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Abstract 

Scientific visualization is becoming increasingly important in analyzing and 
interpreting numerical and experimental data sets. Parallel computations of 
discrete particle systems lead to large data sets that can be produced, stored and 
visualized on distributed IT infrastructures. However, this leads to very 
complicated environments handling complex simulation and interactive 
visualization on the remote heterogeneous architectures. In micro-structure of 
continuum, broken connections between neighbouring particles can form complex 
cracks of unknown geometrical shape. The complex disjoint surfaces of cracks 
with holes and unavailability of a suitable scalar field defining the crack surfaces 
limit the application of the common surface extraction methods. The main 
visualization task is to extract the surfaces of cracks according to the connectivity 
of the broken connections and the geometry of the neighbouring particles. The 
research aims at enhancing the visualization methods of discrete particle systems 
and increasing speed of distributed visualization software. 

The dissertation consists of introduction, three main chapters and general 
conclusions. In the first Chapter, a literature review on visualization software, 
distributed environments, discrete element simulation of particle systems and 
crack visualization methods is presented. In the second Chapter, novel 
visualization methods were proposed for extraction of crack surfaces from 
monodispersed particle systems modelled by the discrete element method. The 
cell cut-based method, the Voronoi-based method and cell centre-based method 
explicitly define geometry of propagating cracks in fractured regions. The 
proposed visualization methods were implemented in the grid visualization e–
service VizLitG and the distributed visualization software VisPartDEM. Partial 
data set transfer from the grid storage element was developed to reduce the data 
transfer and visualization time. 

In the third Chapter, the results of experimental research are presented. The 
performance of e-service VizLitG was evaluated in a geographically distributed 
grid. Different types of software were employed for data transfer in order to 
present the quantitative comparison. The performance of the developed 
visualization methods was investigated. The quantitative comparison of the 
execution time of local Voronoi-based method and that of global Voronoi 
diagrams generated by Voro++ library was presented. The accuracy of the 
developed methods was evaluated by computing the total depth of cuts made in 
particles by the extracted crack surfaces. The present research confirmed that the 
proposed visualization methods and the developed distributed software were 
capable of visualizing crack propagation modelled by the discrete element method 
in monodispersed particulate media. 
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Reziumė 

Mokslinis vizualizavimas tampa vis svarbesniu analizuojant sudėtingas 
priklausomybes skaičiavimų ir eksperimentų rezultatuose. Diskrečiųjų dalelių 
sistemų lygiagretūs skaičiavimai generuoja didelius duomenų kiekius, kurie 
saugomi ir vizualizuojami išskirstytose informacinių technologijų 
infrastruktūrose. Dideli, geografiškai išskirstyti duomenų kiekiai reikalauja 
sudėtingos programinės įrangos efektyviems skaičiavimams ir interaktyviam 
vizualizavimui išskirstytose heterogeninėse architektūrose. Diskrečiųjų elementų 
metodu modeliuojant kontinuumo mikrostruktūrą, tarp dalelių nutrūkusios 
jungtys gali sudaryti sudėtingos formos plyšius, kurių geometrija nėra žinoma. 
Sudėtinga plyšių forma su skylėmis ir apibrėžiančio skaliarinio lauko nebuvimas 
riboja standartinių paviršių ištraukimo metodų taikymo galimybes. Vizualizuojant 
plyšius, reikia sukonstruoti plyšių paviršių geometriją iš tarp dalelių nutrūkusių 
jungčių topologijos ir kaimyninių dalelių pozicijų. Disertacijos tikslas yra 
patobulinti diskrečiųjų dalelių sistemų vizualizavimo metodus bei padidinti 
metodų realizacijos išskirstytoje programinėje įrangoje greitaveiką. 

Disertaciją sudaro įvadas, trys pagrindiniai skyriai ir bendrosios išvados. 
Pirmajame skyriuje apžvelgta vizualizavimo programinė įranga, išskirstytosios 
vizualizavimo sistemos išteklių tinklo aplinkose, dalelių sistemų modeliavimas 
diskrečiųjų elementų metodu ir plyšių, sklindančių dalelių sistemose, 
vizualizavimo metodai. Antrajame skyriuje detaliai aprašomi metodai sukurti 
vizualizuoti plyšius, kurie sklinda monodispersinėse dalelių sistemose, 
modeliuojamose diskrečiųjų elementų metodu. Pažeistuose regionuose celių 
kirtimo, Voronoi dekompozicijos ir celių centrų metodai geometriniais 
primityvais apibrėžia sklindančių plyšių geometriją. Sukurti plyšių vizualizavimo 
metodai įdiegti vizualizavimo e. paslaugoje VizLitG ir išskirstytojoje 
vizualizavimo sistemoje VisPartDEM. Dalinio duomenų rinkinio parsiuntimo iš 
išteklių tinklo duomenų saugyklos paslauga įdiegta VizLitG siunčiamų duomenų 
kiekiui sumažinti ir vizualizavimui pagreitinti. 

Trečiajame skyriuje aprašomi eksperimentinių tyrimų rezultatai. E. paslaugos 
VizLitG greitaveika ištirta geografiškai išskirstyto išteklių tinklo atveju. Pateikti 
duomenų siuntimo skirtinga programine įranga iš išteklių tinklo duomenų 
saugyklos tyrimai. Skyriuje pateikti plyšių vizualizavimo metodų greitaveikos ir 
tikslumo kiekybiniai palyginimai. Voronoi dekompozicijos metodo realizacijos 
greitaveika palyginta su Voro++ bibliotekos greitaveika. Plyšių vizualizavimo 
metodų tikslumas įvertintas apskaičiavus bendrą sukonstruotų paviršių 
įsiskverbimo į daleles gylį. Tyrimų rezultatai parodė, kad pasiūlyti vizualizavimo 
metodai ir sukurta programinė įranga tinka vizualizuoti plyšiams sklindantiems 
monodispersinėse dalelių sistemose. 
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Notations 

Abbreviations 

API – Application Programmin Interface; 

CPU – Central Processing Unit; 

DEM – Discrete Element Method 

GB – Gigabyte; 

GHz – Gigahertz; 

GLSL – OpenGL Shading Language; 

GPU – Graphics Processing Unit; 

GridFTP – Grid File Transfer Protocol; 

GUI – Graphical User Interface; 

HDD – Hard Disk Drive; 

HDF – Hierarchical Data Format; 

HTTPS – Hypertext Transfer Protocol Secure; 

JAX-WS – Java API for XML Web Services; 

LFC – Logical File Catalog; 
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MB – Megabyte; 

MHz – Megahertz; 

MIME – Multipurpose Internet Mail Extensions; 

MPI – Message Passing Interface; 

MVE – Multi-View Environment; 

PC – Personal Computer; 

RAM – Random-Access Memory; 

SE – Storage Element; 

SOAP – Simple Object Access Protocol; 

SSL – Secure Sockets Layer; 

vGPU – Virtual Graphics Processing Unit; 

XML – Extensible Markup Language. 
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Introduction 

Problem Formulation 

Visualization plays an important role in the numerical analysis cycle, which 
consists of data preparation, computations, graphical analysis of the numerical 
results and further correction of design variables (Hansen et al. 2005). Numerical 
simulations of discrete particle systems (Cundall et al. 1979) and modern physical 
experiments lead to large data sets that present challenges to researchers. 
Scientific visualization is becoming increasingly important in analyzing and 
interpreting numerical and experimental data sets to make decisions in high 
technology design. However, large data sets and a complex visualization process 
present challenges to the developers of interactive visualization systems. 
Distributed visualization allocates different parts of the machine processing and 
the provided services to different computers in order to improve performance. A 
lot of industrial applications are solved on computer clusters and grid. With the 
power of the grid, scientists are able to perform simulations at previously 
impossible and unexplored problem scales. However, this leads to very 
complicated environments handling complex simulation and interactive 
visualization on the remote heterogeneous architectures. 

Discrete particle computations are based on the positions of particles and 
forces acting between them (Cundall et al. 1979). 1D connections between 
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neighbouring particles are not well suited for the reliable interpolation and 
common visualization methods used in 3D. Micro-structure of continuum can be 
modelled by discrete particle system and the defects between the pairs of the 
neighbouring particles are identified via the broken connections (Rojek et al. 
2011). The defects can form complex cracks of unknown geometrical shape. The 
main visualization task is to extract the surfaces of cracks according to the 
connectivity of the broken connections and the geometry of the neighbouring 
particles. The complex disjoint surfaces of cracks with holes and unavailability of 
a suitable scalar field defining the crack surfaces limit the application of the 
widely used surface extraction methods. Moreover, the fixed connectivity of the 
moving particles prevents direct application of the commonly used methods for 
generation of Voronoi decompositions (Aurenhammer 1991) or Delaunay 
triangulations (Amenta et al. 2001). 

Relevance of the Thesis 

Visualization is used for analyzing the data and presenting the results across a 
wide range of disciplines in science and industry (Hansen et al. 2005). However, 
large data sets and a complex visualization process require considerable 
development efforts and impressive computing resources. Distributed 
visualization systems and services for analysis of large data sets are deployed on 
modern IT infrastructures, such as computer clusters, grids and clouds. Efficient 
data transfer between remote components of distributed infrastructure is very 
important in order to achieve interactive visualization rates. 

Fracture of materials presents challenge for visualization as well as for a wide 
range of other multi-disciplinary sciences. Cracking is a very common 
phenomenon investigated by a wide research community in different scientific 
areas (Gobron et al. 2001). Crack formation is often observed in building 
constructions, in ceramics (Uematsu 2014), in drying processes (Kitsunezaki 
2011) and in complicated failure of powder agglomerates (Khanal et al. 2009). 
The absence of the explicitly defined crack surfaces limits a visual analysis of the 
computed results and complicates the understanding of the investigated fracture 
phenomena. Moreover, the crack surface geometry accurately defined by graphics 
primitives can be exported to engineering software for following analysis at the 
macro-level. 

The Object of the Research 

The object of research – visualization of discrete particle systems by using 
distributed software. 
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The Aim of the Thesis 

The research aims at improving the visualization methods of discrete particle 
systems and increasing speed of distributed visualization software. 

The Objectives of the Thesis 

In order to achieve the aim, the following have to be solved: 
1. To analyze technologies of distributed visualization software and 

visualization methods for extraction of crack surfaces from discrete 
particle systems. 

2. To develop software implementation, which allows reducing 
communication between remote components of gLite/EMI grid 
infrastructure, and investigate its performance. 

3. To develop visualization methods for extraction of crack surfaces from 
discrete particle systems. 

4. To implement the developed methods into distributed visualization 
software. 

5. To investigate and compare the speed of the implementation of the 
developed visualization methods. 

6. To investigate the accuracy of the developed visualization methods. 

Research Methodology 

Methods of comparative and literature analysis methods were used to analyze the 
research object. Methods of computer graphics and computational geometry are 
used to develop visualization methods for crack propogating. The methods of 
experimental research have been used for examining performance of proposed 
methods and developed software. 

