped by connecting
them to rigid walls, while other boundaries were free. The external excitation was
implemented via the motion of the clamped boundaries defined by the constant
velocity (u = 0.05 m/s) in order to simulate tension in the specimen with the
dimensions of 0.376×0.107 m. The simulated system consisted of 4679 particles
with the radius equal to 1.58 mm. The lattice was formed of 13722 springs, which
were considered to be the connections between the neighbouring particles. The
initial defect, specified by 3 broken connections, is marked by using a red colour
(Figure 3.4).

Fig. 3.4. Geometry and lattice of the 2D benchmark

A three-dimensional benchmark is based on the data sets obtained by
simulating crack propagation in a rectangular cuboid. Two domain boundaries are
also clamped, while their constant velocity is equal to 0.025 m/s. The dimensions
of the cubical specimen are equal to 0.211×0.1×0.1 m. The simulated system
consists of 46875 particles with the radius of 2 mm. The lattice is formed of
267674 springs. Three data sets, A, B and C, with the initial defects of various
sizes, were investigated. The initial defects of different rectangular shapes defined

56 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

by 125, 245 and 121 broken connections are located in the middle of the specimen
bottom. The geometries of the benchmark problem relevant to data set A, B, C are
shown in Figures 3.5a, 3.5b and 3.5c, respectively. The considered benchmark
problems are often investigated in order to understand fracture phenomena.

Fig. 3.5. The geometry of the 3D benchmark problem and the shape of the initial

defects: a) data set A, b) data set B, c) data set C

a)

b)

c)

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 57

The data set produced by DEM computations includes the positions,
velocities, accelerations, radii and material properties of particles, as well as the
lattice connections between the neighbouring particles and their attributes, such
as the connection state, the force and the fracture force limit. The complete
numerical results can include a number of values of other primary and derived
variables. The size of the visualized 2D data set, storing the results of 1284
selected time steps, is equal to 1.4 Gb. The size of all three-dimensional data sets,
storing the results of 200 selected time steps in HDF5 files, is about 2.5 Gb.

 a) b)

Fig. 3.6. Growth of the number of broken connections: a) 2D, b) 3D

The time consumed by visualization methods depends on the number of the
broken lattice connections. Figure 3.6 demonstrates the variation of the number
of broken connections in time. Rapid changes in the number of broken
connections can be observed between time steps 80 and 215 in the 2D case, while
the same phenomenon reveals between time steps 85 and 95 in the case of all 3D
data sets. In the last time step of the 3D data sets, the number of the broken
connections made 6.4%, 4.9% and 4.3% of all lattice connections and 4.0% in
case of the 2D data set.

3.2. Performance of Distributed Visualization
Software and Partial Data Set Transfer

3.2.1. Performance of VizLitG Including Partial
Data Set Transfer

A series of benchmark tests examining computational performance of the VizLitG
e-service were performed on an ordinary personal computer (PC) and HP xw4600

58 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

workstation. Both computers served as UIG installed at Vilnius Gediminas
Technical University (VGTU). Hardware characteristics of the PC are listed
below: Intel® Core2Quad Q6600 2.40 GHz CPU (2 x 4 MB L2 cache and bus
frequency equal 1067 MHz), 4 GB DDR2 RAM, 320 GB HDD (SATA II
Extensions and 16 MB cache), Nvidia GeForce 9600GT (512 MB) GPU.
Hardware characteristics of HP xw4600 are listed below: Intel® Core2Quad
Q9450 2.66 GHz CPU (12 MB L2 cache and bus frequency equal 1333 MHz),
8 GB DDR2 RAM, 2 x 250GB HDD (SATA 3 GB/s NCQ 7200), Nvidia Quadro
FX4600 (768 MB) GPU.

Hardware characteristics of the experimental SE maintained at VGTU are
listed below: AMD Athlon X2 Dual Core BE-2300 1.9 GHz CPU, 2 GB DDR2
800 RAM, 3 x 500GB SATA II Extensions, Software Raid0, 1 Gbps LAN. In
geographically distributed environment, the data transfer tests were performed
employing SEs maintained by other LitGrid partners. Hardware characteristics of
the experimental SE maintained at Kaunas Technical University are listed below:
Intel®Xeon 5130 2.00 GHz CPU, 2 GB DDR2 800 RAM, 3 x 200GB SATA II
Extensions, Software Raid5, 1 Gbps LAN. Hardware characteristics of the
experimental SE maintained at Klaipėda University are listed below: Intel®Xeon
5110 1.6 GHz CPU, 1 GB DDR2 800 RAM, 3 x 80GB SATA II Extensions,
Software Raid5, 1 Gbps LAN.

The performance analysis was concentrated on the server side of the
visualization e-service, because hardware characteristics of a client PC can be
very different and hardly predictable. However, three different client computers
were employed to perform benchmark in geographically distributed grid
environment. The PC named C-1 and connected to the network in the same
building as UIG was used as a client computer to illustrate the usual conditions at
a research laboratory. The hardware of C-1 was identical to hardware of the PC
described above. The laptop C-2 (AMD Turion 64 X2 Mobile Technology TL-60,
2 GHz CPU, 2 GB DDR II RAM 667 MHz, ATI Mobility Radeon HD 2600 GPU
with 512 MB) and other personal computer C-3 (AMD Sempron Dual Core
Processor 2300, 1800 MHz CPU, 1 GB DDR II RAM 667 MHz, ATI Radeon
X1200 GPU with 128 MB) with low end hardware were employed to simulate
less favourable conditions like home environments. The laptop C-2 was connected
to the network in other district of Vilnius, while C-3 was located in the town
Alytus.

Table 3.2. Network load between user interface for graphics and storage elements.

Network load UIG → VGTU UIG → KTU UIG → KU

Round-trip time, ms

(Min/Average/Max)
0.07/0.08/0.09 1.00/2.06/4.39 4.15/4.65/7.88

Network bandwidth, Mbit/s 480 184 167

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 59

Performing the initial benchmark, heterogeneous particles were represented
by coloured spherical glyphs. The attention was focused on the performance of
the vtkGlyph3D filter and rendering of the resulting polygon meshes. Mapping
was not considered because it took a very short time equal approximately to
0.0001 s. The interactive session handled by GVid software took about 1 s. The
detailed investigation of interactive performance is provided at the end of this
section. Parameter transferring between the client (GUI) and the server
(visualization engine) was fast enough because of the small data size. Performing
benchmarks, e-service received about 26.3 kB and sent about 6.9 kB.
Communication lasted less than one-tenth of a second. The data set transfer
between SE and visualization server performed by JAX-WS Runtime was
considered. In Table 3.2 second column shows network load, round-trip time and
network bandwidth messured by using Iperf (Tirumala et al. 2006), between UIG
and experimental SE (VGTU) connected to the same switch, during the
benchmark. The average system load of the SE was 10% during the benchmark.
The benchmark tests were repeated up to ten times and the averaged values were
examined.

 a) b)

Fig. 3.7. Visualization benchmark based on glyphs: a) total visualization time,
 b) contribution of different visualization procedures to the total benchmark time

Figure 3.7 shows the total visualization time consumed by the VizLitG
performing the benchmark based on glyphs and full data set transfer. In Figure
3.7a, the curve PC64 represents the total visualization time measured on the
considered PC running Scientific Linux 5.5 64 bit operating system. The curves
HP32 and HP64 show visualization time obtained on HP xw4600 running
Scientific Linux 5.5 32 bit and 64 bit, respectively. Almost identical performance
was observed on the HP workstation, running 32 bit and 64 bit operating systems.
The measured performance difference between PC (the curve PC64) and HP (the
curves HP32 and HP64) did not exceed 12.5% of the visualization time. In Figure
3.7b, the chart compares the contribution of full data transfer from storage element

60 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

(SEF), file reading from HDD (Reader), glyphs generation (Glyph) and rendering
(Ren) to the total visualization time measured on HP workstation. It is obvious
that glyph generation and rendering consumed the amount of time exceeding 93%
of the total visualization time. The data set transfer became less important,
because it consumed only about 5% of the time. It can be explained by the fact
that the size of the generated glyphs was significantly larger than the size of the
transferred data.

 a) b)

Fig. 3.8. Contribution of visualization procedures to the total visualization time of
benchmark performed by using shaders: a) PC transferring the full data set, b) HP

transferring part of the data set

However, visualization of spherical particles can be performed by GLSL
shaders on GPU, which leads to the huge increase of performance. Figure 3.8
shows the visualization time measured performing the same benchmark by the
implemented particle shader. The charts compare the contribution of full data
transfer from storage element (SEF), partial data set transfer from storage element
(SEP), file reading (Reader) and particle shading (Shader) to the total visualization
time. Figure 3.8a shows the contribution of different visualization procedures to
the total benchmark time measured on PC transferring the full data set, while
Figure 3.8b shows that measured on HP transferring only the selected part of the
data set. The total visualization time was reduced by an order of magnitude,
because the shader performed the work made by glyph generation and rendering.
The measured shading time varied from 0.04 s to 0.07 s. The full data set transfer
consumed from 50% to 62% of the total visualization time in spite of the fact that
time values of insecure transfer were presented in Figure 3.8a. Moreover, the
contribution of data transfer to the total visualization time grew while data set size
increased. It is obvious that the reduction of time consumed by data set transfer
becomes crucial for interactive visualization of the considered data sets. The
employed partial data set transfer reduced the transfer time up to an order of
magnitude. Moreover, partial data set transfer consumed less than 21% of the total
visualization time measured on HP xw4600 (Figure 3.8b).

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 61

Figure 3.9 shows the time consumed by data transfer from SE. Different
transfer protocols and software was employed to present the quantitative
comparison for the investigated data sets. The curve GFTP represents GridFTP
from Java CoG Kit jGlobus module. The curve LFC represents the means of
Logical File Catalog included in glite/EMI distribution. The curve JWS shows the
time consumed by JAX-WS Runtime for transferring the complete data sets over
SSL. Finally, the curve PDT means partial data set transfer from the experimental
SE provided by the developed Data Service (Figure 2.14). This secure data
transfer was also performed by JAX-WS Runtime. The performance of JAX-WS
Runtime was the best for the considered data sets, because they were not of a large
size. Employing partial data set transfer, the communication time was reduced by
up to 7.6 times and became almost negligible.

Fig. 3.9. Data set transfer from SE by using different software

Figure 3.10 illustrates how secure data transfer over SSL influenced the time
consumed. The dashed curves, FnoS and FSSL, represent the time consumed by
insecure full data set transfer and full data set transfer over SSL, respectively.
Other curves, PnoS and PSSL, show the time consumed by insecure partial data
set transfer and partial data set transfer over SSL, respectively. Insecure data
transfer applied instead of the SSL mechanism reduced the time of partial data set
transfer up to 40%. In the case of full data sets, the obtained percentage was even
higher (about 42%), because a larger amount of data need to be encoded and
transferred. However, insecure communication is not recommended for grid e-
services, because the security of important data can be violated.

62 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Fig. 3.10. Time consumed by secure and insecure data set transfer

Figure 3.11 illustrates the performance of the developed Data Service in the
geographically distributed grid environment. SE components located in the towns
Kaunas and Klaipėda were employed for measuring the time consumed by the
data transfer performed by JAX-WS Runtime. Table 3.2 shows network load,
between UIG at VGTU and SE at KTU in Kaunas, and SE at KU in Klaipėda,
during the benchmark. The average system load of the investigated SE at KTU
and KU was 30% and 35%, respectively. The curves, PD_V, PD_Ka and PD_Kl,
represent the time consumed by the partial data set transfer from the SE located
in Vilnius, SE located in Kaunas and SE located in Klaipėda, respectively. The
dashed curves, FD_V, FD_Ka and FD_Kl represent the time consumed by the full
data set transfer from the SE located in Vilnius, SE located in Kaunas and SE
located in Klaipėda, respectively. As expected, data transfer from the SE located
in Kaunas was faster than that from the SE in Klaipėda because of lower latency
and higher network bandwidth. In the case of full data set transfer, the significant
time increase was observed when the data was transferred between the distant
locations. On the contrary, in transferring partial data sets, the time difference
varied about 0.1 s, which was insignificant.

The performance of interactivity (Figure 3.12) was also investigated in the
case of the geographically distributed grid. The Remote Viewer is based on the
GVid software, which transports the efficiently compressed standard video stream
to the remote output device and handles interactive events. Video stream is
encoded by using XviD codec (Xvid 2009). The transfer of several encoded
frames of different size (179.7 kB and 308.6 kB) was investigated. These typical
frames result from interactive processing of the image shown in Figure 3.1, which

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 63

consists of 900 x 900 pixels. The image encoding (Encode), frame sending (Send)
and receiving (Receive) as well as decoding (Decode) and displaying (Display)
were considered in the performed benchmark. The image encoding and frame
sending time is measured on the server UIG (HP xw4600), while receiving,
decoding and displaying time was measured on three different clients. Interactive
events were captured and transferred very quickly, therefore, their time
consumption was not included.

Fig. 3.11. Data set transfer from geographically dist ributed

SE components to UIG

Table 3.3 shows network load, round-trip time and network bandwidth
messured by using Iperf (Tirumala et al. 2006), between UIG and three different
clients, located in the VGTU building (C1), located in another district of Vilnius
(C2) and located in Alytus (C3). A low quality network was tested to simulate
extreme cases representing a bottleneck for interactive visualization. The
benchmark tests were repeated up to one hundred times and the averaged values
were presented.