Scientific Novelty of the Thesis 

The main scientific contributions of the presented research are as follows: 
1. The original implementation of partial data set transfer from gLite/EMI 

grid storage elements has been developed to reduce the communication 
between remote components of grid infrastructure in the case of 
interactive visualization. 

2. Novel visualization methods based on Voronoi and geometric cell centre 
decompositions have been proposed for extraction of crack surfaces from 
monodispersed particle systems. The local decompositions must be 
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constructed according to the fixed connectivity of the moving particles, 
therefore, the commonly used methods for generation of Voronoi 
decompositions or Delaunay triangulations cannot be applied. 

Practical Value of the Research Findings 

The designed visualization software is employed for analysis of computational 
results of large discrete particle systems that can be useful for developing high 
technology in Lithuania. The novel Voronoi and cell centre-based methods can be 
used by researchers of fracture mechanics and the material sciences to speed–up 
the design of new structures and materials. Moreover, the commercial finite 
element analysis software, which is widely used by engineers, can import only 
continuously defined crack surfaces represented by curves or polygon meshes. 
The successful research into the problems of extraction and visualization of crack 
surfaces can help to fill the gap between the industrial requirements and the 
research results. The developed methods are implemented in the software, which 
is investigated in the project “Research and development of technologies for 
virtualization, visualization and security e-services” (VP1-3.1-ŠMM-08-K-01-
012). 

The Defended Statements 

1. The developed partial data set transfer from gLite/EMI grid storage 
elements is able to decrease visualization time reducing the data size 
transferred between remote components of grid infrastructure. 

2. The proposed visualization methods are capable of extracting crack 
surfaces and visualizing crack propagation modelled by the discrete 
element method in monodispersed particulate media. 

Approval of the Research Findings 

Research results related to the dissertation subject are published in 6 scientific 
publications. Three of them are published in reviewed scientific journals and are 
included in the Thomson Reuters Science Citation Index.  

The results of the diseration were presented at five conferences. Four of them 
are presented at international scientific conferences: 

• The Fourth International Conference on Parallel, Distributed, Grid and 
Cloud Computing for Engineering (PARENG2015). March 24–27, 2015, 
Dubrovnik, Croatia. 

• 7th World Congress on Particle Technology (WCPT7), 2014 May 19–22, 
Beijing, China. 
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• The Third International Conference on Parallel, Distributed, Grid and 
Cloud Computing for Engineering (PARENG2013), 2013 March 25–27, 
Pécs, Hungary. 

• 18th International Conference on Information and Software Technologies 
(ICIST 2012). September 13–14, 2012, Kaunas, Lithuania. 

• LMA IIth conference of young scientists on “Fizinių ir technologijos 
mokslų tarpdalykiniai tyrimai”. February 14, 2012, Vilnius, Lithuania. 

Dissertation Structure 

The dissertation consists of introduction, three main chapters, general 
conclusions, references, a list of publications by the author on the topic of the 
dissertation and a summary in Lithuanian. The total scope of the dissertation is 
126 pages, 10 equations, 63 figures and 6 tables. For the purpose of the present 
dissertation, references were made to 110 source papers. 
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1 
Overview of distributed visualization 

systems and visualization methods 

In this Chapter a literature review on state-of-the-art visualization software, 
distributed environments and common visualization techniques is presented. 
Discrete Element Method (DEM) for crack propagation in discrete particle 
systems is introduced to formulate crack visualization problem and to discuss 
output datasets and resulting difficulties. Finally, surface extraction and crack 
visualization methods that can be applied in the case of DEM are reviewed and 
discussed. 

Parts of this Charpter are published in (Kačeniauskas and Pacevič 2011), 
(Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015), (Kačeniauskas et al. 
2012), (Kačeniauskas et al. 2013), (Pacevič and Kačeniauskas 2015). 

1.1. Overview of Visualization Software 

Visualization is used for analyzing the data and presenting the results across a 
wide range of disciplines (Hansen et al. 2005). Computers are used to create visual 
images from the data, while the human mind is used to make inferences from this 
imagery in order to better understand the data. Some standalone visualization 
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systems, toolkits and packages should be overviewed in order to choose the most 
appropriate platform for the efficient development of distributed visualization 
systems. In the dawn of the visualization era, creating visualizations meant 
programming using a low-level graphics library. A new approach was brought 
forward by the Application Visualization System (AVS) (Favre et al. 2005). AVS 
(later called AVS Express) is a modular visualization environment (MVE) 
providing an application development environment for visualization using a 
visual network editor. Over 800 developed modules are available in AVS/Express 
visualization system. Other MVEs have significantly smaller number of modules 
(about 200). AVS/Express Multipipe Edition is a version of AVS/Express, which 
contains multi-pipe rendering extensions for use in virtual environments. It is 
targeted at high-level SGI systems running IRIX and clusters of Windows-based 
PCs. 

OpenDX (Thompson et al. 2000) is a modular visualization system based on 
the dataflow model. The visualization pipeline is processed by the modules of the 
dataflow graph, which are arranged according to the desired output. This MVE 
originally began as the IBM commercial product Visualization Data Explorer, but 
was offered by IBM as an Open Source project in 1999. OpenDX is the best-
known open-source package in the category of MVEs. High efficiency of the 
software is achieved by optimized cashing and hardware rendering by means of 
OpenGL (Shreiner et al. 2013). OpenDX can access modules on remote hosts by 
DXLink. Distributed memory architectures can be employed as well as shared 
memory supercomputers. 

IRIS Explorer (Foulser 1995) is another MVE based on the dataflow  model. 
IRIS Explorer uses Open Inventor (Wernecke 1994) for lower level rendering. 
The system provides a large selection of modules, listed in the Librarian, which 
the user launches into the workspace (Map Editor) and connects together with 
wires to form a dataflow pipeline, or map. The system can be extended by users 
adding their own code as modules and integrating them into IRIS Explorer using 
the provided API. This system provides a mechanism to allow modules within a 
pipeline to be run on a number of remote computing resources. IRIS Explorer 
transparently manages the data transfer between resources as the data passes along 
the pipeline, using shared memory for modules connected together on the same 
host and through sockets for modules connected across host boundaries. 

SCIRun (Parker et al. 1995) is an MVE developed at the Scientific 
Computing and Imaging (SCI) Institute at University of Utah. It allows the user 
to connect a set of pre-written routines together in a workspace to form a dataflow 
network. These routines execute as independent threads within a single executable 
in contrast to other MVEs, which run modules as individual processes. SCIRun 
has been targeted at shared memory parallel systems. To extend beyond this 
limitation, more recent implementations of SCIRun have employed “bridging”. 
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SCIRun has been used for computational steering within the Uintah, which is 
designed to run on massively parallel distributed memory architectures. 

Visapult (Bethel et al. 2000) is a visualization framework with the ability to 
render a huge amount of data sets (of the order of 1-5 Tb). Visapult uses parallel 
rendering hardware to carry out the high speed rendering processes. Using Cactus 
(Thomas et al. 2010) the data are distributed amongst many parallel nodes for 
volume rendering. The rendered subset of 2D image is sent to the client for local 
rendering. 

Chromium (Humphreys et al. 2002) is an open source graphics library, which 
allows distributed network rendering for OpenGL applications. It does this by 
intercepting OpenGL API calls (Shreiner et al. 2013), and then modifying, 
deleting, replacing or augmenting them. Thus, for distributed rendering, the 
commands are split across a collection of graphics cards. A particular feature of 
Chromium is that it is non-invasive, because no modification or even 
recompiliation of the application is required. 

pV3 (Haimes 1994) is a library for the real-time visualization of large-scale 
transient (unsteady) systems. Based on an earlier system called Visual3, it has 
been re-designed specifically for the multi-processing visualization of data 
generated in a distributed compute arena. One of its design goals is to allow the 
compute solver to run as independently as possible thus for example, pV3 can be 
configured to plug into the simulation, display the transient data, and unplug from 
the calculation. pV3 provides a centralized interface to a distributed computation. 
Computational steering is also supported by pV3. 

Covise (Collaborative Visualization Environment) (Wright et al. 1997) falls 
into the modular visualization environment category. It allows a user to run 
modules both locally and remotely, employing a data manager process on each 
host to manage the flow of data beween modules. Like other distributed MVEs, 
such as IRIS Explorer (Foulser 1995), modules connected together on the same 
host communicate data through shared memory, while modules connected beween 
hosts pass data via the local data managers. A company named Vircinity is 
marketing several versions of Covise that offers collaborating visualization. 

Ensight (CEI 2009) is a standalone application aimed at the visual analysis 
and post-processing of engineering data. An advanced version of the package 
(called Ensight Gold) incorporates extra features for handling large data sets 
including parallel processing, multi-pipe rendering for output to immersive 
environments, and collaboration. Ensight offers a standard set of visualization and 
plotting algorithms with interfaces to several engineering solvers for CFD and 
FEA problems but, being aimed at end-users rather than developers, is not 
extensible. No new algorithms can be added, although users can create their own 
readers to import data in custom formats. 
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Amira (Stalling et al. 2005) is an highly interactive object-oriented 
visualization system, based on Open Inventor (Wernecke 1994). Unlike many of 
the other visualization systems, it is not based on a dataflow model. Because data 
are passed between modules as C++ objects (as in a normal C++ program), there 
is no overhead for module communication. Users can extend Amira (adding new 
modules, data classes, editors and I/O methods) by deriving from an existing C++ 
class. Amira users create applications via a visual programming interface by 
connecting Amira modules together. 

VisAD (Hibbard et al. 2005) is a Java component library for interactive and 
collaborative visualization and analysis of numerical data. It makes use of Java’s 
RMI technology, which allows methods of remote Java objects to be invoked from 
other Java virtual machines, possibly on different hosts. VisAD applications can 
run in any of three networked modes: standalone, server or client. The 
construction of distributed applications in VisAD is facilitated by its event-driven 
design. 

VTK (Kitware 2010; Schroeder et al. 2006) is an open source, object–
oriented software system providing a toolkit for 3D computer graphics, image 
processing and visualization. It consists of a C++ class library, together with 
several interface layers including Tcl/Tk, Java and Python, which can be used to 
access the classes and build applications. More than 2000 separate classes, 
including several hundred data processing filters, are available in the toolkit. VTK 
supports a wide variety of visualization algorithms including scalar, vector, 
tensor, texture, and volumetric methods; and advanced modelling methods like 
implicit modelling, polygon reduction, mesh smoothing, cutting, contouring and 
Delaunay triangulation. VTK is based on the dataflow model supporting reference 
counting, which allows data to be shared instead of duplicated. Modules are 
connected with each other to form a visualization pipeline. VTK supports portable 
multithreading for shared memory implementation and portable distributed 
parallel processing based on MPI (Gropp et al. 1996). Likewise, a sort-last, 
parallel rendering class is provided that uses inter–processor communication to 
collect and then composite parallel renderings into a final image (Moreland et al. 
2001). An open-source, turnkey application ParaView (Ayachit 2015), designed 
for large data visualization using distributed parallel processing, is built on the top 
of VTK. 

1.2. Distributed Environments for Visualization 

Scientific visualization is becoming increasingly important in analyzing and 
interpreting numerical and experimental data sets. However, large data sets and a 
complex visualization process require considerable development efforts and 
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impressive computing resources. Distributed visualization allocates different parts 
of the machine processing to different computers. 

Grid Visualization Kernel (GVK) (Kranzlmuller et al. 2002) based on the 
Globus middleware (Foster et al. 2001) has been developed in EU CrossGrid 
project (2002). In concrete, the concept of GVK can be divided into two main 
parts: the interface between the simulation and the visualization, and the 
implementation of the visualization pipeline. The interface to GVK is established 
via available visualization toolkits. Well known example is the OpenDX 
visualization software (Thompson et al. 2000). The difference between the 
traditional approach and the GVK visualization services is that some modules of 
the dataflow graph are replaced by corresponding GVK modules. The advantage 
of this approach is that it enables the user to define arbitrary visualization pipeline 
configurations using the well-known dataflow approach. The pipeline can be split 
at any point, and the processing modules can be distributed across the grid as 
desired. 

The portal GridSphere (Russell et al. 2004) providing interface for grid 
visualization was developed in the FP5 GridLab project (2003–2005). Data 
Management and Visualization Work package of the project provides the services 
that are needed by the grid to manage public and user-private files and creates a 
framework that enables applications to stream data for visualization purposes. 

A lot of scientific applications of visualization (Wood et al. 2007) were 
demonstrated in projects supported by UK e-Science Core Programme. gViz 
(Visualization Middleware for e-Science) (Brodlie et al. 2003) had two main 
targets: first, to grid-enable two existing visualization systems, IRIS Explorer 
(Foulser 1995) and pV3 (Haimes 1994), so that visualization tools are available 
as early as possible for users of computational GRID; second, to develop some 
longer term thinking on distributed and collaborative visualization, where XML 
languages (Evjen et al. 2007) are used to describe visualization data, and 
visualization programs themselves. The modules of IRIS Explorer in a network 
can be distributed across a set of grid resources (Li et al. 2005), but controlled 
from the desktop. This is achieved in a secure manner using Globus middleware 
(Foster 2005). The COVISA (Wright et al. 1997) collaborative facilities become 
immediately available. An important application of this is in computational 
steering, where the simulation model runs on a remote server, but is controlled 
from the desktop. The grid-enabled version of pV3 is created by replacing its 
PVM-based communications with a web service mechanism using the gSOAP 
package (Robert A. Van Engelen 2002). The distributed computation provides a 
web service offering data for visualization and the pV3 “servers”, then connect to 
this as web service clients. gSOAP provides an efficient C/C++ web service 
implementation. The use of an XML language to describe visualization data 
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promises to lead to better inter-operability of visualization systems, and the more 
effective development of new visualization software. 

The grid-Aware Portals toolkit (GAPtk) project (Nagella et al. 2005) aimed 
to provide scientists with a set of visualization utilities based on the Web and grid 
services (Li et al. 2005) model along with appropriate APIs that will enable them 
to exploit the power of the grid their data analysis. The layered architecture of the 
toolkit consists of a set of interfaces on the client side, which talks to the GAPtk 
server using SOAP (Englander 2002); the server communicates with the grid 
using Globus (Foster 2005). The toolkit was used to provide visualization 
capabilities within the GODIVA project, which was investigating ocean 
circulation and its effect on climate change. 

The main aim of the project Visual beans (Cooper 2002) was to investigate 
the role of component technology together with advanced middleware 
platforms to support the construction of dynamically adaptable distributed 
cooperative visualization software. The project developed and extended a 
middleware platform called TOAST (which is CORBA-based (Brose et al. 
2001)). A number of experimental systems were constructed as demonstrators 
and proof-of-concept implementations of the framework and visualization 
components, the latter constructed using VisAD visualization software 
(Hibbard et al. 2005). 

The goal of the ICENI (Mayer et al. 2005) project was the provision of high-
level abstractions for scientific computing, which will allow users to construct and 
define their own applications through a graphical composition tool. The project 
aimed to deliver this environment across a range of platforms and devices on the 
grid using a scheduling service. ICENI was being implemented in Java and JINI, 
but was able to interoperate with the Open Grid Services Architecture (OGSA). 
One of the applications of ICENI is computational steering and visualization 
(Stanton et al. 2002). The ICENI framework is used to link together a visualization 
client and server, and to pass data to the server from a running application. The 
visualization server hands the data off to a renderer (current demos are based on 
VTK (Kitware 2010)), which can then send the graphical output back to the 
visualization client. This can either be done using standard OpenGL remote 
rendering, or using Chromium (Humphreys et al. 2002). The ICENI project has 
also made use of the way Chromium can be configured with the ACE networking 
framework (Schmidt 2009) in order to send its graphics as a video stream directly 
to a multicast address; this effectively provides a bridge between Chromium’s 
distributed rendering and the Access Grid. 

VISPORTAL (Bethel et al. 2003) was built by upon the Grid Portal 
Development Toolkit (GPDK) (Novotny 2002). The Visualization Group of 
Lawrence Berkeley National Laboratory and National Energy Research Scientific 
Computing Center efforts explores ways to deliver advanced remote/distributed 
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visualization capabilities through a Grid-enabled web-portal interface. The effort 
focuses on latency tolerant distributed visualization algorithms and GUI designs 
that are more appropriate for the capabilities of web interfaces. The developed 
clients involve very thin GUIs such as Java applets lauched by the web-browser 
on the client machine that provide a front-end for massively parallel or 
distributed/multi-tier visualization back-ends like Visapult (Bethel et al. 2000) or 
offscreen rendering pipe access. Finally, the thick clients simply use the portal as 
a broker for locating remote data or services that extend the capabilities of a 
standalone tool like OpenDX (Thompson et al. 2000) or AVS Express (Favre et al. 
2005). Eventually the VisPortal framework will migrate to a portlet OGSA model 
offered by GridSphere (Russell et al. 2004). 

Cactus (Thomas et al. 2010) is an open source problem solving environment 
designed for scientists and engineers. Cactus consists of a central core component, 
called the flesh, and a set of modules called thorns. The thorns implement a range 
of computational codes, which can run on distributed computing resources while 
being connected to, and orchestrated by, the flesh. The flesh controls when thorns 
will execute and how data is routed between them. Cactus builds on the Globus 
Toolkit (Foster 2005) to provide secure access to remote resources, together with 
secure communications and job scheduling on remote resources. It also uses a 
number of other standard libraries and toolkits such as PETSc (Brune et al. 2014) 
for scientific computation and HDF5 (Folk et al. 2011) for data output. 
Visualization is provided via standard products such as OpenDX (Thompson et al. 
2000), Amira (Stalling et al. 2005) and IRIS Explorer (Foulser 1995). These 
systems effectively operate as thorns connected to the Cactus system via special 
modules written for each system, which are able to read the data formats exported 
by Cactus (for example, HDF5) using the Cactus API. 

RealityGrid (RealityGrid 2005) was a project, which aims to examine how 
scientists in the condensed matter, materials and biological sciences communities 
can make more effective use of the distributed computing and visualization 
resources provided by the grid. RealityGrid is making use of visualization as part 
of distributed applications in which the simulation in one place communicates 
with the visualization in another and a steering client in a third. The RealityGrid 
steering architecture is built around a library, calls to which are embedded into 
each of the three components (simulation, visualization and client). Because of 
difficulties experienced in integrating existing MVEs into larger distributed 
applications, RealityGrid has selected VTK (Kitware 2010; Schroeder et al. 2006) 
as a lower-level environment, along with enabling technologies such as VizServer 
(SGI 2009) and Chromium (Humphreys et al. 2002). In addition, ICENI, which 
use much of the same technology is being used to enable collaborative 
visualization and computational steering within RealityGrid. 
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Grid Visualization System (Naregi 2005) for distributed massive data was 
developed in by National Institute of Informatics and NEC in 2005. Generalized 
grid visualization services were adopted for various visualization functionalities 
provided by various visualization tools. Image based remote parallel visualization 
based on MPI was employed. FUJITSU corporation developed collaborative 
visualization grid environment VizGrid (Matsukura et al. 2004) for natural 
interaction between remote researchers. 

The NVIDIA grid hardware serves as the foundation for their on-demand 
Gaming as a Service (GaaS) solution. NVIDIA GRID vGPU (Nvidia 2014) 
technology brings the benefit of NVIDIA hardware-accelerated graphics to 
virtualized solutions on cloud infrastructures (Mohammad et al. 2012). Amazon 
EC2 GPU Instance Type G2 provides graphics as a service (Yegulalp 2013) on 
AWS cloud platform that includes Nvidia GPUs. 

1.3. Discrete Particle Systems 

The discrete element method (DEM) referred to the original work of Cundall and 
Strack (Cundall et al. 1979) has been extensively used in numerical analyses of 
discrete particle systems from the perspective of science and engineering. The 
main advantage of the DEM is a possibility to model highly complex discrete 
particle systems using the basic data on individual particles and avoiding 
oversimplifying assumptions of continuum. The method allows the simulation of 
motion and interaction between the particles, taking into account the microscopic 
geometry and various constitutive models. 

The DEM has been extensively applied to examine different phenomena 
inside the granular materials. The granular flow from hoppers and silos has a wide 
range of applications in industry (Zhu et al. 2008). The study of the bulk material 
pressure on the walls of a hopper is very important for hopper design (Goda et al. 
2005). The prediction of the discharge rate is of importance for the effective 
operation and control of a transport system and is difficult due to inhomogeneous 
solid distribution, irregular velocity profile and diverse particle size (Kruggel et al. 
2009). It is very important to understand the microscopic structure and its relations 
to the governing mechanisms (Parisi et al. 2004). DEM simulation takes into 
account the discrete nature of granular materials, and therefore is very effective 
for this purpose. The combined approach of DEM and averaging method offers a 
convenient way to link fundamental understanding generated from DEM-based 
simulations to engineering application often achieved by continuum modelling 
(Zhu et al. 2007). Over the past decade, the DEM was utilised in a variety of 
industrial applications (Cleary 2009; Radeke et al. 2010).  
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The main advantage of using DEM for simulation of granular systems is that, 
by tracking the motion of each individual particle, the detailed information about 
the system behaviour across a range of time- and length-scales can be obtained. 
However, the simulation of systems at this level of detail has the disadvantage of 
making DEM computationally very expensive. DEM simulations on a single 
workstation or ordinary PC tend to be limited to systems of several tens of 
thousands of particles and short time intervals. The recent simulation of large-
scale systems is performed by employing the parallel computation techniques, 
though the number of the used particles was still much smaller than that required 
in industry where typically over a billion particles are dealt with. Distributed or 
parallel DEM computations have become an obvious option for rapidly increasing 
computational capability, along with recent remarkable advances in distributed 
software systems and computational infrastructures like computer clusters, grids 
and clouds. 