Table 3.3. Network load between user interface for graphics and clients

Network load UIG → C1 UIG → C2 UIG → C3

Round-trip time, ms

(Min/Average/Max)
0.17/0.19/0.21 1.89/2.82/44.77 3.12/18.93/1417.73

Network bandwidth, Mbit/s 933 177 2.1

64 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Fig. 3.12. Image coding and frame transfer for remote interactivity

Figure 3.12 shows the time consumed by GVid on three clients and the server
UIG. The stacked columns, CL-1, CL-2 and CL-3, represent the time consumed
by processing larger encoded frame (308.6 kB), which was transferred to the
clients C-1, C-2 and C-3, respectively. The stacked columns, CS-1, CS-2 and CS-
3, represent the time consumed by processing smaller encoded frame (179.7 kB),
which was transferred to the clients C-1, C-2 and C-3, respectively. The encoding
was performed on the server, therefore, it consumed almost the same amount of
time for the defined frame. The time of encoding of different frames was slightly
different. Different time values were measured transferring the frames to different
clients, while the receiving time was negligibly small in all cases. Frame decoding
strongly depended on the client hardware. The C-1 equipped by the
Intel® Core2Quad Q6600 2.40 GHz CPU was significantly faster than other
clients. Displaying of the decoded frame lasted about 0.01 s. However, in the case
of the low end graphics cards like ATI Radeon X1200 installed on the client C-3,
a longer time was observed. It is evident that frame sending strongly depends on
the network connection and the frame size. It is not suitable for interactive
purposes in the case of the low bandwidth and high latency networks like the
connection between the UIG and C-3 located in Alytus. However, the GVid is
well designed for a variable or low bandwidth, because of the efficient
compression codec XviD and rate adaptation to the current network bandwidth.
Thus, the frame rate was automatically adapted to a low bandwidth, and the
transferred data was reduced.

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 65

Fig. 3.13. Contribution of visualization procedures to the total visualization time

Figure 3.13 presents a comparison of the total visualization time consumed
by the locally distributed e-service with that measured in geographically
distributed grid environment. The stacked columns compare the contribution of
secure partial data set transfer from the storage element (SEP), file reading
(Reader), particle shading (Shader) and minimal interactive session including two
calls of vtkRenderWindow (Interact) to the total visualization time. Test cases
L50880, L97038, L147408 and L202215 represent visualization benchmark of
different polydispersed particle systems performed on the locally distributed
components of e-service. Thus, UIG, SE and the client C-1 were located in the
VGTU building. Moreover, UIG and SE were connected to the same switch. Test
cases D50880, D97038, D147408 and D202215 represent the same benchmark
performed on geographically distributed grid components. The UIG (HP xw4600)
was located at VGTU in Vilnius, while the SE was located in Kaunas. Moreover,
the client C-2 was connected to the network in another district of Vilnius to
simulate visualization in home environment. The employed hardware and network
characteristics measured during the benchmark were provided above.

The geographically distributed components of the infrastructure increased
the total visualization time from 24% to 34% (Figure 3.13). As expected, time
values of particle shading were very close in all cases because shading was
performed by the same GPU. The differences in time consumed by data reading
were insignificant. The most significant time increase was observed during the
interactive session, because of the low performance of the laptop hardware
employed for frame decoding (Figure 3.12). The increase in time consumed by
the partial data set transfer from the distant SE was not significant. In the case of
the largest system of particles, the measured difference was equal to 0.091 s. It
can be concluded that the developed Data Service, providing a secure partial data

66 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

set transfer from the SE, considerably reduced the size of the transferred data and
demonstrated good performance in the geographically distributed grid
environment.

3.2.2. Performance of VisPartDEM Including Parallel
Visualization

The desktop-delivered visualization and grid computing might become the
solutions providing sufficient performance by visualizing a relatively large data
set with the help of relatively cheap hardware. A benchmark was run to illustrate
the performance of the developed software for visualization of discrete particle
systems.

VisPartDEM benchmark was performed on BalticGrid-II site ce2.grid.vgtu.lt
collected from ordinary PCs equipped by GPUs. This glite/EMI CE maintained
by VGTU was considered for benchmark, because it supported direct GPU
rendering and it was based on the multi-core architecture. The CE consisted of 14
HP Compaq dc7900 personal computers (nodes) including Pentium(R) Dual-
Core CPU E5300 2.60 GHz, 4 GB DDR2 RAM 800 MHz, 500 GB HDD. Each
node is equipped by GPU (Nvidia GeForce 9600GT 512 MB 256 bit). Nodes are
connected to 1 Gbps Ethernet LAN by 3Com Baseline Switch 2928-SFP Plus (24
auto sensing 10/100/1000Mbps Base–TX ports). Hardware characteristics of the
storage element se.grid.vgtu.lt (SE-1) maintained by VGTU are listed below:
AMD Athlon X2 Dual Core BE-2300 1.9 GHz CPU, 2 GB DDR2 800 RAM, 3 x
500 GB SATA II Extensions, Software Raid0 and 1 Gbps LAN. The SE-1 was
connected to the same switch as the ce2.grid.vgtu.lt. In geographically distributed
environment, the data transfer tests were performed employing the storage
element se.bg.ktu.lt (SE-2) located at Kaunas Technical University (KTU).
Hardware characteristics of the SE-2 are listed below: Intel®Xeon 5130 2.00 GHz
CPU, 2 GB DDR2 800 RAM, 3 x 200 GB SATA II Extensions, Software Raid5,
1 Gbps LAN.

The tests were repeated up to ten times and the averaged values were
investigated. The main attention was focused on the performance of the data
transfer from SE, speed-up of visualization procedures and the interactive
performance. Mapping was not considered, because it took a very short time equal
approximately to 0.0001 s. In the performed benchmark, MPI communication for
message passing between working nodes is employed for composition of the final
image. Detailed investigation of MPI communication is not presented, because it
lasts negligible time (less than 0.002 s). HDF5 files were transferred from the SE
to WNs by using LFC means. Each process of VisPartDEM transferred its data

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 67

file independently, in asynchronous fashion. In case of the considered data sets
asynchronous data transfer can be up to 11 times faster than the synchronous one.

Table 3.4. Network load between compute element to storage

Network load CE → SE-1 CE → SE-2

Round-trip time, ms

(Min/Average/Max)
0.161/0.229/2.218 1.00/2.06/4.39

Network bandwidth, Mbit/s 583 184

The asynchronous data transfer is investigated in geographically distributed

grid. Each process independently transfers its data file from the SE to its WN. The
longest transfer time is picked up from times consumed by all parallel processes.
The network load, between CE to SE-1 at VGTU in Vilnius and CE to SE-2 at
KTU in Kaunas, is described in Table 3.4. The average system load, during the
geographically distributed benchmark, of the SE-1 and SE-2 was equal to 10%
and 30%, respectively.

Fig. 3.14. Time consumed by the data transfer from SEs to WNs

Figure 3.14 shows the time consumed by the asynchronous data transfer. The
curves VGTU-100, VGTU-150 and VGTU-200 represent time consumed by
transferring data sets of 100036, 150119 and 200194 particles, respectively, from
SE-1 to WNs of ce2.grid.vgtu.lt. The dotted curves KTU-100, KTU-150 and
KTU-200 represent transferring data sets of 100036, 150119 and 200194 particles,
respectively, from SE-2 located at KTU to CE located at VGTU. The
asynchronous data transfer helps to reduce transferring time in case of very small
number of processes. All parallel processes use the same network equipment and

68 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

the same hardware of the employed SE. Encountered bottlenecks do not allow
attaining parallel speed-up in data transfer. The distant data transfer strongly
depends on the network load, therefore, the curves representing data sets of
different size are not so gradually distributed. As expected, data transfer from the
distant SE-2 was slower than that from SE-1 located in the same building as CE.

Table 3.5. Network load between compute element and client

Network load CE → C-1 CE → C-2

Round-trip time, ms

(Min/Average/Max)
0.17/0.19/0.21 1.75/9.25/71.64

Network bandwidth, Mbit/s 933 1.95

The performance of interactivity was also investigated in the case of the

geographically distributed grid. The Remote Viewer is based on the GVid
software, which transports the efficiently compressed standard video stream to the
remote output device and handles interactive events. Video stream is encoded by
using XviD codec (Xvid 2009). The transfer of the encoded frame of 302.6 kB
size was investigated, which consists of 1100 x 600 pixels. The image encoding
(Encode), frame sending (Send) and receiving (Receive) as well as decoding
(Decode) and displaying (Display) were considered in the performed benchmark.
The image encoding and frame sending time is measured on CE in VGTU, while
receiving, decoding and displaying time was measured on two different clients.
Interactive events were captured and transferred very quickly, therefore, their time
consumption was not included. Table 3.5 shows network load between CE to the
client C-1 located in VGTU building and C-2 located in Alytus. A low quality
network was tested to simulate extreme cases representing a bottleneck for
interactive visualization. The benchmark tests were repeated up to one hundred
times and the averaged values were presented.

Figure 3.15 shows the time consumed by GVid on two clients (the curves C-
1 and C-2) and the CE. The encoding was performed on the server, therefore, it
consumes almost the same amount of time for the defined frame. Different time
values were measured transferring the frames to different clients, while the
receiving time was negligibly small in all cases. Frame decoding strongly
depended on the client hardware. The C-1 equipped by the Intel® Core2Quad
Q6600 2.40 GHz CPU was significantly faster than the other client. Displaying of
the decoded frame lasted about 0.01 s. However, in the case of the low end
graphics cards like ATi Radeon X1200 installed on the client C-2, a longer time
was observed. It is evident that frame sending strongly depends on the network
connection and the frame size. It is not suitable for interactive purposes in the case
of the low bandwidth and high latency networks like the connection between the
CE and C-2 located in Alytus.

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 69

Fig. 3.15. Image coding and frame transfer for remote interactivity

Fig. 3.16. Parallel speed-up attained

Figure 3.16 illustrates parallel speed-up of VisPartDEM. The curves G-200,
G-150 and G-100-2P represent visualization of 200194, 150119 and 100036
particles employing GPU rendering performed by two processes per multi-core
node, respectively. The curve G-100-1P represents visualization of 100036
particles employing GPU rendering performed by one processes per node while

70 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

the curve G-100-CPU represents visualization of 100036 particles employing
CPU rendering. The special curve Ideal shows the ideal speed-up.

Parallel speed-up of visualization employing GPU rendering is lower than
that of visualization based on CPU rendering. However, execution time of
visualization employing GPU is significantly shorter than that of using CPU
rendering. Higher speed-up was measured visualizing larger discrete particle
systems. It becomes obvious that in usual grid conditions, when two processes use
one GPU on multi-core architecture, parallel speed-up achieved by GPU
rendering is moderate. It can be concluded that Figure 3.16 proves sufficient
speed-up of visualization performed on grid testbed based on multi-core
architecture.

Fig. 3.17. Contribution of visualization procedures to the total benchmark time

In Figure 3.17, the chart compares the contribution of data transfer
(Transfer), visualization (Visualize) and interactive session (Inter) to the total
visualization time of 200194 particles measured on the CE. Visualization includes
data reading, glyphs and parallel GPU rendering, while interactive session
consists of image encoding, frame sending, receiving, decoding and displaying as
well as processing interactive events. The stacked columns G-1, G-2, G-4, G-8,
G-12 and G-16 represent visualization time on grid site by using 1, 2, 4, 8, 12 and
16 processes, respectively. Figure 3.17 shows that visualization time was
significantly reduced employing parallel processing. Moreover, performing
glyphs-based benchmark the time consumed by interactive session is negligible.
However, the overall problem is not scalable, because of the data transfer from
SE, which is insignificantly growing.

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 71

3.3. Performance of Crack Surface Generation and

Visualization

3.3.1. Visual Results of the Proposed Methods

The developed visualization methods were applied to visualize geometry of

propagating cracks.

Fig. 3.18. Visualization of the lattice and cracks in 2D

Figure 3.18 presents visualization of cracks performed by the cell attribute-

based method in 2D. The lattice connections represented by coloured tubes are

plotted for illustrative purposes. A red tube indicates that the corresponding lattice

connection is already broken and the force coupling neighbouring particles is

equal to zero. Cracks are visualized by colour mapping of the calculated cell

attributes on the generated triangles (2.1). The predefined colour table is employed

for relevant visualization of the investigated phenomenon. The cells coloured in

blue do not contain cracks, which indicates zero values of the cell attribute

calculated by the formula (2.2). The triangles including only one broken

72 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

connection are coloured in cyan. The cells that have two broken connections are

coloured in yellow. It means that crack cuts the cell. The triangles coloured in red

contains the branching crack, because all edges of the cell are broken and the

investigated region is highly fractured.

Fig. 3.19. Visualization of cracks in 3D

Figure 3.19 shows crack propagation in 3D. In this case, the colour mapping

is more sophisticated, because the generated topology contains two types of cells,

i.e. pyramids with triangular or quadrilateral bases. The 3D cells that do not

contain the broken connections are extracted by the filter vtkExtractCells.