Several different particle- and lattice-based approaches (Zhu et al. 2008) 
have been developed in the frame of DEM applied to the simulation of solids and 
structures. Particle-based approach (Kačianauskas et al. 2010; Walther et al. 
2009) is, actually, a rather straightforward extension of the original DEM. A solid 
is replaced with a composition of discrete particles, where the presence of the 
cohesive forces acting between the particles and various mechanisms of their 
linkage and detachment may be allowed (Markauskas et al. 2009). The approach, 
where the continuum may be represented by the material particles, interacting via 
the network elements, is referred to as the lattice-based model. A comprehensive 
review of the planar elastic lattice models for micro-mechanical applications is 
given by (Ostoja-Starzewski 2002). The lattice-based DEM (Kozicki et al. 2008; 
Lilliu et al. 2003) has been extensively applied to the simulation of heterogeneous 
solids to study their dynamic deformation behaviour and fracture problems. The 
simplest lattice – based DEM models for continuum exhibit structural analogy and 
equivalence to frame or truss structures that are widely modelled by the finite 
element method (Barauskas et al. 2004). However, the lack of highly accurate and 
reliable solutions at the industry level limits the use of DEM models in the 
commercial codes. 

The dynamic behaviour of the non-cohesive frictional visco-elastic particle 
system can be simulated by the discrete element method. This system consists of 
the finite number of deformable spherical particles with the specified size 
distribution and material properties. Any particle i in the system of N particles 
undergoes the translational and rotational motion, involving the forces and torques 
originated in the process of their interaction. Although a description of the 
translational motion is always independent of the particle shape and is written in 
a linear form, the rotational motion is of the same character only for a perfectly 
symmetric shape, such as sphere, where the inertia tensor is defined by a single 
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parameter. Finally, the motion of the i-th contacting spherical particle in time t is 
described as follows: 

i

i

i

dt

d
m F

x
=

2

2

 (1.1) 

i

i

i

dt

d
I T

θ
=

2

2

 (1.2) 

where mi, and Ii are the mass and the moment of inertia of the particle, 
respectively, while vectors xi and θi define the position of the particle centre and 
the orientation of particle i. The vectors Fi and Ti present the sum of the contact 
force and the gravity force as well as the respective torques: 
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where g is the acceleration due to the gravity, dij is the vector pointing from the 
particle centre to the contact centre. The interparticle force vector Fij,cont , 
describing the contact between the particles i and j, may be expressed in terms of 
normal and tangential components. The normal component, presenting a repulsion 
force, comprises elastic and viscous ingredients, while the tangential component 
reflects static or dynamic frictional behaviour. The static force describes friction 
prior to gross sliding and comprises elastic and viscous ingredients, while the 
dynamic force describes friction after gross sliding and is expressed by the 
Coulomb’s law.  

For evaluating the contact forces (1.3–1.4), all contacts between the particles 
and their neighbours must be detected. A cell-based method (Han et al. 2007) is 
used for contact detection. The numerical integration of the equations of motion 
(1.1–1.2) is performed to obtain the dynamical state of all particles at the time t, 
resulting from the action of the particle forces (1.3–1.4). The solution of these 
equations is obtained by using the Verlet scheme.  

The materials can be modelled using the elastic perfectly brittle model of 
contact interaction. The lattice-based discrete element model assumes cohesive 
bonding between the neighbouring particles (Rojek et al. 2011). These lattice 
connections represented by springs can be broken under excessive loading, which 
allows us to simulate initiation and propagation of the material fracture. When 
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two particles are bonded, the contact force in normal direction is calculated from 
the linear constitutive relationships: 

nnn, cont
uk=F  (1.5) 

where Fn,cont is the normal contact force, kn is the spring stiffness in the normal 
direction, un is the normal relative displacement. The lattice connections are 
broken instantaneously, when the interface strength is exceeded in the normal 
direction by the tensile contact force. The failure criterion can be written as: 

nn, cont
R≤F  (1.6) 

where Rn is the interface strength in the normal direction. Although a compressive 
interaction force between the particles does not cause breakage of the connections, 
the material damage under macroscopic compression can be represented properly 
in the particle model. A compressive macroscopic load brings about tensile 
interactions at the microscopic level, which may lead to connection failures. 

After breakage of connections, a normal contact force is calculated, using the 
Hertz contact model (Zhu et al. 2008). A frictional interaction can occur among 
the particles in the case of compression. The limiting friction force is evaluated, 
assuming the Coulomb model of friction: 

n, contt, cont
FF µ=  (1.7) 

where µ is the Coulomb friction coefficient. The simple mathematical model  
(1.1–1.7) of the lattice-based DEM is provided for the sake of completeness. 
However, the simulation results will not be examined in detail because the 
presented research is concentrated on the surface extraction and the proposed 
visualization methods. 

 

Fig. 1.1. Schematic representation of the lattice-based DEM model 
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DEM computations are based on the positions of particles and forces acting 
between them. The lattices (Figure 1.1) employed in DEM computations are 
assembled from the 1D springs or beams, which are not well suited for the reliable 
interpolation and common visualization methods used in 3D. The data sets of 
DEM include the positions, velocities and accelerations of particles as well as 
their radii and material properties. The 1D connections between the neighbouring 
particles represent the lattice topology. The fracture force limit and various forces 
are used as the attributes of the connections. The most important attribute array 
named the connection state indicates, when the lattice connection is broken.Based 
on the described approach, the defects between the pairs of the neighbouring 
particles are identified by the broken lattice connections (Lilliu et al. 2003; 
Vadluga et al. 2009).  

1.4. Extraction and Visualization of Crack Surfaces 

Cracking is a very common phenomenon investigated by a wide research 
community in different scientific areas (Gobron et al. 2001). Crack formation is 
often observed in ceramics made through powder compaction process (Uematsu 
2014), in drying processes (Kitsunezaki 2011), in soil (Valette et al. 2006) and in 
complicated failure of powder agglomerates (Khanal et al. 2009). Geometric 
models propose the algorithms for obtaining crack patterns close to those 
produced by nature. The fracture models can be mapped onto the surface of the 
object, while fractures are created procedurally (Gobron et al. 2001). In contrast, 
physical approaches propose the models, which tend to accurately simulate the 
dynamics of natural crack patterns. Federl and Prusinkiewicz (Federl et al. 2004) 
used a physical approach to fracture modelling based on the finite element 
method. Gobron and Chiba (Gobron et al. 2001) proposed a different approach 
for simulating realistic propagation of various types of cracks on any triangulated 
surface, which was based on their 3D cellular automaton model. O’Brien et al. 
(Iben et al. 2009) succeeded in modelling brittle and ductile fractures by means of 
the finite element method. Iben and O’Brien have extended the previously 
presented methods in order to address the issue of quasi–static fractures (Iben 
et al. 2009). The surface is discretized by means of the finite element method and 
any 3D mesh can be cracked with an heuristic definition of stress fields. A 
dynamic model of cracks development based on a 3D discrete shrinkage volume 
propagation is proposed by Valette et al. (Valette et al. 2008). The DEM provided 
the valuable insight into the fracture phenomena at the particle level (Rojek et al. 
2011; Vadluga et al. 2009). Researchers used this method to study the damage of 
heterogeneous solids such as concrete (Khanal et al. 2009) or rock (Rojek et al. 
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2011) and homogeneous materials such as ceramics (Tan et al. 2009) or glass 
(Zang et al. 2007). 

The problem of reconstructing a surface from a set of sample points is 
motivated by numerous applications and, consequently, has always been a popular 
field of research. Most surface reconstruction methods roughly fall into two major 
categories: implicit surface methods (Fleishman et al. 2005; Kolluri 2008; 
Rosenthal et al. 2008) and Delaunay-based methods (Amenta et al. 2001; Dey 
et al. 2003; Labatut et al. 2009). A surface can be implicitly defined as a level-set 
of the function allowing smooth and approximating surface reconstruction. 
Moving least squares can handle a moderate amount of noise and be used to define 
the implicit functions with the signed distance to local planes as local 
approximants. Therefore, reconstruction guarantees are provided for sufficiently 
dense and uniform point clouds (Kolluri 2008). An approach that directly extracts 
smooth surfaces from unstructured point-based volume data without prior 
resampling or mesh generation is proposed by Rosenthal and Linsen (Rosenthal 
et al. 2008). Another most common approach to surface reconstruction is based 
on the Delaunay triangulation: the underlying idea is that when the sampling is 
noise free and dense enough, points close on the surface should also be close in 
space. Among the Delaunay-based methods, the most well-known algorithms are, 
preferably, the Crust (Amenta et al. 2001) and the Cocone (Dey et al. 2003) 
families of algorithms. Power Crust (Amenta et al. 2001) relies on the power 
diagram, the weighted Voronoi diagram of the poles. Labatut et al. (Labatut et al. 
2009) formulate the reconstruction problem as an energy minimisation on the 
Delaunay triangulation. In the case of lattice-based DEM methods, the discussed 
surface extraction algorithms cannot be directly applied, because of the absence 
of suitable data defining the crack surface and the complex nature of crack 
surfaces, defined by the scattered results of numerical computations at the micro-
level. The holes and disjoint pieces of crack surfaces make surface extraction 
extremely complicated. 

Computer graphics scientists focus their attention on enhancing the realism 
of natural scenes, while computational researchers concentrate on building 
accurate numerical models. Furthermore, their principal aim is not closely related 
to visually attracting results. In the DEM methods, cracks and the related 
phenomena are often visualized in the most straightforward way. The particles 
coloured depending on particular scalar attributes (Bertin 2010), such as the initial 
high altitude or radii, are most common (Kačeniauskas, Kačianauskas, et al. 2011; 
Rojek et al. 2011; Zang et al. 2007). The propagation of large cracks is illustrated 
(Figure 1.2a) by using the rendered geometry of particles (Cusatis et al. 2006). 
However, this technique can be applied only to large cracks, which are of the 
particle size. In the case of smaller cracks, when some connections are already 
broken, but gaps between particles remain significantly smaller than the particle 
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diameter, geometry of the neighbouring particles can not properly visualize crack 

surface propagating in 3D. The coloured lattice connections (Karihaloo et al. 

2003; Liu et al. 2007) can be treated as the main alternative to the rendered 

particles. The broken connections between the neighbouring particles (Figure 

1.2b) indicate the fractured regions, but do not provide any valuable information 

about the formation of the crack surfaces. 