Pyramids containing small defects, i.e. one or two broken connections, are

coloured in cyan. The yellow colour represents the cells containing 3 or 4 broken

connections, which illustrates the cells cut by the crack surface. The red pyramids,

containing more than 4 broken connections, indicate the highly fractured regions

of material. The crack propagating upwards from the specimen bottom, damaged

by the initial defect, can be clearly observed in Figure 3.19.

Figure 3.20 presents visualization of cracks propagating in the rectangular

plate. The local Voronoi decomposition is generated in the vicinity of cracks to

define the extended contact surfaces of the particles coloured in blue. The cracks

are represented by red tubes that are plotted on the contact surfaces. Model

validation is illustrated by rendering the coloured lattice connections. The

elongated connections are represented by green tubes while the high deformation

areas are shown by yellow tubes. In the regions containing a lot of broken lattice

connections the particles have more freedom to move. Consequently, high

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 73

deformations can prevent generating the Voronoi decompositions suitable for

visualization purposes.

Fig. 3.20. Visualization of cracks, extended contact surfaces and model validation

Figure 3.21 shows visualization of the crack surfaces propagating in the

three-dimensional domain. The cracks are plotted on the extended contact surfaces

represented by the faces of the local Voronoi decomposition. The crack surface is

coloured in red, while the edges of the relevant Voronoi faces are represented by

tubes. It is worth noting that the numerical results of the lattice–based DEM at the

micro-level are scattered, because of the randomly distributed material properties

of the individual particles. It is well-known that fractures can be of stochastic

nature and have scattered defects at the micro-level (F. Zhou et al. 2005). The

visualization confirms that the crack surface is continuous only at the location of

the initial defect. The holes and disjoint pieces of the surfaces appearing due to

the scattered nature of fractures can be observed in the upper part of the cracked

region. The visualization of cracks on the extended contact surfaces facilitates the

analysis of the structure and topological connectivity of crack surfaces as well as

the identification of holes.

Figure 3.22 presents visualization of the crack curves extracted by applying

two different methods in a case of the two-dimensional benchmark. The cracks

are represented by red tubes, while local decompositions are shown by blue tubes.

Figure 3.22a and Figure 3.22c show the cracks extracted by using the cell cut-

based method, while Figure 3.22b and Figure 3.22d illustrate an application of

the cell centre-based method. It is worth noting that the methods generate local

decompositions of different topologies. The cracks obtained by using the cell cut-

based method seem to be smaller and contain separate vertices, representing

74 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Fig. 3.21. Visualization of cracks surfaces using local Voronoi-based method

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 75

 a) b) c) d)

Fig. 3.22. Local decompositions and cracks extracted by the investigated methods in 2D:
a) the cell cut-based method, b) the cell centre-based,

c) application of the cell cut-based technique to highly fractured and deformed regions,
d) application of the cell centre-based technique

 to highly fractured and deformed regions

spatially disconnected broken connections. The cell centre-based method

represents such connections as disconnected lines (tubes) plotted in the contact

region between the neighbouring particles. Figure 3.22c and Figure 3.22d

demonstrate the application of the developed extraction methods to the fractured

regions of a highly deformed lattice marked by green connections. In the regions

containing a lot of broken connections of the lattice, the particles have more

freedom to move. In the fractured regions, the initial topological connectivity of

the nearest contacting particles fixed by the connections of the computational

lattice does not hold because of the intensely changing positions of the particles.

Consequently, high deformations of the computational lattice can prevent

generation of accurate space decompositions suitable for visualization purposes.

In spite of these difficulties both developed methods were able to extract cracks

in the last time step of computations containing 548 broken connections.

Figure 3.23 shows visualization of cracks propagating in a three–dimensional

domain. Figure 3.23a presents 103-rd time step of the data set A visualized by

using the cell cut-based method, while Figure 3.23b shows visualization of the

same time step obtained by using the cell centre-based method. The crack surfaces

are coloured in red, while the edges of the faces and lines of the cracks are

represented by green tubes. Red points show the disjoint vertices of the cracks

resulting from the application of the cell cut-based method to separate broken

connections, having no direct topological connectivity with the fractured regions.

The transparent faces of the cracks help to explore the overlapping surfaces. In

the presented figure, the extracted surfaces are not smoothed to visualize the

76 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

simulation results accurately and to provide researchers with the possibility

visually to check the accuracy of the employed numerical method. The curved

surfaces extracted by the cell centre-based method are more continuous.

Moreover, they consist of faces and do not have any primitives of lower

dimensionality, such as lines and vertices. However, the surfaces extracted by the

cell cut-based method perfectly illustrate the straightforward propagation of the

main crack.

 a) b)

Fig. 3.23. Visualization of crack surfaces extracted by using different methods:
 a) cell cut-based method, b) cell centre-based method

Visualization confirms that the crack surface is only continuous at the

location of the initial defect. The holes and disjoint pieces of the surfaces formed

due to the scattered nature of the fracture phenomena can be observed in the upper

part of the cracked region. The extraction of the crack surfaces facilitates the

analysis of the structure and topological connectivity of cracks as well as the

identification of holes.

3.3.2. Performance Analysis

The benchmark tests were carried out on two personal computers to validate the

computational performance of the visualization methods. Hardware

characteristics of the personal (C1) are listed below: Intel® Core i7-3770 3.40

GHz CPU, 2x1 TB HDD, 16 GB DDR3 1600 MHz RAM and Nvidia GeForce

GTX 660 Ti GPU (1344 CUDA cores, 2 GB GDDR5, 144.2 GB/sec memory

bandwidth). Hardware characteristics of the personal (C2) are listed below: Intel®

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 77

Core i7-4790 3.60 GHz CPU, 2x1 TB HDD, 32 GB DDR3 1600 MHz RAM and

NVIDIA Quadro K5000 GPU (1536 CUDA cores, 4 GB GDDR5, 173 GB/sec

memory bandwidth). Performing the benchmark, the attention was focused on the

performance of the crack extractions methods, reader and renderer of the resulting

polygon meshes. Mapping was not considered, because it took a very short time

equal approximately to 0.0001 s. The benchmark tests were repeated up to ten

times and the averaged values were examined.

Fig. 3.24. Contribution of visualization procedures of the local

Voronoi-based method to the total benchmark time

Figure 3.24 shows the contribution of the execution time of the various

visualization procedures used in performing the 3D benchmark of local Voronoi–

based method on personal computer C1. The columns A_F, B_F and C_F

represent visualization of the first time step of the simulations of the data sets A,

B and C, respectively. The columns A_M, B_M and C_M represent visualization

of the middle time step of the simulations of the data sets A, B and C, respectively.

The columns A_L, B_L and C_L represent visualization of the last time step,

containing a large number of broken connections of the data sets A, B and C,

respectively. The chart compares the contribution of the data reader (Reader),

preparation of data structures (Prepare), generation of Voronoi decomposition

(Voronoi) and rendering (Render) to the total visualization time.

In the visualization of the first time step, the reader took 7.1% of the total

benchmark time. In the case of other time steps, the time percentage for data

reading did not exceed 8.6% of the total time. The preparation of data structures

also took a considerable time in the case of the first time step, but later it did not

exceed 16.5%. The time consumed by rendering, made 27.4%, 26.9% and 26.1%

of the execution time in visualizing the last time step on the data sets A, B and C,

78 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

respectively. In the case of the last time step, the method took the largest amount

of time, because it generated the largest local decomposition. The generation of

the local Voronoi decompositions took 52.2%, 49.7% and 48.7% of the execution

time of the data sets A, B and C, respectively.

Fig. 3.25. Contribution of different visualization procedures of the cell cut-based method

and the cell centre-based method to the total execution time

Figure 3.25 shows the contribution of the execution time of various
procedures used in visualizing the data set A of a 3D benchmark on personal
computer C1. The columns CU_F and CC_F present the visualization of the first
time step of the simulations by using the cell cut-based method and the cell centre-
based method, respectively, while the columns CU_L and CC_L present the
visualization of the last time step. The columns CU_M and CC_M present the
visualization of the time step requiring the longest execution time. Usually, it
happens during the time step, when quickly propagating cracks occupy the largest
new area and local decomposition needs the largest augmentation. The chart
compares the contribution of the data reader (Reader), preparation of data
structures (Prepare), generation of cells from the lattice connections (Cells),
generation of crack surfaces (Alg) and the rendering time (Render) with respect
to the total visualization time.

Data reading took nearly equal time intervals, which did not exceed 0.015 s.

In the case of the time step requiring the maximum amount of computations, the

reader took up to 13.6% of the total benchmark time. The preparation of data

structures took more than 60% of the execution time, visualizing the first time

step, but in other presented cases, it did not exceed 8.0% of the total benchmark

time. On the contrary, the longest rendering time was measured by visualizing the

last time step of the computations, because of the largest number of graphical

primitives employed to represent the developed cracks. In general, the cell cut–

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 79

based method produced a large number of disjoint vertices or lines, which were
rendered more quickly than the faces generated by the cell centre-based extraction
method. In the case of the data set A, the measured difference was equal to 3.6%
of the total benchmark time. In the case of other data sets, the obtained difference
did not exceed 7.6% of the total visualization time. In the case of the maximum
visualization load, the generation of cells from the lattice connections took
approximately 0.074 s, which makes 68.7% and 51.0% of the total visualization
time measured by the cell cut-based method and the cell centre-based method,
respectively. It can be easily observed that the generation of the local cell-based
decomposition consumed the largest amount of time, when it was necessary to
cover the significant percentage of space by cells. It is obvious that the cell cut-
based method generated the crack surfaces faster than the cell centre-based
method, because it produced additional local decomposition based on the
geometrical cell centre. The observed difference made 33.1% of the total
execution time in the case of the last time step, when the geometric cell centre-
based decomposition was the largest. It is worth noting that the geometry of this
decomposition depends on the positions of particles, which change in time.
Therefore, it is hardly possible to use the effective augmentation strategy in this
case.

Figure 3.26 presents the quantitative comparison of the execution time of
local Voronoi-based method including visual validation and global Voronoi
diagrams on personal computer C1. Figure 3.26a shows the dependency of the
execution time on the visualized time step of the 2D benchmark, Figure 3.26b
presents this dependency for the 3D benchmark. The curves LV_A, LV_B and
LV_C represent the execution time of the local Voronoi-based method of data
sets A, B and C, while the curve GV represent the generation of the global
Voronoi diagrams. Voro++ library (Rycroft 2009) was employed to generate the
global Voronoi diagrams for the sake of quantitative comparison. The obtained
results show that the execution time of the local Voronoi-based method was
performed much faster than the construction of the global Voronoi diagrams. In
spite of long execution time required for model validation, the local Voronoi–
based method took 25.0%, 20.4% and 19.1% of the time required for generating
the global Voronoi diagram. In the case of 2D benchmark, containing, the local
Voronoi-based method took only 7.8% of time consumed by the global Voronoi
diagrams.

The time consumed for generating the local decompositions depends on the
number of the broken lattice connections and the area of the fractured region.
Figure 3.27 demonstrates the time variation of the number of broken connections
and the number of faces of the generated local decompositions. The curves
Broken_A, Broken_B and Broken_C represent the number of broken connections
in the case of data sets A, B and C, respectively. The curves Faces_A, Faces_B

80 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

and Faces_C represent the number of generated faces in the case of data sets A, B
and C, respectively. Rapid changes in the number of broken connections can be
observed between the time steps 80 and 110 in the case of all data sets. A
considerable increase in the generated faces of the Voronoi cells was also
observed in this interval. In 2D case, the faces of the local Voronoi decomposition
had 16.1% of the faces of the global Voronoi diagram covering the whole solution
domain. The generated faces of the local decompositions had 20.2%, 17.4% and
15.5% of the faces of the global Voronoi diagram in the case of the 3D data sets
A, B and C, respectively.

 a) b)

Fig. 3.26. Time consumed by local Voronoi-based method and the global
Voronoi diagrams: a) in 2D, b) in 3D

Fig. 3.27. The number of broken connections and

faces of the generated local decompositions

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 81

Figure 3.28 shows the quantitative comparison of the time consumed by three
different visualization methods on two personal computers named C1 and C2.
Figures 3.28a, 3.28b and 3.28c presents the visualization time of data sets A, B
and C, respectively. The curves including acronyms LV, CC and CU represent the
extraction of crack surfaces performed by the local Voronoi-based method, the
cell centre-based method and the cell cut-based method, respectively. The curves
including acronyms C1 and C2 represents the execution time measured on
computers C1 and C2, respectively.

In the first time step, high values were obtained, because of the time
consuming preparation of data structures (Figures 3.24 and 3.25). The main
increase in the consumed time could be observed when approaching the 100-th
time step, because of the fastest increase in the number of the broken connections
and the relevant fractured regions, which had to be covered by local
decompositions. In the case of the cell centre-based method and the cell cut–based
method, the effective augmentation strategy caused the following decrease in the
growth ratio leading to the reduction of the consumed time, because the largest
fractured regions had been already covered by the generated decompositions. In
the case of the local Voronoi-based method, the execution time remained at the
same level, when fractured regions stopped to grow. Thus, the Voronoi based-
method required the longest execution time.