 
                                   a)                                                                      b) 

Fig. 1.2. Crack propagation illustrated by using: a) the rendered geometry of particles,  
b) the tubes on broken connections between the neighbouring particles 

The main visualization task of the presented research is to construct the 

surfaces of cracks from the broken lattice connections and the geometry of the 

neighbouring particles. In 3D space propagating crack surface can be defined by 

2D graphical primitives that contain more information than 1D graphical 

representations employed in above discussed visualization methods based on 

lattice connections (Figure 1.2). 2D graphical representations can be valuable until 

gaps between the neighbouring particles exceed the particle diameter and material 

starts crumbling. The complex disjoint surfaces of cracks and the unavailability 

of a suitable scalar field defining the crack surfaces limit the application of the 

widely used surface extraction methods. Thus, there is hardly any direct method 

of constructing the surfaces of propagating cracks from individual defects 

determined between the neighbouring particles and applying the available 

visualization methods. Moreover, the commercial finite element analysis software 

widely used by engineers can import only continuously defined crack surfaces 

represented by usual graphic primitives. The successful research into the problems 

of representation and visualization of crack surfaces can help to fill the gap 

between the industrial requirements and the research results currently obtained in 

the areas of fracture mechanics and material sciences. 

The Voronoi diagrams can be applied to post processing of discrete particle 

systems as well as to lattice forming. Given a set of primitives, the Voronoi 

diagram partitions space into regions, where each region consists of all points that 

are closer to one primitive than to any other. The Voronoi diagrams have 

important applications in many sciences, including visualization of medical data 
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sets, proximity queries, spatial data manipulation, shape analysis, computer 
animation, robot motion planning, modelling spatial structures and processes, 
pattern recognition, locational optimization and selection in user interfaces 
(Aurenhammer 1991; Klein et al. 2009). Fast and resolution independent 
computation of the Voronoi treemaps, based on a combinatorial algorithm for the 
weighted Voronoi diagrams, was presented by Nocaj and Brandes (Nocaj et al. 
2012). GPU based computation of the 3D discrete Voronoi diagrams was used for 
surface extraction by Rosenthal and Linsen (Rosenthal et al. 2009). A concept of 
the Centroidal Voronoi tessellation was presented in the form of graphs in (Lu 
et al. 2012). The edges of radical Voronoi diagrams were employed to construct 
a beam-network model for autoclaved aerated concrete (Kadashevich et al. 2008). 
Computational lattices for polydispersed particulate media are assembled 
according to the Voronoi diagrams by (Cusatis et al. 2006). However, there were 
no attempts to describe the contact surfaces of particles and to visualize the 
propagating cracks by using local space decompositions based on the Voronoi 
cells or the geometric cell centre. Moreover, no attempts were made to extract the 
crack surfaces and explicitly define them by graphics primitives in the regions of 
highly deformed computational lattices. 

1.5. Conclusions of Chapter 1 and Formulating Task 
for the Dissertation 

1. The most of the overviewed grid environments for visualization are based 
on the Globus middleware and its toolkit for service development. The 
important Globus functionality cannot be accessed in the gLite grid 
environment, therefore, most of the available visualization software 
cannot be applied.  

2. Moreover, it is difficult to find a general purpose grid visualization e–
service, which can visualize the results produced by engineering 
applications at interactive rates on the gLite/EMI grid infrastructures. 

3. The lattices employed in DEM computations of discrete particle systems 
are assembled from the 1D springs or beams, which are not well suited 
for the reliable interpolation and common visualization techniques used 
in 3D. 

4. The complex nature of cracks, propagating in particle media and the 
unavailability of a suitable scalar field defining the crack surfaces limit 
the application of the common surface extraction methods to 
visualization of cracks, defined by the scattered results of numerical 
computations at the micro-level. The holes and disjoint pieces of crack 
surfaces make surface extraction extremely complicated. 
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5. There is hardly any direct technique of constructing the surfaces of 
propagating cracks according to the connectivity of the broken lattice 
connections and the geometry of the neighbouring particles. Moreover, 
there were no attempts to visualize the propagating cracks by using local 
space decompositions based on the geometrical cell centres. 

In order to achieve the aim, the following have to be solved: 
1. To develop software implementation, which allows reducing commu-

nication between remote components of gLite/EMI grid infrastructure, 
and investigate its performance. 

2. To develop visualization methods for extraction of crack surfaces from 
discrete particle systems. 

3. To implement the developed methods into distributed visualization 
software. 

4. To investigate and compare the speed of the implementation of the 
developed visualization methods. 

5. To investigate the accuracy of the developed visualization methods. 
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2 
Visualization Methods and 

Distributed Software for Discrete 
Particle Systems 

In this Chapter novel methods are introduced for visualization of crack surfaces 
from monodispersed particle systems. The proposed methods for visualization of 
cracks were implemented in the devbeloped prototypes of grid visualization e–
service VizLitG and the distributed visualization software VisPartDEM. Partial 
data set transfer from the grid storage element was developed to reduce the 
transferred data size and visualization time. 

The methods presented in this Chapter are published in (Kačeniauskas and 
Pacevič 2011), (Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015), 
(Kačeniauskas et al. 2012), (Kačeniauskas et al. 2013), (Pacevič and 
Kačeniauskas 2015). 

2.1. Cell Attribute- and Cell Cut-based Methods 

The cell attribute-based method and the cell cut-based method are developed for 
visualization of cracks propagating in monodispersed particle systems. The cell 
cut-based surface extraction method resulted as the extension of the cell attribute-
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based method in order to define crack geometry by graphics primitives. The 
developed visualization methods generate global or local space decompositions 
from the 1D connections of the computational lattice. Generation of space 
decompositions from lattice connections of lower dimensionality is a time-
consuming procedure. The commonly used mesh generation methods cannot be 
applied because of highly different input data. The vertices of the cells are 
determined by the particle positions. Moreover, one–dimensional lattice 
connections should be employed as the edges of the newly generated cells and 
local decompositions rather than global meshes should be used in order to save 
computational resources. 

2.1.1. Cell Attribute-based Method 

The simple cell attribute-based method is proposed for visualization of cracks in 
monodispersed particulate media. Figure 2.1 shows the application of the cell 
attribute-based method in 2D. The cell attribute-based method covers the whole 
computational domain by generated cells. The proposed method employs the one-
dimensional lattice connections as the edges of the newly generated cells. In 
Figure 2.1, thin black lines represent the unbroken lattice connections, while thin 
red lines represent the broken connections. The method simply calculates how 
many 1D connections of the particular cell are broken and assigns this value to 
the cell attribute. In this case, spatial crack representation can be visualized as the 
scalar cell attribute by using colour mapping and predefined colour table. In 
Figure 2.1, the triangles including only one broken connection are coloured in 
cyan, while the cells that have two broken connections are coloured in yellow. 
Triangles containing three broken connections are coloured in red, while cells that 
have not broken connections are not displayed in Figure 2.1. 

 
Fig. 2.1. Illustration of cell attribute-based method 
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The general scheme of the method is presented in Figure 2.2. Initially, the 
data set is read by using a nearly standard reader. The cell attribute-based method 
consists of two main blocks that can be implemented in software as one or several 
filters. The first block generates the mesh topology from 1D connections of the 
lattice employed in DEM computations. It is the most time consuming procedure, 
which is performed only once. Usually, cells are generated before visualizing the 
results of the first time step. Sometimes the mesh topology can be imported from 
the non-standard DEM computations employing the mesh for the specific 
computational purposes (Vadluga et al. 2009). The second block calculates the 
cell attributes from the broken lattice connections. The method simply calculates 
how many 1D connections of the particular cell are broken and assigns this value 
to the cell attribute. Finally, the calculated cell attributes are mapped to the 
predefined colours and rendered on screen by using the available mapper and the 
renderer, respectively. 

 
Fig. 2.2. Cell attribute-based visualization method 

Figure 2.3 presents the method designed for generating the three–
dimensional mesh topology. During the preparation of data structures the lists of 
the connected neighbours are assembled for all lattice points (particles). Then a 
loop, running through all points, is started. In 3D, two types of cells are considered 
to cover wider range of computational lattices. Thus, the generated 3D topology 
consists from pyramids with triangular or quadrilateral bases, which are generated 
in separate blocks of the method. In order to speed up computations, the point 
triplets and the point quadruplets are generated for identifying all possible 
triangular or quadrilateral bases, respectively.  



26 2. VISUALIZATION METHODS AND DISTRIBUTED SOFTWARE FOR DISCRETE … 

 

 
Fig. 2.3. Generating the mesh topology in 3D 
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The following loop runs through the generated point triplets or point 
quadruplets connected to the processed point. The important condition checks the 
existence of the connections between the point triplet forming the base of the 
pyramid. In the case of a pyramid with a quadrilateral base, this condition is more 
complex, because it is necessary to check the absence of the diagonals of the 
quadrilateral base. Moreover, this case is significantly more sophisticated, 
because resulting octahedron with eight faces can be divided to two pyramids in 
different ways. Thus, the additional loop, running through the points connected to 
any point of quadrilateral base, is performed to find the whole octahedron. The 
following condition checks the existence of the necessary octahedron connections. 
Finally, in both cases, the main block creates the new cells if such tetrahedron or 
octahedron has not been created yet. The octahedron is immediately divided into 
two pyramids with the quadrilateral base, because they can be efficiently 
processed by any visualization software. 

Let N= {q1, q2, q3,…, qn} be a finite set of points, represented by centres of 
particles, in a sub-domain Ω of the space R3. The method generates a partition of 
the sub-domain Ω into the non-overlapping regions Ωi, such that: 

∪ i
Ω=Ω  (2.1) 

where each Ωi is the 4 node tetrahedron or the pyramid defined by 5 nodes of N. 
Initially, the generated tetrahedra satisfy the Delaunay conditions. Four non–
coplanar points qi, qj, qk and ql form a Delaunay tetrahedron D if and only if there 
exists a location x∈Ω, which is equally close to qi, qj, qk and ql and closer to qi, qj, 

qk , ql than to any other pm∈N. The location x is the centre of the sphere, which 
passes through the points qi, qj, qk , ql and which contains no other points pm∈N. 
However, after some period of time the particles move, the lattice deforms and 
tetrahedra do not satisfy the Delaunay conditions in the highly fractured regions.  

The calculation of the cell attributes from the broken lattice connections is 
illustrated in Figure 2.4. The input array (S(i), i=1, …, M) indicates if the lattice 
connection between two neighbouring particles is broken. M is the total number 
of the lattice connections. The unity value of the array element means that the 
connection is broken. The method calculates how many 1D connections of the 
particular cell e are broken by using a simple formula: 

∑
=

=

k

j

e jISa
1

))((  (2.2) 

where ae is the attribute of a cell Ωe from formula (2.1). k is the number of cell 
connections. I is the array of global connection indexes of the cell e. In Figure 2.4, 
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the first loop runs through all cells of the newly generated mesh, while the second 
loop runs through all connections (edges) of the considered cell. The following 
block implements the trivial sum of the formula (2.2). 

 
Fig. 2.4. Computation of cell attributes 

The calculated value is assigned to the array of the cell attributes. Finally, the 
array of the calculated attributes is incorporated in data structures. At the end of 
the visualization pipeline (Figure 2.2) the calculated cell attributes are mapped to 
colours by using the predefined lookup table.  