It can be easily observed that the cell cut-based method helps to extract the
crack surfaces much faster than the cell centre-based method. At the end of the
visualized time interval, the surface extraction performed by the cell cut-based
method took 46.2%, 39.5% and 41.8% of the time consumed by the cell centre–
based extraction of cracks in the case of data sets A, B and C, respectively. It is
worth noting that the visualization workload strongly depends on the size and
distribution of the fractured regions as well as on the percentage of the broken
connections in the fractured regions. In the opposite, the employed different
computes did not have the large influence to visualization time. For example, at
the end of computational interval of the data set A the difference equal to 12.80%,
8.24% and 6.07% of the total execution time was observed on different hardware
in the case of the local Voronoi-based method, the cell centre-based method and
the cell cut-based method, respectively.

Figure 3.29 presents the obtained dependence of execution time of
visualization on the number of broken connections. Figures 3.29a, 3.29b and 3.29c
presents the visualization time of data sets A, B and C, respectively. The curves
LV, CC and CU represent the extraction of crack surfaces performed by the local
Voronoi-based method, the cell centre-based method and the cell cut–based
method, respectively. In the case of the local Voronoi-based method, almost linear
growth rates can be observed until the number of broken connections reached
some threshold value, which was different for the investigated data sets. This

82 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Fig. 3.28. Time consumed by using different visualization methods:

a) data set A, b) data set B, c) data set C

a)

b)

c)

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 83

Fig. 3.29. The dependence of the execution time on the number of broken connections:

a) data set A, b) data set B, c) data set C

a)

b)

c)

84 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

Fig. 3.30. Accumulated execution time consumed by the different visualization methods

value was related to the development of the fractured region covered by the local
decomposition. The effective augmentation strategy caused the reduction of
visualization time despite the increasing number of broken connections and the
growing fractured region in the case of the cell centre-based method and the cell
cut-based method.

Figure 3.30 shows the execution time consumed by the different surface
extraction methods for visualization of all time steps of data sets A, B and C on
different computers. The columns LV, CC and CU represent visualization of
cracks performed by the local Voronoi-based method, the cell centre-based
method and the cell cut-based method, respectively. The columns including
acronyms C1 and C2 represent the execution time measured on computers C1 and
C2, respectively. The columns including acronyms A, B and C present the
visualization time of data sets A, B and C, respectively. It can be observed that
the cell cut-based method extracted the crack surfaces much faster than the other
methods. The local Voronoi-based method needed the longest execution time,
because it was hardly possible to implement the effective augmentation strategy
into its structure. The surface extraction performed by the cell cut-based method
took 23.4%, 20.2% and 22.2% of the time consumed by the local Voronoi-based
extraction of cracks in the case of data sets A, B and C, respectively. The
visualization performed by the cell centre-based method took 47.2%, 43.8% and
46.4% of the time consumed by the local Voronoi-based visualization in the case
of data sets A, B and C, respectively. The largest difference in hardware
performance equal to 12.35% was observed in the case of the local Voronoi–based
method, because the longest execution time. The performance difference

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 85

measured on different computers was equal to 9.19% and 7.55% in the case of the
cell centre- and cell cut-based methods.

3.3.3. Accuracy

Accurate visualization of crack surfaces is still a challenging problem,
particularly, in the regions of the highly deformed lattice. Particles have more
freedom to move and to deform the lattice in the regions containing large numbers
of the broken connections. It is worth mentioning that the most of computational
models also have limitations in these complex cases. The surface extraction
methods based on the Voronoi diagrams cannot be applied in such regions,
because of increasing inconsistency between the lattice connections and the faces
of the generated Voronoi decompositions.

Fig. 3.31. Time variation of the number of inconsistencies between

the lattice and cells of Voronoi decomposition

In general, the crack surfaces can cut particles, reducing the accuracy of the
applied surface extraction methods. Faces of local Voronoi decompositions are
used as extended contact surfaces of neighbouring particles. Thus, the Voronoi–
based method accurately defines crack surfaces, because faces are located
between neighbouring particles (Figure 2.8). The cell centre-based method for
extracting the crack surfaces was developed as an alternative to the cell cut–based
method to obtain the crack surfaces more accurately by taking into account the
spherical shape of the particles. This method can be applied in the regions of the
highly deformed lattice, where the Voronoi-based method cannot be applied.

86 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

However, the faces of cell centre-based decomposition cut particles in the regions
of deformed lattice (Figure 2.12).

Fig. 3.32. Time variation of the total depth of the cuts made

by the extracted crack surfaces in particles

The penetration depth of the particular cut can serve as a good accuracy
measure. Figure 3.32 shows time variation of the total depth of the cuts produced
by the extracted crack surfaces. The curves CU_A, CU_B and CU_C represent
the total depth resulting from the application of the cell cut-based method to the
data sets A, B, and C, respectively. The curves CC_A, CC_B and CC_C represent
the cell centre-based method applied to the data sets A, B, and C, respectively.
The total depth of the cuts resulting from the application of the cell centre-based
method made 12.6%, 14.1% and 8.9% of the depth produced by the cell cut-based
method in the case of the data sets A, B and C, respectively. The largest difference
as well as the largest total depth value could be observed in the case of the data
set A, which had the largest number of the broken lattice connections. The
extracted crack surfaces most deeply penetrated the particles in the highly
fractured regions covered by the highly deformed lattices.

3.4. Conclusions of Chapter 3

1. The grid visualization e-service VizLitG, employing GLSL shaders and
partial data set transfer from SE, was able to efficiently perform remote
visualization of the considered discrete particle systems.

3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 87

2. The applied GLSL particle shaders reduced the visualization time by an order
of magnitude, while the full data set transfer from SE consumed more than
50% of the total benchmark time.

3. The performance of different transfer protocols and software was investigated
in order to present the quantitative comparison of time consumed by the data
transfer. The performance of JAX-WS Runtime was the best for the
considered data sets.

4. Employing partial data set transfer, the communication time of JAX-WS
Runtime was reduced by up to 7.6 times and became almost negligible.

5. High parallel speed-up of visualization equal to 14.8 is achieved on 16
working nodes of grid testbed by using CPU rendering. Lower speed-up equal
to 13.5 is measured performing visualization based on GPU rendering on 16
working nodes. However, execution time of visualization employing GPU is
significantly shorter than that of using CPU rendering.

6. In the 3D case, the number of the broken connections made 6.4%, 4.9% and
4.3% of all lattice connections, while the local Voronoi decompositions had
20.2%, 17.4% and 15.5% of the faces of the global Voronoi diagram in the
case of the data sets A, B and C, respectively.

7. The quantitative comparison showed that the generation of the local Voronoi
decompositions including model validation took 25.0%, 20.4% and 19.1% of
the time consumed by the global Voronoi filter in the case of the data sets A,
B and C, respectively.

8. The surface extraction performed by the cell cut-based method took 23.4%,
20.2% and 22.2% of the time consumed by the local Voronoi-based extraction
of cracks in the case of data sets A, B and C, respectively.

9. The surface extraction performed by the cell centre-based method took 47.3%,
43.8% and 46.4% of the time consumed by the local Voronoi-based extraction
in the case of data sets A, B and C, respectively.

10. The number of inconsistent connections makes 0.12%, 0.26% and 0.10% of
the total amount of connections in the case of the data sets A, B and C,
respectively.

11. The total depth of the cuts resulting from the application of the cell centre–
based method made 12.6%, 14.1% and 8.9% of the depth produced by the cell
cut-based method in the case of the data sets A, B and C, respectively.

88 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS…

89

General Conclusions

1. Literature review and initial analysis show that data transfer between remote
parts of distributed visualization systems and infrastructures consumes
significant part of visualization time, which is very difficult to reduce.
Moreover, visualization of crack surfaces, propagating in discrete particle
systems, presents great challengers to researchers because of disjoint pieces
of surfaces and unavailability of a suitable scalar field defining the geometry
of cracks.

2. The quantitative comparison of the performance of the developed service with
other data transferring software available on grid revealed that the
performance of JAX-WS Runtime was the best for the considered data sets.
Moreover, the developed partial data set transfer reduced the transfering data
size, therefore, the communication time was diminished up to 7.6 times in
comparison with full dataset transfer.

3. The quantitative comparison showed that the developed software, based on
the local decompositions, significantly outperformed the code based on the
global Voronoi diagrams. The generation of the local Voronoi decomposition
took from 19.1% to 25.0% of the time consumed by the global Voronoi filter,
respectively.

4. The quantitative comparison of visualization methods revealed that the cell
cut-based method was capable of extracting the crack surfaces much faster

90 GENERAL CONCLUSIONS

than the other methods. The surface extraction performed by the cell cut–
based method took up to 23.4% of the time consumed by the method based
on the geometrical cell centre. The observed difference in time consumed by
the local Voronoi decomposition and the decomposition based on the cell
centre was up to 47.3% of the total benchmark time.

5. The local Voronoi decompositions do not cut particles revealing the highest
accuracy. The accuracy of the cell centre-based surface extraction is
significantly higher than that of the cell cut-based method. The total depth of
the cuts resulting from the application of the cell centre-based surface
extraction did not exceed 14.1% of the depth obtained, when the cell cut–
based method was used.

91

References

Amenta, N., Choi, S., Kolluri, R. K. 2001. The power crust. In Proceedings of the
sixth ACM symposium on Solid modeling and applications – SMA ’01 (pp. 249–
266). New York, USA: ACM Press.

Aurenhammer, F. 1991. Voronoi diagrams---a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345–405.

Ayachit, U. 2015. The ParaView Guide: A Parallel Visualization Application.
Kitware, Incorporated.

Barauskas, R., Kačianauskas, R., Belevičius, R. 2004. Baigtinių elementų metodo
pagrindai. Vilnius: Technika.

Bertin, J. 2010. Semiology of Graphics: Diagrams (1 edition.). Esri Press.

Bethel, W., Siegerist, C., Shalf, J., Shetty, P. 2003. VisPortal: Deploying grid-
enabled visualization tools through a web-portal interface. In Proceedings of
WACE 2003.

Bethel, W., Tierney, B., Lee, J., Gunter, D., Lau, S. 2000. Using High-Speed
WANs and Network Data Caches to Enable Remote and Distributed
Visualization. ACM/IEEE SC 2000 Conference (SC’00).

Biddiscombe, J., Graham, D., Pierre, M. 2008. Visualization and analysis of SPH
data. ERCOFTAC Bulletin, 76:9–12.

92 REFERENCES

Brodlie, K., Walton, J., Wood, J. 2003. GViz - Visualization Middleware for e-
Science. In Proceeding VIS “03 Proceedings of the 14th IEEE Visualization 2003
(VIS”03) (p. 82). IEEE Computer Society.

Brose, G., Vogel, A., Duddy, K. 2001. Java programming with Cobra: advanced
techniques for building distributed applications. John Wiley & Sons Inc.

Brune, S. B. and S. A. and M. A. and J. B. and P., Gropp, and K. B. and V. E. and
W., Knepley, and D. K. and M., Smith, and L. C. M. and K. R. and B., Zhang, and
H. 2014. PETSc Users Manual.

CEI. 2009. EnSight. https://www.ceisoftware.com/. Accessed 9 February 2015

Cleary, P. W. 2009. Industrial particle flow modelling using discrete element
method. Engineering Computations, 26(6):698–743.

Cooper, C. 2002. Visual Beans project.

Cundall, P. A., Strack, O. D. L. 1979. A discrete numerical model for granular
assemblies. Géotechnique, 29(1):47–65.

Cusatis, G., Bažant, Z. P., Cedolin, L. 2006. Confinement-shear lattice CSL model
for fracture propagation in concrete. Computer Methods in Applied Mechanics
and Engineering, 195(52):7154–7171.

Dey, T. K., Goswami, S. 2003. Tight Cocone: A Water-tight Surface
Reconstructor. Journal of Computing and Information Science in Engineering,
3(4):302.

EGEE. 2009. GLite. http://glite.web.cern.ch/glite/. Accessed 9 February 2015

Englander, R. 2002. SOAP. O’Reilly Media.

Evjen, B., Sharkey, K., Thangarathinam, T., Kay, M., Vernet, A., Ferguson, S.
2007. Professional XML. Wrox.

Favre, J. M., Valle, M. 2005. AVS and AVS/Express. In Visualization Handbook
(pp. 655–672).

Federl, P., Prusinkiewicz, P. 2004. Finite Element Model of Fracture Formation
on Growing Surfaces. In M. Bubak, G. van Albada, P. Sloot, & J. Dongarra (Eds.),
Computational Science - ICCS 2004 (Vol. 3037, pp. 138–145). Springer Berlin /
Heidelberg.

Fleishman, S., Cohen-Or, D., Silva, C. T. 2005. Robust moving least-squares
fitting with sharp features. ACM Transactions on Graphics, 24(3):544.

Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D. 2011. An overview of
the HDF5 technology suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases - AD ’11 (pp. 36–47). New
York, USA: ACM Press.

REFERENCES 93

Foster, I. 2005. Globus Toolkit Version 4: Software for Service-Oriented Systems.
In Network and Parallel Computing (pp. 2–13). Springer Berlin Heidelberg.

Foster, I., Kesselman, C., Tuecke, S. 2001. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Journal International Journal of High
Performance Computing Applications, 15(3):200 – 222.

Foulser, D. 1995. IRIS Explorer. ACM SIGGRAPH Computer Graphics,
29(2):13–16.

Gobron, S., Chiba, N. 2001. Crack pattern simulation based on 3D surface cellular
automata. The Visual Computer, 17(5):287–309.

Goda, T. J., Ebert, F. 2005. Three-dimensional discrete element simulations in
hoppers and silos. Powder Technology, 158(1-3):58–68.

Goncalves, A. 2009. Beginning JavaTM EE 6 Platform with GlassFishTM 3: From
Novice to Professional. Apress.

Gropp, W., Lusk, E., Doss, N., Skjellum, A. 1996. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Computing, 22(6):789–828.

Haimes, R. 1994. PV3 - A distributed system for large-scale unsteady CFD
visualization. In 32nd Aerospace Sciences Meeting and Exhibit (pp. 94–103).
Reston, Virigina.

Han, K., Feng, Y. T., Owen, D. R. J. 2007. Performance comparisons of tree-
based and cell-based contact detection algorithms. Engineering Computations,
24(2):165–181.

Hansen, C. D., Johnson, C. R. 2005. The Visualization Handbook. Academic
Press.

Hibbard, W., Rueden, C., Emmerson, S., Rink, T., Glowacki, D., Whittaker, T.,
Murray, D., Fulker, D., Anderson, J. 2005. Java distributed components for
numerical visualization in VisAD. Communications of the ACM, 48(3):98–104.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D.,
Klosowski, J. T. 2002. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Transactions on Graphics, 21(3):1–10.

Iben, H. N., O’Brien, J. F. 2009. Generating surface crack patterns. Graphical
Models, 71(6):198–208.

JCraft. 2014. JSch - Java Secure Channel. http://www.jcraft.com/jsch/

Jendrock, E., Evans, I., Gollapudi, D., Haase, K., Srivathsa, C. 2010. The Java EE
6 Tutorial: Basic Concepts. Addison-Wesley Professional.

Kačeniauskas, A., Kačianauskas, R., Maknickas, A., Markauskas, D. 2011.
Computation and visualization of discrete particle systems on gLite-based grid.
Advances in Engineering Software, 42(5):237–246.

94 REFERENCES

Kačeniauskas, A., Pacevič, R., Bugajev, A., Katkevičius, T. 2010. Efficient
visualization by using ParaView software on BalticGrid. Information Technology
and Control, 39(2):108–115.

Kaci, M., Méndez Muñoz, V., Amorós Vicente, G. 2010. A Decentralized
Deployment Strategy and Performance Evaluation of LCG File Catalog Service.
Journal of Grid Computing, 9(3):345–354.

Kačianauskas, R., Maknickas, A., Kačeniauskas, A., Markauskas, D., Balevičius,
R. 2010. Parallel discrete element simulation of poly-dispersed granular material.
Advances in Engineering Software, 41(1):52–63.

Kadashevich, I., Stoyan, D. 2008. A beam-network model for autoclaved aerated
concrete and its use for the investigation of relationships between Young’s
modulus and microstructure. Computational Materials Science, 43(2):293–300.

Kalen, M. 2009. Java Web Services: Up and Running. O’Reilly Media.

Karihaloo, B. L., Shao, P. F., Xiao, Q. Z. 2003. Lattice modelling of the failure of
particle composites. Engineering Fracture Mechanics, 70(17):2385–2406.

Khanal, M., Tomas, J. 2009. Oblique impact simulations of high strength
agglomerates. Advanced Powder Technology, 20(2):150–157.

Kitsunezaki, S. 2011. Crack growth in drying paste. Advanced Powder
Technology, 22(3):311–318.

Kitware. 2010. VTK User’s Guide. Kitware Inc.

Klein, R., Langetepe, E., Nilforoushan, Z. 2009. Abstract Voronoi diagrams
revisited. Computational Geometry, 42(9):885–902.

Kolluri, R. 2008. Provably good moving least squares. ACM Transactions on
Algorithms, 4(2):1–25.

Kozicki, J., Tejchman, J. 2008. Modelling of fracture process in concrete using a
novel lattice model. Granular Matter, 10(5):377–388.

Krantz, S. G., McCarthy, J. E., Parks, H. R. 2006. Geometric characterizations of
centroids of simplices. Journal of Mathematical Analysis and Applications,
316(1):87–109.

Kranzlmuller, D., Kurka, G., Heinzlreiter, P., Volkert, J. 2002. Optimizations in
the grid visualization kernel. In Proceedings 16th International Parallel and
Distributed Processing Symposium (p. 237). Washington, DC, USA: IEEE
Computing society.

Kruggel, H., Rickelt, S., Wirtz, Sw., Scherer, V. 2009. A Numerical Study on the
Sensitivity of the Discrete Element Method for Hopper Discharge. Journal of
Pressure Vessel Technology, 131(3):111–121.

Labatut, P., Pons, J.-P., Keriven, R. 2009. Robust and Efficient Surface
Reconstruction From Range Data. Computer Graphics Forum, 28(8):2275–2290.

REFERENCES 95

Laszewski, G., Foster, I., Gawor, J., Lane, P. 2001. A Java commodity grid kit.
Concurrency and Computation: Practice and Experience, 13(8–9):645–662.

Li, M., Baker, M. 2005. The Grid: Core Technologies. Wiley.

Lilliu, G., van Mier, J. G. . 2003. 3D lattice type fracture model for concrete.
Engineering Fracture Mechanics, 70(7-8):927–941.

Liu, J. X., Deng, S. C., Liang, N. G. 2007. Comparison of the quasi-static method
and the dynamic method for simulating fracture processes in concrete.
Computational Mechanics, 41(5):647–660.

Lu, L., Lévy, B., Wang, W. 2012. Centroidal Voronoi Tessellation of Line
Segments and Graphs. Computer Graphics Forum, 31(2pt4):775–784.

Marinilli, M. 2001. Java Deployment with JNLP and WebStart. Sams Publishing.

Markauskas, D., Kačianauskas, R., Džiugys, A., Navakas, R. 2009. Investigation
of adequacy of multi-sphere approximation of elliptical particles for DEM
simulations. Granular Matter, 12(1):107–123.

Matsukura, R., Koyamada, K., Tan, Y., Karube, Y., Moriya, M. 2004. VizGrid:
Collaborative visualization grid environment for natural interaction between
remote researchers. FUJITSU Scientific and technical journal, 40(2):205–216.

Mayer, A., McGough, S., Furmento, N. 2005. ICENI: an integrated Grid
middleware to support e-Science. Component Models and Systems for Grid
Applications, 109–124.

Mohammad, H., Ladan, T. 2012. Cloud Computing Uncovered: A Research
Landscape. Advances in Computers, 86:41–85.

Moreland, K., Wylie, B., Pavlakos, C. 2001. Sort-last parallel rendering for
viewing extremely large data sets on tile displays. In PVG ’01 Proceedings of the
IEEE 2001 symposium on parallel and large-data visualization and graphics (pp.
85–92). IEEE.

Nagella, S., Sastry, L. 2005. Visualization on the UK National Grid Service using
GAPtk, a generic toolkit. In Proceedings of the UK e-Science All Hands
Conference 2005 (pp. 1–4). Engineering and Physical Sciences Research Council.

Naregi. 2005. Naregi Project. http://www.naregi.org/. Accessed 10 February 2015

Nocaj, A., Brandes, U. 2012. Computing Voronoi Treemaps: Faster, Simpler, and
Resolution-independent. Computer Graphics Forum, 31(3pt1):855–864.

Novotny, J. 2002. The Grid Portal Development Kit. Concurrency and
Computation: Practice and Experience, 14(13-15):1129–1144.

Nvidia. 2014. NVIDIA GRID vGPU. http://www.nvidia.com/object/virtual-
gpus.html. Accessed 9 March 2015

96 REFERENCES

Ostoja-Starzewski, M. 2002. Lattice models in micromechanics. Applied
Mechanics Reviews, 55(1):35.

Parisi, D. R., Masson, S., Martinez, J. 2004. Partitioned Distinct Element Method
Simulation of Granular Flow within Industrial Silos. Journal of Engineering
Mechanics, 130(7):771–779.

Parker, S., Johnson, C. 1995. SCIRun: A Scientific Programming Environment
for Computational Steering, 52.

Polak, M., Kranzlmüller, D. 2008. Interactive videostreaming visualization on
grids. Future Generation Computer Systems, 24(1):39–45.

Radeke, C. A., Glasser, B. J., Khinast, J. G. 2010. Large-scale powder mixer
simulations using massively parallel GPU architectures. Chemical Engineering
Science, 65(24):6435–6442.

RealityGrid. 2005. RealityGrid Project. http://www.realitygrid.org/. Accessed 10
February 2015

Robert A. Van Engelen, K. A. G. 2002. The gSOAP Toolkit for Web Services and
Peer-To-Peer Computing Networks. In CCGRID ’02 Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid (p. 128).
IEEE Computer Society.

Rojek, J., Oñate, E., Labra, C., Kargl, H. 2011. Discrete element simulation of
rock cutting. International Journal of Rock Mechanics and Mining Sciences,
48(6):996–1010.

Rosenthal, P., Linsen, L. 2008. Smooth surface extraction from unstructured
point-based volume data using PDEs. IEEE transactions on visualization and
computer graphics, 14(6):1531–1546.

Rosenthal, P., Linsen, L. 2009. Enclosing Surfaces for Point Clusters Using 3D
Discrete Voronoi Diagrams. Computer Graphics Forum, 28(3):999–1006.

Russell, M., Wehrens, O., Novotny, J. 2004. GridSphere: an advanced portal
framework. In Proceedings. 30th Euromicro Conference, 2004. (pp. 412–419).
IEEE.

Rycroft, C. H. 2009. Voro ++ : a three-dimensional Voronoi cell library in C ++.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(4):1–16.

Schmidt, D. C. 2009. The Adaptive Communication Environment (ACE).
http://www.cs.wustl.edu/~schmidt/ACE.html. Accessed 15 April 2015

Schroeder, W., Martin, K., Lorensen, B. 2006. The visualization toolkit : an
object-oriented approach to 3D graphics. Kitware Inc.

SGI. 2009. Remote visualization software VizServer. https://www.sgi.com/
productssoftware/vizserver/. Accessed 10 February 2015

REFERENCES 97

Shreiner, D., Sellers, G., Kessenich, J., Bill, L.-K. 2013. OpenGL Programming
Guide. Addison-Wesley Professional.

Stalling, D., Westerhoff, M., Hege, H.-C. 2005. Amira: a highly interactive system
for visual data analysis. In Visualization Handbook (pp. 749–767).

Stanton, J., Newhouse, S., Darlington, J. 2002. Implementing a Scientific
Visualisation Capability Within a Grid Enabled Component Framework. In
Proceedings of 8th International Euro-Par Conference, Lecture Notes in
Computer Science (Vol. 2400, pp. 885–888). Paderborn, Germany: Springer
Berlin Heidelberg.

Tan, Y., Yang, D., Sheng, Y. 2009. Discrete element method (DEM) modeling of
fracture and damage in the machining process of polycrystalline SiC. Journal of
the European Ceramic Society, 29(6):1029–1037.

Thomas, M. W., Schnetter, E. 2010. Simulation Factory: Taming Application
Configuration and Workflow on High-End Resources. CoRR, 1:10.

Thompson, D., Braun, J., Ford, R. 2000. OpenDX: Paths to Visualization. VIS.
Inc., Missoula, MT.

Tirumala, A., Qin, F., Dugan, J., Ferguson, J., Gibbs, K. 2006. Iperf.
http://iperf.fr/. Accessed 9 January 2015

Uematsu, K. 2014. Processing defects in ceramic powders and powder compacts.
Advanced Powder Technology, 25(1):154–162.

Vadluga, V., Kačianauskas, R. 2009. Lattice-based six-spring discrete element
model for discretisation problems of 2D isotropic and anisotropic solids.
Mechanika, 76(2):11–19.

Valette, G., Prévost, S., Lucas, L., Léonard, J. 2006. SoDA project: A simulation
of soil surface degradation by rainfall. Computers and Graphics, 30(4):494–506.

Valette, G., Prévost, S., Lucas, L., Léonard, J. 2008. A Dynamic Model of Cracks
Development Based on a 3D Discrete Shrinkage Volume Propagation. Computer
Graphics Forum, 27(1):47–62.

Walther, J. H., Sbalzarini, I. F. 2009. Large-scale parallel discrete element
simulations of granular flow. Engineering Computations, 26(6):688–697.

Wernecke, J. 1994. The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor. Addison-Wesley Professional.

Wood, J., Brodlie, K. 2007. Computational steering in visualization dataflow
environments. In MODSIM 2007: International Congress on Modelling and
Simulation (pp. 3077 – 3083). Modelling & Simulation Soc Australia & New
Zealand Inc.

Wright, H., Brodie, K., Wood, J. 1997. Collaborative visualization. In
Visualization ’97., Proceedings (pp. 253–259). IEEE Computer Society.

98 REFERENCES

Xvid. 2009. XVid codec 1.1.3. https://www.xvid.com/. Accessed 10 March 2015

Yegulalp, S. 2013. Amazon ushers in graphics as a service. InfoWorld.
http://www.infoworld.com/article/2612788/amazon-web-services/amazon-
ushers-in-graphics-as-a-service.html. Accessed 9 March 2015

Zang, M. Y., Lei, Z., Wang, S. F. 2007. Investigation of impact fracture behavior
of automobile laminated glass by 3D discrete element method. Computational
Mechanics, 41(1):73–83.