2.1.2. Cell Cut-based Method 

The cell cut-based surface extraction method resulted from the development of 
the cell attribute-based method for crack visualization. The cell attribute-based 
method does not define crack geometry, therefore, its functionality was extended 
in the cell cut-based method. Moreover, the cell attribute-based method generates 
global decomposition for whole solution domain, while the cell cut-based method 
makes local decomposition and use the effective augmentation strategy. 

Figure 2.5 illustrates the application of the cell cut-based surface extraction 
method in 2D. Lines between centers of particles are connections of the 
computational lattice. Black lines represent the unbroken lattice connections. Thin 
red lines represent the broken lattice connections, while red tubes visualize cracks. 
A simple cell cut-based method generates surfaces according to the information 
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about the way in which cracks cut cells of the local decomposition assembled from 
the lattice connections. In 2D, the method simply connects middle points of the 
broken connections. 

 
Fig. 2.5. Illustration of cell cut-based method 

The simplified schema of the cell cut-based surface extraction method is 
presented in Figure 2.6. During the preparation of data structures, the lists of the 
connected neighbours were assembled for all lattice nodes. The following module 
generated a local space decomposition from the centres of the particles and the 
one-dimensional lattice connections between the particles employed in the lattice-
based DEM computations. 

A schema of the local decompositions method is presented in Figure 2.7. 
Local decompositions were generated only in the fractured regions, which were 
identified by marking the neighbourhood of the broken connections. In fact, these 
nodes are the centres of the particles. Another loop runs through the marked nodes 
to generate cells in the fractured regions. The developed method includes a very 
important condition, which checks if the current node has been already processed 
in the process of visualizing the preceding time steps. It saves computational 
resources by employing the already available cells and augmenting the local 
decomposition according only to the connections, which were broken during the 
last time step. 

Several types of higher dimensionality cells might be considered to generate 
a suitable space decomposition based on the 1D connections of the processed 
lattice. Therefore, a loop running through the considered cell types should be also 
required. In our case, the generated 3D topology consists of the pyramids with 
triangular or quadrilateral bases, which are treated as different cell types and 
generated separately. To speed up computations, the node sets (triplets or 
quadruplets) were generated for identifying all possible triangular or quadrilateral 
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bases. In the 2D case, the triangles were considered and the pairs of nodes were 
generated.  

 
Fig. 2.6. A simplified schema of the cell cut-based method 

New cells were assembled from the lattice connections in a loop, running 
through the generated node sets, which were connected to the node, considered in 
the main loop through the marked nodes of the lattice. A complex condition checks 
the presence of all connections in the assembled cell. The connections between the 
nodes of a set, forming the base of the pyramid, as well as the connections between 
the base of the pyramid and the considered node, were checked. In the case of a 
pyramid with a quadrilateral base, this condition also checks the absence of the 
diagonals of the quadrilateral base. Another condition checks if the current cell has 
not been generated yet. If all conditions are satisfied, 
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Fig. 2.7. Generating local decompositions from the lattice connections 
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the cell is assembled from the relevant connections. The assembled cell should be 
associated with the lattice connections that compose it in the case of using the 
geometric cell centre-based visualization method. However, the surface extraction 
based on the cell cut neither needs this association, nor executes. The following 
module fills the data structures and augments the cell list, appending a new cell to 
the list of the previously generated cells. It is worth noting that some cells of the 
list had already been generated by visualizing the preceding time steps and do not 
need to be generated at this stage. Finally, the loops through the generated node 
sets, the considered cell types and the marked nodes were completed. The 
resulting local decompositions cover the fractured regions and can be effectively 
used for extracting the crack surfaces. 

The main loop (Figure 2.6) runs through all cells of the resulting 
decomposition. The method determined the graphics primitives required to 
represent the part of the crack surface passing through the cell according to the 
number and order of the broken connections. Initially, all possible topological 
states of the surface cutting the cell were explored and stored in a case table 
during the preparation of data structures. In the loop running through the cells, 
the index for looking up the relevant topological state of the processed cell in 
the case table was obtained. Another loop runs through all connections of the 
processed cell for obtaining the midpoints of the broken connections. The 
included condition checked if the processed connection was broken and 
determined if the coordinates of the midpoint had to be calculated. Finally, the 
graphics primitives were created according to the index of the state table. The 
vertices of the generated primitives were placed at the calculated midpoints of 
the broken connections. The main loop running through all cells of the local 
decomposition was completed, when the crack surfaces were described by 
graphics primitives in all cut cells. 

2.2. Voronoi-based Method 

The Voronoi-based method plots the crack on the extended contact surfaces 
obtained from local decompositions. During DEM computations, the defects are 
identified between the pairs of the neighbouring particles on the lattice 
connections. The broken lattice connections should be directly mapped onto the 
generated faces. The consistency of the generated faces of the Voronoi 
decomposition and the relevant lattice connections should be verified in the case 
of the highly deformed lattice. The standard methods for generating the global 
Voronoi diagrams are hardly applicable to visualization of cracks, because they 
use the coordinates of points, but do not take into account the lattice topology.  
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Figure 2.8 illustrates the application of the local Voronoi-based 
decomposition in 2D. Lines between centers of particles are connections of the 
computational lattice. Black lines represent the unbroken lattice connections, 
while thin red lines represent the broken lattice connections. Thick tubes 
represent the local Voronoi decomposition. Red tubes relevant to broken 
connections visualize cracks, while blue tubes show other edges of the local 
decomposition. 

 
Fig. 2.8. Illustration of Voronoi-based method 

A general schema of the method developed for generating the local Voronoi 
decompositions is presented in Figure 2.9. The method can be divided to five 
stages: preparation of data structures and kd-tree (K. Zhou et al. 2008), 
identification of fractured regions that are necessary to cover by local Voronoi 
decompositions, generation of Voronoi cells, validation of generated cells and 
mapping of the attributes of the lattice connections onto the relevant edges of 
Voronoi cells. Data structures for loops, running through the particle neighbours, 
which are joined to the considered particle by the lattice connections, are prepared 
at the beginning. The next module constructs the kd-tree (K. Zhou et al. 2008), 
which is used for visual model validation at other stages of the method. A loop, 
running through all lattice connections, starts the identification of fractured 
regions. The following condition checks if the current connection is broken. The 
cells of the local Voronoi decomposition are generated only around the end nodes 
of the broken connections, therefore, the next loop runs through two end nodes of 
the current connection. The next condition checks, if the current node has not been 
processed yet, because the Voronoi cell can be already generated around this node 
processing another broken connection attached to it. The following module 
generates the Voronoi cell around the particle centre  
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Fig. 2.9. A general schema of the local Voronoi decomposition-based method 
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represented by the processed node of the current connection. Each Voronoi cell is 

created around the node according to the available data on the node neighbours. 

The implemented method (Rycroft 2009) is based on the clipping of the whole 

domain by perpendicular planes drawn through the midpoints between the 

considered node and its neighbours. 

All faces of the generated Voronoi cell are validated by the orange module, 

which will be described in the following text. The loop, running through the valid 

faces of the generated Voronoi cell, finishes processing of the generated contact 

surfaces. The following module maps the attributes of the lattice connections onto 

the relevant suitable faces of the generated Voronoi cell. In the 2D case, the 

attributes of the lattice connections are mapped onto the relevant edges of the cell. 

When the Voronoi cells are created around both end nodes of all broken 

connections, the main computations are finished. The last module prepares the 

output for visual model validation. Three orange modules (Figure 2.9) implement 

the model validation. 

 
Fig. 2.10. An illustration of the inconsistencies between the lattice connections and the 

faces of the local Voronoi decomposition in the region of the deformed lattice: 
 a) the global Voronoi decomposition, b) the local Voronoi decomposition, 

 c) the visual model validation of local Voronoi decomposition 

Visualization of crack surfaces is a challenging problem, while the 

application of the Voronoi decomposition-based methods is hardly possible in the 

regions of the highly deformed lattice. It is worth mentioning that the most of 

computational models also have limitations in such complex cases. In the lattice-

based DEM computations, the lattice topology does not change in time, while the 

particles can significantly change their positions. The particles have more freedom 

to move and to deform the lattice in the regions containing a lot of broken 

connections. Thus, after a certain period of time, the lattice topology might 

become inconsistent with respect to the cells of a standard Voronoi diagram. 

Figure 2.10a illustrates the case, when the stationary lattice topology became 

inconsistent with a changing global Voronoi diagram. Blue tubes represent the 
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edges of the generated decompositions, while red tubes visualize cracks relevant 
to the broken lattice connections. The broken yellow connection of the stationary 
lattice joins the centres of the particles 2 and 4, while the method for generating 
the standard Voronoi diagram takes into account the fact that the distance between 
the centres of the particles 1 and 3 is shorter and does not generate the edge 
perpendicular to the broken connection. The available cyan edge represents the 
contact surface between the particles 1 and 3. The observed inconsistencies do not 
allow the direct mapping of the attributes of the lattice connections onto the 
relevant edges of Voronoi cells. Therefore, the global Voronoi diagrams cannot 
be applied to crack visualization in the regions of the highly deformed lattice. 
Figure 2.10b shows that, in such regions, the local Voronoi decomposition 
generated according to the stationary lattice topology contains the overlapped 
cells and introduces the numerical error. Figure 2.10b also includes an explanatory 
schema (two circles with centre points coloured in green and magenta) of visual 
model validation, which will be explained later. Figure 2.10c demonstrates how 
the visual model validation helps to indicate the regions of the highly deformed 
lattice by plotting marked connections as yellow tubes. The model validation also 
prevents the appearance of the overlapped cells. 

The performed validation is based on the well-known property of the Voronoi 
diagrams described as follows: for each vertex q of the Voronoi diagram, there 
exists a unique empty sphere centred on q, which passes through at least four 
nodes and is the largest empty sphere centred on q (Aurenhammer 1991; Klein 
et al. 2009). Figure 2.11 presents the method for validation of each generated 
Voronoi cell. A loop, running through all the vertices of the considered Voronoi 
cell, starts the validation. The sphere is defined by the centre located in the 
considered vertex and the radius, which is equal to the distance from the 
considered vertex to the node representing the centre of the Voronoi cell. Figure 
2.10b shows validation of two vertices of different Voronoi cells by using two 
illustrative circles. The green circle is defined by the centre located in the 
considered vertex (green point) and the radius equal to the distance from the vertex 
to the node 1 in the centre of the Voronoi cell. The magenta circle is defined by 
the centre located in the considered vertex (magenta point) and the radius, which 
is equal to the distance from the vertex to the node 3 in the centre of the Voronoi 
cell. The query to the initially prepared kd-tree structure provides the number of 
nodes belonging to the solid sphere. The considered vertex is marked as suitable 
for the Voronoi decomposition if none of the nodes of the lattice is located inside 
the solid sphere. In other cases, the processed vertex does not satisfy the required 
conditions of the Voronoi diagram. In Figure 2.10b, the lattice nodes 1, 2 and 4 
are located on the green circle, but the node 3 violates the required condition, 
because it is located in the interior of the circle. The lattice node 1 is located in 
the interior of the magenta circle. Thus, both verified vertices are marked as 
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unsuitable for the Voronoi decomposition. Usually, this can be observed in the 
regions of the highly deformed lattice, where the lattice connection cannot be 
directly mapped onto the Voronoi face. The end of the loop, running through all 
vertices of the considered Voronoi cell, finishes the consistency check. 