Zhou, F., Molinar, J.-F., Shioya, T. 2005. A rate-dependent cohesive model for
simulating dynamic crack propagation in brittle materials. Engineering Fracture
Mechanics, 72(9):1383–1410.

Zhou, K., Hou, Q., Wang, R., Guo, B. 2008. Real-time KD-tree construction on
graphics hardware. ACM Transactions on Graphics, 27(5):1.

Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B. 2007. Discrete particle simulation
of particulate systems: Theoretical developments. Chemical Engineering Science,
62(13):3378–3396.

Zhu, H. P., Zhou, Z. Y., Yang, R. Y., Yu, A. B. 2008. Discrete particle simulation
of particulate systems: A review of major applications and findings. Chemical
Engineering Science, 63(23):5728–5770.

Zukowski, J. 2005. The Definitive Guide to Java Swing. Apress.

99

A List of Scientific Publications by

the Author on the Topic of the
Dissertation

Papers in the Reviewed Scientific Journals

Pacevič, R.; Kačeniauskas, A.; Markauskas, D. 2015. Visualization of cracks by
using the local Voronoi decompositions and distributed software. Advances in
engineering software 84:85–94, ISSN 0965-9978. (THOMSON JCR 2013:
1.422), doi:10.1016/j.advengsoft.2015.02.004.

Pacevič, R.; Kačeniauskas, A.; Markauskas, D.; Radvilavičius, L.; Kutas, R. 2013.
Cell attribute-based algorithm for crack visualization. Information technology and
control 42(3):253–259. ISSN 1392–124X. (THOMSON JCR 2013: 0.813),
doi:10.5755/j01.itc.42.3.2575.

Pacevič, R.; Kačeniauskas, A. 2011. VizLitG. Grid visualization e-service
enabling partial data set transfer from storage elements of gLite-based grid
infrastructure. Journal of Grid Computing 9(4):573−589, ISSN 1570–7873.
(THOMSON JCR 2011: 1.310), doi: 10.1007/s10723-011-9193-0.

100 A LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON TOPIC…

Other Papers

Pacevič, R., Kačeniauskas, A. 2015. Deployment of visualization software and
GPU rendering on an OpenStack Cloud Infrastructure. Proceedings of the Fourth
International Conference on Parallel, Distributed, Grid and Cloud Computing for
Engineering. Civil-Comp Press, Vol. 107, 1–11, doi:10.4203/ccp.107.19.

Pacevič, R., Kačeniauskas, A., Markauskas, D. 2013. Analysis of crack geometry
using distributed visualization software. Proceedings of the Third International
Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering,
Civil-Comp Press, Vol. 101, 1–13, doi:10.4203/ccp.101.51.

Pacevič, R.; Kačeniauskas, A. 2012. Influence of network communications to the
final performance of grid visualization software. Communications in Computer
and Information Science: Information and Software Technologies, Springer-
Verlag Berlin Heidelberg, vol. 319, 312–323, doi: 10.1007/978-3-642-33308-
8_26.

101

Summary in Lithuanian

Įvadas

Problemos formulavimas

Vizualizavimo priemonės vaidina svarbų vaidmenį mokslinės analizės bei matematinio
modeliavimo cikle, kurį sudaro duomenų paruošimas, skaitinis uždavinio sprendimas,
grafinė rezultatų analizė ir tolesnis valdančiųjų parametrų koregavimas (Hansen et al.
2005). Tiek diskrečiųjų dalelių sistemų (Cundall et al. 1979) moksliniai skaičiavimai, tiek
ir modernūs fiziniai eksperimentai generuoja didelius duomenų kiekius, kuriuos analizuoti
bei suvokti tampa vis sunkiau. Gautų rezultatų vizualizavimas tampa vis svarbesniu,
siekiant išanalizuoti sudėtingas priklausomybes, greitai suvokti rezultatus ir priimti
teisingus sprendimus aukštųjų technologijų kūrimo procese. Dideli nagrinėjamų duomenų
kiekiai ir nutolusi jų dislokacija kelia vis naujus iššūkius vizualizavimo sistemų kūrėjams.
Išskirstytosios vizualizavimo sistemos atlieka intensyvius skaičiavimus ir teikiamas
paslaugas skirtinguose kompiuteriuose, kad pagerintų efektyvumą. Daugelis aktualių
uždavinių sprendžiami „Rocks“ kompiuterių klasteriuose ir „glite/EMI“ išteklių tinklo
infrastruktūroje. Išskirstytieji išteklių tinklo (GRID) resursai suteikia naudotojams
didžiules galimybes, bet kartu iškelia ir sudėtingus uždavinius. Analizuojant rezultatus
reikia išskirstytosios vizualizavimo programinės įrangos, kuri greitai atlieka vizua-
lizavimo užduotis ir efektyviai tvarko duomenis moderniose informacinių technologijų
(IT) infrastruktūrose.

Diskrečiųjų dalelių sistemų (Cundall et al. 1979) modeliavimas yra pagrįstas dalelių
pozicijomis ir tarp jų veikiančiomis jėgomis. 1D jungtys tarp dalelių netinka pilnavertei

102 SUMMARY IN LITHUANIAN

interpoliacijai ir standartinėms vizualizavimo technikoms 3D erdvėje. Diskrečiosiomis
dalelėmis modeliuojant kontinuumo mikrostruktūrą, tarp dalelių nutrūkusios jungtys
identifikuoja mikropažeidimą (Rojek et al. 2011). Jungdamiesi tarpusavyje pažeidimai
gali sudaryti sudėtingos formos plyšius, kurių geometrija nėra žinoma. Vizualizuojant
plyšius, reikia sukonstruoti plyšių paviršių geometriją iš tarp dalelių nutrūkusių jungčių
topologijos ir kaimyninių dalelių pozicijų. Sudėtinga plyšių forma su skylėmis ir plyšį
apibrėžiančio skaliarinio lauko nebuvimas riboja standartinių paviršių ištraukimo metodų
taikymo galimybes. Jungčių tarp judančių dalelių topologija yra fiksuota, todėl negalima
tiesiogiai taikyti standartinių Voronojaus dekompozicijų (Aurenhammer 1991) ir
Delauney tinklų (Amenta et al. 2001) generavimo metodų.

Darbo aktualumas

Vizualizavimas tampa galingu įrankiu duomenims analizuoti ir rezultatams pateikti
įvairiose mokslo ir pramonės srityse (Hansen et al. 2005). Dideli duomenų kiekiai ir
sudėtingas vizualizavimo procesas reikalauja daug programinės įrangos kūrėjų pastangų
ir kompiuterinių resursų. Dideliems informacijos srautams analizuoti taikomos
vizualizavimo sistemos ir e. paslaugos, veikia moderniose IT infrastruktūrose:
kompiuterių klasteriuose, išteklių tinkluose (GRID) ir „debesyse“. Siekiant interaktyvių
vizualizavimo greičių, efektyvus duomenų perdavimas tarp išskirstytosios infrastruktūros
komponentų tampa ypatingai aktualiu.

Medžiagos pažeidimų evoliucijos analizė yra didelis iššūkis daugeliui tarpdalykinių
mokslų, tame tarpe ir vizualizavimui (Gobron et al. 2001). Plyšių susidarymas aktualus
statybinėse konstrukcijose, keramikoje (Uematsu 2014), džiovinimo procesuose
(Kitsunezaki 2011) ir miltelių aglomeratuose (Khanal et al. 2009). Tiksliai apibrėžta
plyšio paviršiaus geometrija palengvina vizualinę skaičiavimo rezultatų analizę ir irimo
procesų suvokimą. Plyšio geometriją sukonstravus iš grafinių primityvų, gautą paviršių
galima eksportuoti į inžinerinių uždavinių sprendimo programinę įrangą tolimesnei
makrostruktūrų analizei.

Tyrimų objektas

Darbo tyrimų objektas – diskrečiųjų dalelių sistemų, modeliuojamų diskrečiųjų elementų
metodu, vizualizavimas.

Darbo tikslas

Disertacijos tikslas – patobulinti diskrečiųjų dalelių sistemų, modeliuojamų diskrečiųjų
elementų metodu, vizualizavimo metodus bei padidinti metodų realizacijos išskirstytojoje
programinėje įrangoje greitaveiką.

Darbo uždaviniai

Darbo tikslui pasiekti ir mokslinei problemai spręsti darbe buvo iškelti šie uždaviniai:

1. Išanalizuoti diskrečiųjų dalelių sistemų išskirstytosios programinės įrangos
vizualizavimo technologijas bei plyšių, sklindančių dalelių sistemose konti-
nuumui modeliuoti, geometrijos konstravimo ir vizualizavimo metodus.

SUMMARY IN LITHUANIAN 103

2. Sukurti programinį modulį, leidžiantį sumažinti duomenų kiekį tarp išteklių
tinklo infrastruktūros komponentų ir ištirti jo realizacijos greitaveiką.

3. Sukurti naujus plyšių, sklindančių diskrečiųjų dalelių sistemose, paviršių
geometrijos konstravimo ir vizualizavimo metodus bei realizuoti pasiūlytus
metodus išskirstytojoje vizualizavimo programinėje įrangoje.

4. Ištirti ir palyginti sukurtų diskrečiųjų dalelių sistemų vizualizavimo metodų
realizacijų išskirstytosiose vizualizavimo sistemose greitaveiką.

5. Ištirti sukurtų diskrečiųjų dalelių sistemų vizualizavimo metodų tikslumą.

Tyrimų metodika

Darbe taikomi lyginamosios analizės ir literatūros analizės metodai, naudoti siekiant
išanalizuoti tyrimo objektą ir atlikti literatūros analizę. Kompiuterinės grafikos ir
skaičiuojamosios geometrijos žinios buvo taikomos plyšių vizualizavimo metodams kurti.
Eksperimentinio tyrimo metodai buvo taikomi vykdant sukurtų vizualizavimo metodų ir
prototipų efektyvumo bandymus.

Darbo mokslinis naujumas

Darbo mokslinis naujumas pagrįstas šiais rezultatais:

1. Sukurta originali dalinio duomenų rinkinio siuntimo iš „gLite/EMI“ išteklių
tinklo duomenų saugyklos realizacija, kuri interaktyvaus vizualizavimo metu
sumažina siunčiamų duomenų kiekį tarp resursų tinklo komponentų.

2. Sukurti nauji plyšių, sklindančių diskrečiųjų dalelių sistemose kontinuumui
modeliuoti, geometrijos vizualizavimo metodai, pagrįsti Voronojaus ir geometrinių
celių centrų dekompozicijomis. Lokalios dekompozicijos sudarytos fiksuotos
jungčių tarp judančių dalelių topologijos pagrindu, todėl standartiniai Voronojaus
dekompozicijų ir Delauney tinklų generavimo metodai negali būti pritaikyti.

Darbo rezultatų praktinė reikšmė

Darbe sukurta vizualizavimo programinė įranga leis analizuoti didelių diskrečiųjų dalelių
sistemų modeliavimo rezultatus, reikalingus kuriant aukštąsias technologijas Lietuvoje.
Nauji kintančių paviršių geometrijos vizualizavimo metodai, pagrįsti Voronojaus ir
geometrinių celių centrų dekompozicijomis, reikalingi irimo mechanikos ir medžiagotyros
mokslams bei naujų konstrukcijų ir medžiagų kūrimo procesui pagreitinti. Tikslus kintančio
plyšio geometrijos nustatymas leis daug toliau ir giliau nagrinėti medžiagos irimo procesą
bei mikro- ar net nanolygiuose gautus rezultatus tiesiogiai perkelti į taikomąją programinę
įrangą, kuri inžinerinius uždavinius sprendžia makrolygyje. Sukurti metodai įdiegti projekte
„Virtualizavimo, vizualizavimo ir saugos e. paslaugų technologijų kūrimas ir tyrimai“ (VP1-
3.1-ŠMM-08-K) tiriamoje programinėje įrangoje.

Ginamieji teiginiai

1. Dalinio duomenų rinkinio siuntimo iš gLite/EMI duomenų saugyklos realizacija
sutrumpina vizualizavimo laiką, mažindama tarp grid infrastruktūros kompo-
nentų siunčiamų duomenų kiekį.

104 SUMMARY IN LITHUANIAN

2. Sukurti originalūs metodai sukonstruoja plyšio geometriją ir leidžia vizualizuoti
plyšio sklidimą monodispersinėse dalelių sistemose, modeliuojamuose diskre-
čiųjų elementų metodu.

Darbo rezultatų aprobavimas

Disertacijos tema paskelbti 6 moksliniai straipsniai. Trys iš jų yra publikuoti recen-
zuojamuose mokslo žurnaluose, kurie įtraukti į Thomson Reuters ISI Web of Science
duomenų bazę ir turi citavimo indeksą.

Disertacijos rezultatai buvo aprobuoti 5 konferencijose, keturios iš jų yra tarptautinės
mokslinės konferencijos:

• The Fourth International Conference on Parallel, Distributed, GRID and Cloud
Computing for Engineering (PARENG2015). 2015 m. kovo 24–27,
Dubrovnikas, Kroatija.

• 7th World Congress on Particle Technology (WCPT7), 2014 m. gegužės 19–22,
Beijing, Kinija.

• The Third International Conference on Parallel, Distributed, GRID and Cloud
Computing for Engineering (PARENG2013), 2013 m. kovo 25–27, Pécs,
Vengrija.