 
Fig. 2.11. Validation of the faces of the local Voronoi decomposition 

The following loop, running through all faces of the considered Voronoi cell, 
is used to mark the suitable faces of the Voronoi cell and the appropriate 
connections of the lattice. If the considered face is a boundary face, marking is 
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not performed. The next condition checks all the vertices of the considered face. 
If all vertices have been marked as suitable, the entire face is marked as suitable. 
Otherwise, the connection, corresponding to the considered face, would be 
marked as belonging to the region of the highly deformed lattice, which could not 
be accurately visualized by using the Voronoi cells. The end of the loop, running 
through all faces of the considered Voronoi cell, finishes the marking, procedure. 
In Figure 2.10c, the marked connections are plotted as yellow tubes, which 
illustrates how the visual model validation helps to indicate the regions of the 
highly deformed lattice. It is worth noting that all validation modules can be 
removed from the pipeline to save computational time in the case of small 
geometric deformations in the lattice. It is worth mentioning that in the areas of 
the propagating cracks, the developed local Voronoi-based method generates 
exactly the same decomposition as the Voronoi method (Rycroft 2009) until the 
lattice topology is consistent with the cells of a standard Voronoi diagram. 

2.3. Cell Centre-based Method 

The cell centre-based method for extracting the crack surfaces was developed as 
an alternative to the Voronoi-based method to extend crack visualization to the 
regions of a highly deformed lattice. 

 
Fig. 2.12. Illustration of cell centre-based method 

Figure 2.12 shows the application of cell centre-based method in the 2D 
region of deformed lattice. Thin red lines represent the broken lattice 
connections, while red tubes visualize cracks. Black lines represent the 
unbroken lattice connections. The initial space decomposition, which is 
identical to the local decomposition generated by the cell-cut method, is 
assembled from the lattice connections. The cell centre-based method also 
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generates an additional space decomposition represented by blue tubes in order 
to increase the accuracy of the surface extraction and to visualize the fractured 
regions covered by the highly deformed lattice, which is indicated by green 
connections in Figure 2.12. 

 
Fig. 2.13. The simplified schema of the cell centre-based method 
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The simplified schema of the developed method is presented in Figure 2.13. 
The method starts from the module, which prepares the data structures for the 
subsequent computations. Another module generates the initial local 
decomposition from the lattice connections covering the fractured regions 
(Figure 2.7). The next module marks the broken connections and their 
neighbouring connections to identify the topology of the fractured regions. 

In Figure 2.13, the loop, running through all lattice connections, starts the 
generation of the geometry for the new local decomposition based on the 
geometrical cell centres. A simple condition checks if the current connection has 
been marked because a new decomposition is required only in the fractured 
regions. The second loop runs through all cells, including the processed 
connection. It is worth mentioning that the specific information about the cells 
associated with the processed connection, is necessary only for the cell centre–
based method. The required list of indices of the cells is prepared in the orange 
module (Figure 2.7). Another module calculates the geometric centre C of the 
considered cell by using the formula for the centroid (Krantz et al. 2006) of a finite 
set of k vertices: 

k

xxx
C

k
+++

=

....

21  (2.3) 

where x1; x2;...; xk, are the coordinates of vertices in R3. The end of the loop 
running through all cells, including the marked connection, completes the 
generation of vertices for the new face crossing the processed connection. Another 
module forms the new face from the calculated centres of the cells associated with 
the processed connection. Finally, the attribute values of the marked connection 
were mapped onto the new face. The generated faces are represented by graphics 
primitives. The generated faces are not joined to the cells around the centres of 
the particles because this topology requires some additional storage. At the end of 
the pipeline, the surfaces of the propagating cracks are visualized by colouring the 
generated faces according to the values of the mapped attributes. 

2.4. Distributed Visualization Software 

The proposed methods for visualization of cracks were implemented in the grid 
visualization e-service VizLitG and the distributed visualization software 
VisPartDEM that were developed for remote visualization of discrete particle 
systems. 
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2.4.1. Grid Visualization e-service VizLitG 

The client-server architecture of the visualization e-service is based on the widely 

recognized web standards. Java EE platform (Jendrock et al. 2010) provides the 

tools for remote client-server communication. VizLitG is implemented in 

GlassFish (Goncalves 2009) application server by using convenient tools such as 

web service designer and web service tester that allow programmers to 

significantly reduce the development efforts. The Message Authentication over 

SSL mechanism of GlassFish is employed for security purposes. The server 

authenticates a client of the visualization service by using a basic authentication 

scheme including the name/password pair of credentials. Moreover, HTTPS 

protocol using Secure Sockets Layer (SSL) version 2.0 is used for message 

integrity and confidentiality. The e-service architecture and communication 

schema are illustrated in Figure 2.14.  

 
Fig. 2.14. The architecture and communication of grid  

visualization e-service VizLitG 

A visualization pipeline is distributed between the client and the server. A 

visualization engine responsible for data filtering, mapping and rendering is 

implemented as a part of the main service, which runs on a special User Interface 

computer named UIG (User Interface for Graphics). Thus, a natural access to grid 

resources is available for the service. User authentication and the full data set 

transfer from SE are performed by traditional means available in gLite/EMI 

distribution. The client implemented as Java application handles user interaction. 

It consists of a GUI and a Remote Viewer. In order to simplify the installation of 

the client for less experienced users, the client software is downloaded by Java 
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Web Start (Marinilli 2001). The client does not depend on hardware and operating 
system, therefore, it can run on any PC. 

A visualization network is interactively assembled from the provided 
modules by using GUI. Tabular design of GUI fields simply illustrates the 
dataflow. The resulting pipelines are described by XML language (Evjen et al. 
2007) according to the developed schema. The main elements describe the 
selected data, the included filters, the considered mappers and the specified 
parameters of the renderer. Valid XML documents are automatically generated 
and transferred from the client to the server by JAX-WS (Kalen 2009) Runtime 
based on high-level SOAP protocol (Englander 2002). Data filtering, mapping and 
rendering are always performed on the server, therefore, a sufficiently powerful 
server is required in the case of a large number of simultaneously working users. 
However, the latency of gLite/EMI resource broker (EGEE 2009; Kačeniauskas 
et al. 2010) does not influence a visualization process. 

 
Fig. 2.15. Visualization of hopper discharge by using GLSL shaders 

The visualization engine of the VizLitG is based on VTK toolkit (Schroeder 
et al. 2006). VTK objects are enwrapped by the Java programming language in 
order to build the service running on UIG. High flexibility of e-service is achieved 
retaining sufficient efficiency of the object-oriented library built by C++. GLSL 
shaders (Figure 2.15) supported by VTK are implemented in VizLitG to improve 
the performance of visualization and to exploit the increasing parallelism provided 
by graphics processors. Vertex and fragment shaders (Biddiscombe et al. 2008) 
are employed for fast rendering of heterogeneous particles on GPU. The 
developed Remote Viewer transfers the final images from visualization engine to 
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the client and offers high remote interactivity for VizLitG users provided by VTK 
widgets and GVid (Polak et al. 2008). 

The developed GUI allows interactive data set selection. A simple tabular 
design of GUI is programmed by using Java Swing (Zukowski 2005). To process 
HDF5 (Folk et al. 2011) files automatically, data sets are stored in a predefined 
structure, allowing the software to interpret the structure and contents of a file 
without any outside information. HDF5 groups and data sets are automatically 
processed, considering the values of HDF5 attributes. Time–dependent and time-
independent data are processed differently. Data sets varying in time are grouped 
and stored according to the time step number. GUI separates geometry and 
topology from the attributes such as scalars or vectors in order to emphasize their 
different nature. 

A special data service is developed to provide users with fast access to 
interactively selected parts of data sets located in the experimental SE. The 
experimental SE has the same hardware requirements as any SE of grid 
infrastructure built by gLite. The standard software packages provided within 
glite/EMI like Disk Pool Manager (DPM) Storage Element for disk and Disk Pool 
Manager Storage Element for MySQL are installed on the experimental SE. The 
only additional software running on the experimental SE is GlassFish application 
server, which provides users of VizLitG with the developed Data Service (Figure 
2.14) enabling a partial data transfer. 

The Data Service is developed by using high-level means of GlassFish. 
JAX-WS Runtime transfers metadata and the selected parts of the visualized 
data sets between the service running on UIG and the Data Service running on 
the experimental SE (Figure 2.14). The MIME multipart mechanism for binary 
SOAP attachments (Englander 2002) was employed for sending binary data 
between the developed services. LFC (Logical File Catalog) system (Kaci et al. 
2010) is employed for browsing through the content of SE and identifying the 
file. GUI provides interactive environment to VizLitG users and covers 
unnecessary details of distributed services running on a heterogeneous grid 
infrastructure. 

Thus, remote instrumentation of the developed e-service provides users with 
the flexible access to the remote data files located in SE. The whole data sets 
located in SE can be transferred by traditional LFC (or LCG) means available in 
glite/EMI distribution. Alternatively, files can be transferred by using GridFTP 
tools available in the Java CoG Kit jGlobus module (Laszewski et al. 2001). 
Moreover, transfer of interactively selected parts of data sets located in 
experimental SE rather than the whole data files can save a significant amount of 
visualization time and overcome difficulties related with a limited network 
bandwidth.  
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2.4.2. Distributed Visualization Software VisPartDEM 

The architecture of VisPartDEM (Figure 2.16) is designed for grid infrastructure 
build by glite/EMI middleware, later adapted for Rocks clusters and graphics 
workstation. Client software including GUI and Remote Viewer is downloaded 
by using Java Web Start technology (Marinilli 2001). VisPartDEM client 
implemented as Java application connects to any user interface (UI) by means of 
JSCH library (JCraft 2014). Traditional glite/EMI commands for user 
authentication and authorization, job submission and monitoring are enwrapped 
by Java programming language. Considered visualization pipelines, JDL files and 
shell scripts for running visualization engine are generated automatically in order 
to submit job to grid. Finally, parallel visualization engine of VisPartDEM runs 
on working nodes of any computing element while the compressed video stream 
is efficiently transferred from the zero MPI node through the network and 
displayed on the client by Remote Viewer. 