• 18th International Conference on Information and Software Technologies
(ICIST 2012). 2012 m. rugsėjo 13–14, Kaunas, Lietuva.

• LMA IIth jaunųjų mokslininkų konferencija „Fizinių ir technologijos mokslų
tarpdalykiniai tyrimai“. 2012 m. vasario 14, Vilnius, Lietuva.

Disertacijos struktūra

Disertaciją sudaro įvadas, trys pagrindiniai skyriai, bendrosios išvados, literatūros šaltinių
sąrašas, autoriaus publikacijų disertacijos tema sąrašas, santrauka lietuvių kalba. Darbo
apimtis – 126 puslapiai neskaitant priedų, tekste yra 10 formulės, 63 paveikslai ir 6
lentelės. Rašant disertaciją buvo panaudota 110 literatūros šaltinių.

1. Išskirstytųjų vizualizavimo sistemų ir plyšių
vizualizavimo metodų apžvalga

Skyriuje apžvelgta vizualizavimo programinė įranga, išskirstytosios vizualizavimo siste-
mos išteklių tinklo (GRID) aplinkose, dalelių sistemų modeliavimas diskrečiųjų elementų
metodu ir plyšių, sklindančių diskrečiųjų dalelių sistemose, vizualizavimo metodai.

Vizualizavimo e. paslaugos sparčiai populiarėja išteklių tinkle ir kitose išskirs-
tytosiose informacinių technologijų infrastruktūrose, nors jų valdymas ir duomenų perda-
vimas heterogeninėse sistemose yra labai sudėtingi. Atlikta programinės įrangos apžvalga
parodė, kad daugelis vizualizavimo sistemų nėra tiesiogiai pritaikytos išteklių tinklui,
todėl reikalauja didelių programuotojų pastangų siekiant jas naudoti pasirinktoje išteklių
tinklo aplinkoje. Dauguma apžvelgtų nutolusių vizualizavimo naudotojo sąsajų išteklių
tinklo aplinkose labai priklauso nuo išteklių tinklo programinės įrangos sistemos arba

SUMMARY IN LITHUANIAN 105

„midleware“, komunikacijos sąsajų, taikomųjų uždavinių tipo bei bazinės vizualizavimo
sistemos. Literatūros analizė atskleidė, kad pakankamai daug universalių vizualizavimo
sistemų integruota į išteklių tinklus, pagrįstuose Globus sistemine įranga. Didelė dalis
Europos išteklių tinklo infrastruktūros, sukurtos gLite/EMI sisteminės įrangos pagrindu.
Didelė dalis vizualizavimo technologinių sprendimų negali būti tiesiogiai perkelta iš
Globus į gLite/EMI aplinką. Dėl šios priežasties sudėtinga rasti universalias nutolusio
vizualizavimo sistemas, veikiančias gLite/EMI aplinkoje ir gebančias atsiųsti tik dalį
vizualizuojamo duomenų rinkinio iš duomenų saugyklų. Egzistuoja modernūs vizualiza-
vimo įrankiai, pritaikyti tik siųsti pilnus duomenų rinkinius ir vizualizuoti atskirus
uždavinius išteklių tinklo aplinkoje.

Medžiagoje atsirandančių pažeidimų evoliucijos analizė yra didelis iššūkis daugeliui
tarpdalykinių mokslų, tame tarpe ir vizualizavimui. Esant didelėms apkrovoms
medžiagoje atsiranda mikropažeidimai. Jungdamiesi tarpusavyje pažeidimai sudaro
sudėtingos geometrinės formos plyšius. Egzistuojantys metodai nustato atsirandančius
pažeidimus pradinėje stadijoje, bet negali tiksliai apibrėžti plyšio geometrijos. Plyšio
atsiradimas 1D jungtyse nustatomas remiantis jėgos tarp dviejų dalelių dydžiu, o plyšys
sklinda tarp daugelio dalelių 3D erdvėje. Diskrečiųjų elementų metodu modeliuojamuose
dalelių sistemose plyšiai dažniausiai vizualizuojami technikomis, kurios nekonstruoja
plyšio geometrijos. Dalelės spalvinamos pagal įvairių atributų reikšmes. Plyšiai, kurių
plotis artimas ar didesnis už dalelių skersmenį, gali būti vaizduojami nuspalvintomis
dalelėmis (S1a pav.). Tais atvejais, kai dalis jungčių jau nutrūko, bet tarpai tarp dalelių
išlieka mažesni nei dalelių skersmuo, dalelių geometrija negali aiškiai pavaizduoti
susidariusio plyšio paviršiaus 3D erdvėje. Pagrindine alternatyva, kuri plačiai paplitusi ne
tik diskretinių elementų metodo (DEM), bet ir baigtinių elementų metodo programiniuose
paketuose, laikomos nuspalvintos nutrūkusios jungtys (S1b pav.), vaizduojamos cilindrais
ar atkarpomis. Nutrūkusios jungtys parodo vietą kurioje pažeistas medžiaga, bet
nesuteikia jokios informacijos apie susidariusio plyšio geometriją. 3D erdvėje sklindančių
plyšių paviršiai, apbrėžti 2D grafiniais primityvais, pateikia daugiau informacijos nei 1D
nutrūkusių jungčių grafinės reprezentacijos, kuriomis pagrįsti paplitę vizualizavimo
metodai.

 a) b)

S1 pav. Plyšio sklidimas vizualizuotas 2D erdvėje: a) dalelių geometrija,

b) nutrūkusios jungtys tarp dalelių

106 SUMMARY IN LITHUANIAN

Atlikta literatūros analizė atskleidė, kad standartiniai paviršiaus rekonstrukcijos
metodai netinka plyšiams vizualizuoti, nes nėra tinkamo skaliarinio lauko ar patogios
erdvės diskretizacijos. Paviršiaus konstravimas yra labai komplikuotas, nes sudėtinga
plyšių geometrija yra sudaryta iš atskirų dalių su skylėmis. Literatūros analizė parodė, kad
standartiniai Voronojaus diagramų generavimo metodai taip pat netinka diskretiniu
elementų metodu (DEM) modeliuojamoms dalelių sistemoms vizualizuoti. Skaičiavi-
mams naudojama 1D jungčių topologija nekinta laiko atžvilgiu, tačiau to negalima
pasakyti apie dalelių pozicijas, apibrėžiančias dalelių sistemos geometriją. Po tam tikro
laiko tarpo dalelių sistemos geometrija ženkliai pasikeičia, o jos pradinio 1D jungčių
tinklelio topologija tampa nesuderinama su standartine Voronojaus diagrama.
Standartiniai metodai generuoja Voronojaus diagramos pagal dalelių pozicijas, o defektų
atsiradimas nustatomas remiantis pradinėmis 1D jungtimis tarp dalelių.

2. Vizualizavimo metodai ir jų realizacijos išskirstytojoje
programinėje įrangoje diskrečiųjų dalelių sistemoms
vizualizuoti

Skyriuje detaliai analizuojami sukurti metodai, kurie naudojami plyšio paviršiams vizua-
lizuoti.

Celių atributų ir celių kirtimo metodai. Celių atributų metodas skirtas plyšiams
vizualizuoti monodispersinėje dalelių sistemoje. Siūlomas metodas generuoja srities
dekompoziciją, naujas celes kurdamas iš 1D tinklelio jungčių. Taikant metodą
suskaičiuojamos kiekvienos celės nutrūkusias briaunas, o rezultatą išsaugo skaliariniame
celės atribute. Celės spalvinamos pagal atributo reikšmes, remiantis pasirinkta spalvų
paieškos lentele (S2a pav.). Taip parodomos celės, kuriose yra nutrūkusių jungčių, o jų
spalva pateikia kiekybinę informaciją apie nutrūkusių jungčių skaičių.

 a) b)

S2 pav. Metodų iliustracijos: a) celių atributų metodas; b) celių kirtimo metodas

Deja, celių atributo metodas neapibrėžia plyšio geometrijos, todėl jo funkcionalumas
buvo praplėstas celių kirtimo metode. Sugeneravęs lokalią srities dekompoziciją ir

SUMMARY IN LITHUANIAN 107

kiekvienoje celėje suskaičiavęs nutrūkusias jungtis, celių kirtimo metodas generuoja
plyšio paviršių. Naudodamas informaciją apie nutrūkusias celės jungtis, metodas
apytiksliai nustato plyšio paviršiaus geometriją nagrinėjamoje celėje, panašiai kaip ir
žygiuojančių kubų metodas. Paviršiaus geometrija nusakoma grafiniais primityvais.
Siekiant padidinti metodo greitaveiką, celių kirtimo metodas generuoja lokalią srities
dekompoziciją ir taiko veiksmingą auginimo strategiją.

S2 paveikslai iliustruoja metodų taikymą 2D erdvėje. Plonos linijos vaizduoja
tinklelio jungtis, kur raudona plona linija žymi nutrūkusią jungtį. S2a paveikslas vaizduoja
celių atributų metodo schemą. Metodo sukurtos celės spalvojamos pagal apskaičiuoto
skaliarinio atributo reikšmę. Žydrai spalvojamos celės, kurių skaliarinio atributo reikšmė
lygi vienam, t. y. celė turi vieną nutrūkusią jungtį. Geltonai spalvojamos celės turinčios
dvi nutrūkusias jungtis. Raudonai spalvojamos celės turinčios tris nutrūkusias jungtis.
S2b paveikslas vaizduoja celių kirtimo metodo schemą. Metodas sujungia nutrūkusių
jungčių vidurinius taškus, o gautą liniją vizualizuojame raudonu vamzdeliu. Celių kirtimo
metodas nėra labai tikslus, nes net reguliaraus dalelių išsidėstymo atveju sugeneruotas
paviršius kerta daleles.

Voronojaus dekompozicijos metodas. Sukurtas metodas yra skirtas lokaliai
Voronojaus dekompozicijai generuoti, panaudojant dalelių pozicijas ir nekintančias 1D
jungtis tarp dalelių. Lokalios dekompozicijos generavimo principas pagrįstas plokštumų,
statmenų jungtims tarp dalelių, susikirtimais.

 a) b) c)

S3 pav. Voronoi dekompozicijos metodo iliustracijos

Pagrindinis ciklas vykdomas per daleles, jungiamas nutrūkusių jungčių, apie
kiekvieną dalelę kuriant Voronojaus celes. Po to vykdomas ciklas per nagrinėjamos
dalelės kaimynus – sukuriama kaimynines daleles skirianti plokštuma ir ieškoma sankirtų
su turimomis plokštumomis. Daugiakampių ir tinklelių jungčių atitikimas turi būti
patikrintas didelės deformacijos regionuose, kai standartinė Voronojaus diagrama
neatitinka stacionarios 1D jungčių topologijos (S3a pav.). Sugeneruota celė bus
Voronojaus celė, jeigu visi pradiniai mazgai atitiks tuščios sferos sąlygą (S3b pav.).
Nustačius didelių deformacijų regioną, persidengiančios lokalios dekompozicijos celės
nepiešiamos, o regionas pažymimas nuspalvintomis jungtimis (S3c pav.). Nutrūkusios
jungtys, daleles veikiančios jėgos ir kiti atributai iš jungčių tiesiogiai perkeliami į
atitinkamas Voronoi celių briaunas tolimesniam vizualizavimui. Šis metodas generuoja
Voronoi dekompoziciją tik plyšio aplinkoje, siekiant taupyti kompiuterio išteklius.

108 SUMMARY IN LITHUANIAN

S3 paveiksle vaizduojamas plyšys vizualizuotas lokalia 2D erdvės Voronoi
dekompozicija. Plyšio geometrija vizualizuota raudonais cilindrais, o mėlyni cilindrai
vaizduoja lokalią Voronoi dekompoziciją. Geltonais cilindrais pažymėti didelių
deformacijų regionai. Žalias ir rausvas apskritimai iliustruoja sferos sąlygos tikrinimą
deformuoto jungčių tinklelio regione.

Celių centrų metodas. Celių centrų metodas skirtas išplėsti plyšių vizualizavimo
sritį, nes, skirtingai nei Voronoi dekompozicijos metodą, jį galima taikyti stipriai
deformuoto jungčių tinklelio regionuose (S4 pav.). Celių centrų metodas tiksliau apibrėžia
plyšio paviršiaus geometriją nei celių kirtimo metodas, nes atsižvelgia į dalelių sferinę
formą.

S4 pav. Plyšio vizualizavimas celių centrų metodu deformuotame

1D jungčių tinklelio regione

Pirmiausia, celių centrų metodas pažeistuose medžiagos regionuose iš 1D jungčių
tarp dalelių generuoja srities dekompoziciją, analogišką celių kirtimo metodo
dekompozicijai. Po to apskaičiuoja dekompozicijos celių geometrinius centrus. Finale iš
pirmosios dekompozicijos celių geometrinių centrų sudaro antrąją erdvės dekompoziciją.
Sugeneruota dekompozicija apibrėžia plyšio geometriją ne taip tiksliai, kaip lokali
Voronoi dekompozicija, bet gali būti taikoma didesnių jungčių tinklelio deformacijų
regionuose. Siekiant padidinti metodo greitaveiką, celių centrų metode taikoma
veiksmingą dekompozicijų auginimo strategiją.

S4 paveiksle iliustruoja celių centrų metodo taikymą deformuotame 1D jungčių
tinklelio regione. Plonos raudonos linijos nurodo nutrūkusias 1D jungtis, o juodos linijos
vaizduoja nenutrūkusias jungtis. Plyšio paviršiai pavaizduoti raudonais cilindrais, o
mėlyni cilindrai vaizduoja lokalią dekompoziciją. Žali cilindrai vaizduoja didelių
deformacijų regionus.

Sukurti plyšių vizualizavimo metodai įdiegti vizualizavimo e. paslaugoje VizLitG ir
išskirstytojoje vizualizavimo sistemoje VisPartDEM. Sukurtas vizualizavimo e. paslaugos

SUMMARY IN LITHUANIAN 109

VizLitG (S5 pav.) prototipas, skirtas skaičiavimų rezultatams, dislokuotiems nutolusiose
išteklių tinklo duomenų saugyklose (SE), interaktyviai nagrinėti, patogiai atsiųsti ir
efektyviai vizualizuoti. VizLitG paremta kliento-serverio architektūra. E. paslaugos
serveris realizuotas GlassFish taikomųjų programų serveryje, o kliento grafinė aplinka
realizuota Java Swing biblioteka.

S5 pav. Vizualizavimo e. paslaugos VizLitG architektūra

Įdiegta lanksti skaičiavimų rezultatų, saugomų HDF5 formatu, interaktyvaus
nuskaitymo programinė įranga, nepriklauso nuo programavimo kalbos ir operacinės
sistemos, todėl puikiai tinka heterogeninėms išteklių tinklo sistemoms. VizLitG leidžia ne
tik atsiųsti visą rezultatų failą LFC/LCG ar GridFTP įrankiais. Duomenų saugykloje
įdiegta paslauga „Data Service“ vartotojui suteikia galimybę parsisiųsti į VizLitG severį
tik pasirinktas duomenų rinkinio dalis.

3. Pasiūlytų vizualizavimo metodų ir sukurtos programinės
įrangos eksperimentiniai tyrimai

Skyriuje aprašomi atlikti dalinio duomenų persiuntimo iš duomenų saugyklos tyrimai.
Diskrečios dalelių sistemos vizualizuojamos GLSL šešėliuokliais, kurių pagalba galima
pasiekti interaktyvius vizualizavimo greičius. Didelių duomenų rinkinių siuntimas iš
duomenų saugyklų sudaro didžiąją laiko dalį vizualizavimo procese, todėl pasirinktos
dalinio duomenų siuntimo technologija leidžia sumažinti siunčiamų duomenų kiekį ir
padidinti vizualizavimo greitį.

S6 paveiksle vaizduojamas duomenų siuntimo iš saugyklos SE laikas. Siekiant
pateikti kiekybinį duomenų siuntimo rezultatų palyginimą, buvo ištestuoti skirtingi
protokolai ir įvairi programinė įranga. Kreivė GFTP iliustruoja rezultatus, gautus taikant

110 SUMMARY IN LITHUANIAN

GridFTP protokolą, įdiegtą Java CoG Kit jGlobus modulyje. Kreivė LFC skirta loginio
failų katalogo (Logical File Catalog) priemonių, įtrauktų į gLite distribuciją, rezultatams
vaizduoti. Kreivė JWS iliustruoja laiką, kurį sunaudojo JAX-WS visam duomenų rinkiniui
siųsti. Kreivė PDT iliustruoja laiką, kurį JAX-WS sugaišo siunčiant tik duomenų rinkinio
dalį, būtiną vizualizavimui. Atlikti testai parodė, kad siunčiant nagrinėjamo dydžio
duomenis, JAX-WS dirba efektyviausiai. Dar daugiau, siunčiant tik būtiną duomenų
rinkinio dalį, siuntimo laiką pavyko sumažinti apytiksliai 7,6 karto, todėl jis tapo beveik
nereikšmingu, lyginant su visu vizualizavimo procesu.

S6 pav. Duomenų siuntimas iš SE

Darbe nagrinėti plyšių vizualizavimo metodų greitaveikos ir tikslumo kiekybiniai
palyginimai. Atliktas kiekybinis lokalios Voronoi dekompozicijos metodo realizacijos
greitaveikos palyginimas su kitų autorių sukurtos Voro++ bibliotekos (Rycroft 2009)
greitaveika. S7 paveiksle pateikti programų vykdymo laikai nagrinėjamais laiko
žingsniais. Kreivės LV_A, LV_B ir LV_C rodo lokalios Voronoi dekompozicijos metodo
vykdymo laiką vizualizuojant duomenų rinkinius A, B ir C. Kreivė GV iliustruoja
globalios Voronoi diagramos generavimo, naudojant Voro++ biblioteką, laiką. Visų
duomenų rinkinių atveju generuojama labai panaši globali Voronoi diagrama, todėl
sugaištamas vienodas laikas ir pateikta tik viena kreivė. Atlikti testai parodė, kad lokali
Voronoi dekompozicija generuojama daug greičiau negu globali Voronoi diagrama.
Nepaisant ilgo laiko, reikalingo patikrinti tinklelio jungčių atitikimus, lokalios Voronoi
dekompozicijos metodo vykdymo laikas sudarė 25,0 %, 20,4 % ir 19,1 % globalios
Voronoi diagramos generavimo laiko duomenų rinkiniams A, B ir C.

S8 paveiksle pateiktas trijų vizualizavimo metodų kiekybinis palyginimas naudojant
du kompiuterius, pavadintus C1 ir C2. S8a, S8b ir S8c paveiveikslai iliustruoja vykdymo
laiką naudojant duomenų rinkinius A, B ir C. Kreivės LV, CC ir CU vaizduoja lokalios
Voronoi dekompozicijos, celių centrų ir celių kirtimo metodų greitaveiką. Staigų
vykdymo laiko augimą ties 100 laiko žingsniu, lėmė greitas nutrūkusių jungčių skaičiaus
padidėjimas tuo laiko momentu. Celių kirtimo ir celių centrų metodai naudoja veiksmin-
gą dekompozicijos auginimo laike strategiją. Praėjusiame laiko žingsnyje sugeneruota

SUMMARY IN LITHUANIAN 111

S7 pav. Vykdymo laikas naudojant globalų Voronoi metodą ir lokalų

 Voronoi dekompozicijos metodą

dekompozicija išsaugoma sekančio laiko žingsnio rezultatams vizualizuoti, todėl
vykdymo laikas naudojamas tik dekompozicijos auginimui. Dėl šios priežasties po
staigaus šuolio vykdymo laikas sumažėja, nes didžiausi pažeistų regionų plotai buvo
padengti lokalia dekompozicija praėjusiuose laiko žingsniuose, o nagrinėjamame laiko
žingsnyje nutrūkusių jungčių skaičius ir naujai pažeistų regionų plotas yra pakankamai
nedideli. Lokalaus Voronoi dekompozicijos metodo vykdymo laikas išlieka toks pats, net
kai plyšys nedidėja, nes Voronoi dekompozicijos celių viršūnių koordinatės kinta
kiekviename žingsnyje, o metodas negali išnaudoti praėjusio laiko žingsnio topologijos.
Dėl šios priežasties lokalios Voronoi dekompozicijos metodo vykdymo laikas buvo
ilgiausiais visų nagrinėjamų duomenų rinkinių atveju.

Rezultatai parodė kad celių kirtimo metodas vizualizuoja plyšio paviršių greičiau
negu celių centrų metodas. Celių kirtimo metodo vykdymo laikas sudarė 46,2 %, 39,5 %
ir 41,8 % celių centrų metodo vykdymo laiko, duomenų rinkiniams A, B ir C. Verta
pastebėti, kad vykdymo laikas stipriai priklauso nuo plyšio dydžio ir nutrūkusių jungčių
pasiskirstymo. Vykdymo laiko skirtumas naudojant du skirtingus kompiuterius sudarė
12,80 %, 8,24 % ir 6,07 % vykdant, lokalios Voronoi dekompozicijos, celių centrų ir celių
kirtimų metodus, atitinkamai.

Ištraukti plyšių paviršiai gali kirsti daleles, taip sumažindami metodų tikslumą. Tik
Voronoi dekompozicijos metodu ištrauktas paviršius nekerta dalelių, bet jo negalima
taikyti stipriai deformuotose jungčių tinklelio regionuose. Celių centrų metodo sukurtas
paviršius kerta daleles tik stipriai deformuoto jungčių tinklelio regionuose. Celių kirtimo
metodas nėra tikslus, nes net reguliaraus dalelių išsidėstymo atveju sugeneruotas plyšio
paviršius kerta daleles. Paviršių įsiskverbimo į daleles gylis pasirinktas sukurtų metodų
tikslumui matuoti.

112 SUMMARY IN LITHUANIAN

S8 pav. Vizualizavimo metodų vykdymo laikas:

a) duomenų rinkinys A, b) duomenų rinkinys B, c) duomenų rinkinys C

a)

b)

c)

SUMMARY IN LITHUANIAN 113

S9 pav. Bendras kirtimų gylis kertant daleles ištrauktu plyšio paviršiumi

S9 paveikslas iliustruoja susumuotą, sugeneruotų paviršių, įsiskverbimo į visas
daleles gylį. Kreivės CU_A, CU_B ir CU_C vaizduoja suminį celių kirtimo metodo
įsiskverbimo gylį, o kreivės CC_A, CC_B ir CC_C – suminį celių centrų metodo
įsiskverbimo gylį. Celių centrų metodo įsiskverbimo gylis sudarė tik 12,6 %, 14,1 % ir
8,9 % celių kirtimo metodo įsiskverbimo gylio duomenų rinkiniams A, B ir C. Didžiausias
skirtumas pastebėtas duomenų rinkinyje A, kadangi jame yra didžiausias nutrūkusių
jungčių kiekis. Ištraukti plyšio paviršiai giliausiai kerta daleles stipriai deformuoto
tinklelio regionuose.

Bendrosios išvados

1. Literatūros apžvalga atskleidė, kad duomenų siuntimas tarp išskirstytųjų
vizualizavimo programinės įrangos komponentų sunaudoja didelę vizualizavimo
laiko dalį. Plyšių, sklindančių diskrečiųjų dalelių sistemose, vizualizavimas kelia
daug iššūkių, nes plyšiai sudaryti iš atskirų dalių su skylėmis.

2. Dalinio duomenų siuntimo realizacijos greitaveikos kiekybinis palyginimas su
alternatyvios išteklių tinklo duomenų siuntimo programinės įrangos greitaveika
parodė, kad JAX-WS Runtime nagrinėjamus duomenų rinkinius siuntė greičiausiai.
Dalinis duomenų rinkinio siuntimas sumažino perduodamų duomenų kiekį, todėl
siuntimo laikas sumažėjo iki 7,6 karto, lyginant su pilnų duomenų rinkinio siuntimu.

3. Kiekybinis greitaveikos palyginimas atskleidė, kad lokalios dekompozicijos gene-
ruojamos žymiai greičiau negu globalios Voronojaus diagramos. Lokali Voronojaus
dekompozicija sunaudojo nuo 19,1 % iki 25,0 % globalios Voronojaus diagramos
generavimo kitų autorių sukurta programine įranga laiko.

114 SUMMARY IN LITHUANIAN

4. Plyšių vizualizavimo metodų realizacijų greitaveikos palyginimas atskleidė, kad
panaudojus celių kirtimo metodą, galima sukonstruoti plyšio paviršių greičiau negu
kiti metodai. Celių kirtimo metodo vykdymo laikas sudaro iki 23,4 % celių centrų
metodo vykdymo laiko. Celių centrų ir lokalios Voronojaus dekompozicijos metodų
vykdymo laiko skirtumas sudarė iki 47,3 % vizualizavimo testo vykdymo laiko.

5. Lokali Voronojaus dekompozicija nekerta dalelių, todėl užtikrinamas didžiausias
vizualizavimo tikslumas. Celių centrų metodu sukonstruotų plyšių paviršių tikslumas
yra ženkliai didesnis negu celių kirtimo metodu sukonstruotų paviršių. Suminis celių
centrų metodo įsiskverbimo gylis sudaro iki 14,1 % celių kirtimo metodo
įsiskverbimo gylio.

115

Annexes1

Annex A. Declaration by the author of the thesis
Annex B. The coauthor’s agreements to present publications for the
dissertation defence
Annex C. Copies of scientific publications by the autor on the topic
of the dissertation

1The annexes are supplied in the enclosed compact disc

Ruslan PACEVIČ

METHODS AND DISTRIBUTED SOFTWARE
FOR VISUALIZATION OF CRACKS PROPAGATING
IN DISCRETE PARTICLE SYSTEMS

Doctoral Dissertation

Technological Sciences,
Informatics Engineering (07T)

Ruslan PACEVIČ

DISKREČIŲJŲ DALELIŲ SISTEMOSE SKLINDANČIŲ
PLYŠIŲ VIZUALIZAVIMO METODAI IR IŠSKIRSTYTOJI
PROGRAMINĖ ĮRANGA

Daktaro disertacija

Technologijos mokslai,
informatikos inžinerija (07T)

2015 10 19. 10,5 sp. l. Tiražas 20 egz.
Vilniaus Gedimino technikos universiteto
leidykla „Technika“,
Saulėtekio al. 11, 10223 Vilnius,
http://leidykla.vgtu.lt
Spausdino UAB „Biznio mašinų kompanija“,
J. Jasinskio g. 16, 01112 Vilnius