 
Fig. 2.16. The architecture of VisPartDEM 

Distributed visualization engine of VisPartDEM is based on VTK (Schroeder 
et al. 2006). The graphics model in VTK is at a higher level of abstraction than 
rendering libraries like OpenGL. This means that it is much easier to create useful 
graphics and visualization applications. VTK applications are platform 
independent, which is very attractive for heterogeneous grid architectures. Data 
parallel model of VTK is employed for visualization of large discrete particle 
systems. A large data set is partitioned into many independent subsets that are 
processed in parallel (Figure 2.17). Copies of the same modules run on each CPU 
and visualize independent subsets of data. Data parallel modules are usually 
followed by a data parallel merge module that gathers the independently computed 
results and merges them into a final result on a single processor. A sort-last parallel 
rendering class inputs a z-buffer and image pair from each process by using MPI 
communication and outputs a single composite result image to MPI process zero. 
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GUI of VisPartDEM is designed to cover from user unnecessary details and 
complexities of heterogeneous grid infrastructure. The GUI allows interactive 
browsing of storage element (SE) content and automatic data management. In 
order to process HDF5 files (Folk et al. 2011) automatically, data sets are stored 
in predefined structure allowing the software to interpret the structure and contents 
of a file without any outside information. HDF5 groups and data sets are 
automatically processed considering values of HDF5 attributes. XML interface 
for remote data is developed to provide grid users with the interactive data set 
selection. The interface program reads attributes from HDF5 file and writes 
metadata to XML document, which also has predefined structure. Usually, large 
HDF5 file containing data is dislocated in remote storage element, while small 
XML file containing metadata on the data structure can be stored in any 
convenient location (client PC, UI or even SE). Finally, XML file is processed by 
GUI to display metadata in the corresponding fields and to provide users with the 
ability to select data interactively. 

 
Fig. 2.17. Parallel visualization of compaction process by using 4 processes 

The Remote Viewer of VisPartDEM employs GVid software (Polak et al. 
2008) as video streaming module to provide grid users with the high interactivity 
level. Interactive events and video stream generated by VTK are transferred 
between the server and the client by using GVid. The most important VTK GLUT 
classes, vtkGlutOpenGLRenderWindow and vtkGlutRenderWindowInteractor, 
are renewed to support later VTK versions. As a result distributed visualization 
engine VisPartDEM runs in parallel on working nodes while the video stream is 
transferred through the network from 0-th MPI node and displayed on the client. 
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Thus, remote grid user has full interactivity provided by the Remote Viewer based 
on GVid software and VTK widgets. 

2.5. Implementation of Crack Visualization Methods 

The crack visualization methods are implemented in the distributed visualization 
prototypes VizLitG and VisPartDEM developed for interactive investigation of 
discrete particle systems. Figures 2.18, 2.19 and 2.20 show general visualization 
pipelines of the cell cut-based method, Voronoi-based method and cell centre–
based method, respectively. 

 
Fig. 2.18. Visualization pipeline of cell cut-based method 

Initially, all visualization pipelines read data sets from HDF5 files by using 
the developed vtkHDF5Reader. Then, the specific modules of methods are 
executed. The cell cut-based method consists of two main modules (Figure 2.18). 
The first module generates cells of local decomposition from lattice connections 
in the fractured regions. It is time consuming procedure, which use the effective 
augmentation strategy. The second module produces graphics primitives 
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according to the index in the case table. In the case of Voronoi-based method 
(Figure 2.19), local Voronoi decompositions are generated according to the input 
array of attributes, referred to as the connection state, which identifies the broken 
lattice connections. Then attributes of the connections are directly mapped onto 
the relevant faces of the generated decomposition. 

 
Fig. 2.19. Visualization pipeline of Voronoi-based method 

The cell centre-based method consists of three main modules (Figure 2.20). 
The first module generates cells of the first local decomposition, which is identical 
to the decomposition produced by the cell cut-based method. It is worth 
mentioning that topology of this decomposition does not change in time, therefore, 
the effective augmentation strategy can be applied. The second module compute 
the cell centres according to formula (2.3) and forms faces of the second 
decomposition, which topology is similar to the Voronoi decomposition. The third 
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module copies attribute values from connections to corresponding faces of the cell 
centre-based decomposition. 

In the last stage of all methods, the generated faces or marked connections 
are coloured and rendered. The users are able to select preferable branches of the 
visualization pipeline by using GUI. The output of cell cut-based method is the 
simplest, therefore, the pipeline contains only one branch (Figure 2.18). Various 
graphical representations of crack surfaces may be considered by users. The edges 
of resulting cracks can be thickened employing vtkTubeFilter. Finally, the 
graphical primitives are coloured by using the vtkPolyDataMapper and rendered 
by using vtkRenderer. 

 
Fig. 2.20.Visualization pipeline of cell  

centre-based method 

The output of Voronoi-based method is more complex, because it can contain 
the local decomposition and the results of visual model validation (Figure 2.19). 
The first branch of the pipeline plots crack surfaces. The second branch shows the 
local space decomposition of fractured regions. The last branch of the pipeline is 
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responsible for graphical output of visual model validation. It shows the 
connections that are inconsistent with the faces of Voronoi decomposition in the 
regions of the highly deformed lattice. All branches of the visualization pipeline 
can be combined and executed simultaneously. The lattice connections, the edges 
of the faces and 1D cracks can be represented by tubes employing vtkTubeFilter. 
The condition checks if tube representation is selected by users. Finally, the values 
of the considered attributes are mapped onto colours by the vtkPolyDataMapper, 
while graphical primitives are rendered by using vtkRenderer. 

The output of the cell centre-based method can be visualized by two branches 
of pipeline (Figure 2.20). The first branch of the pipeline plots crack surfaces, 
while the second branch shows the local space decomposition of fractured regions. 
The identical branches of the pipeline are encountered in the description of the 
pipeline of the Voronoi-based method. 

2.6. Conclusions of Chapter 2 

1. The simple cell attribute-based method for visualization of cracks maps 
broken lattice connections to newly generated cells. The spatial crack 
representation is visualized as the scalar cell attribute, but exact geometry of 
crack surface remains undefined. 

2. The functionality of the cell attribute-based method is extended in the cell cut-
based method, which extracts crack surfaces as graphics primitives. The cell 
cut-based method generates surfaces according to the information about the 
way in which cracks cut cells of the space decomposition. 

3. Faces of local Voronoi decompositions are used as extended contact surfaces 
of neighbouring particles. Attributes from lattice connections are directly 
mapped to relevant faces of Voronoi cells without any interpolation. 

4. The Voronoi-based method cannot be applied in the highly deformed regions, 
because of inconsistency between the lattice connections and the faces of the 
Voronoi diagram. The procedure of visual model validation is developed to 
identify the regions of a highly deformed lattice. 

5. The cell center-based method, positioning the vertices of the generated local 
decomposition in the geometric centers of cells, is developed to extend crack 
visualization to the regions of a highly deformed lattice, where the Voronoi–
based method cannot be applied. 

6. Interactively assembled visualization network of VizLitG is automatically 
described by XML language according to the developed schema. Valid XML 
documents are automatically generated on a client and transferred to the 
server by JAX-WS. The XML documents govern assembling of visualization 
pipelines from VTK filters in visualization engine. 
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7. Grid visualization e-service VizLitG provides GLSL shaders for fast 
rendering of discrete particle systems on GPU. 

8. Grid visualization e-service VizLitG provides interactive data selection, 
partial data set transfer and flexible access of the remote data files located in 
the grid storage elements. 

9. Distributed architecture of VisPartDEM is designed for interactive 
visualization on different infrastructures: grid, Rocks clusters and graphics 
workstations. VisPartDEM offers high remote interactivity for grid users 
provided by VTK widgets and GVid software. 

10. Data parallel model for visualization of large discrete particle systems is 
implemented in VisPartDEM software. Parallel visualization engine runs on 
working nodes of any computing element while the compressed video stream 
is efficiently transferred from the zero MPI node through the network and 
displayed on the client by the Remote Viewer. 
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3 
Experimental Research on the 

Proposed Visualization Methods and 
the Developed Software 

In the third Chapter, the results of experimental research are presented. Datasets 
resulting from DEM simulations are described. The performance of distributed 
visualization software and partial data set transfer is investigated. The 
performance and quantitative comparrison of crack surface visualization by using 
the proposed methods is presented. The accuracy of the developed visualization 
methods was evaluated by computing the total depth of cuts made in particles by 
the extracted crack surfaces. 

Experimental results presented this Chapter are published in (Kačeniauskas 
and Pacevič 2011), (Pacevič et al. 2013), (Pacevič, Kačeniauskas, et al. 2015), 
(Kačeniauskas et al. 2012), (Kačeniauskas et al. 2013), (Pacevič and 
Kačeniauskas 2015). 

3.1. Description of Visualized Data Sets 

In this subsection, descriptions of data sets for visualization benchmarks are 
provided. Polydispersed particle systems are visualized by using VizLitG and 
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VisPartDEM to measure performance of partial data set transfer and parallel 
visualization, respectively. Polydispersed particle systems are considered as a 
pilot application for visualization due to a large number of particles that are 
employed modelling actual industrial applications. The developed methods for 
visualization of cracks, propagating in monodispersed particle systems, are tested 
visualizing data sets of the uniaxial tension problem. 

Visualization of polydispersed particle systems (Figure 3.1) is considered for 
performance analysis of VizLitG. The investigated data sets result from the 
solution of the tri-axial compaction problem (Kačianauskas et al. 2010) by the 
discrete element method. The compacted granular material is represented as an 
assembly of spherical non-cohesive visco-elastic frictional particles. The initial 
state of the particulate material is generated, randomly distributing particles in a 
three-dimensional computational domain. It imitates a representative macroscopic 
region element and presents a box in the form of the cube. The compaction is 
performed by the motion of the rigid walls of the box and is controlled in time by 
a constant rate. The numerical solution of tri-axial compaction helps to evaluate 
the unknown material properties. This is a significant problem often encountered 
in the area of material sciences. 

 
Fig. 3.1. Remote visualization of 202215 particles coloured  

depending on the radii 

The considered benchmark is based on the glyph generation, because 
particles, velocities and accelerations are often represented by glyphs that can be 
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coloured depending on the investigated scalar values or oriented depending on the 
examined vector values. Alternatively, particles can be rendered by GLSL shaders 
to exploit the increasing parallelism of GPU. 

 
Table 3.1. Data sets of polydispersed particle systems 

Particles 50880 97036 147408 202215 

Data set size, MB 1.753 3.337 5.067 6.948 

HDF5 size, MB 11.663 22.227 33.756 46.300 

Rendered cells 4884480 9315456 14151168 19412640 

Rendered points 2544000 4851800 7370400 10110750 

Glyph size, MB 232 443 673 923 

 
Data sets of polydispersed particle systems are described in Table 3.1. The 

first row shows the number of particles. The second row presents the size of VTK 
object, which encapsulates the examined data set. Meaningful data is composed 
of the positions of particles and their radii. This data is interactively selected and 
transferred from the experimental SE employing the developed data service. The 
complete numerical results include a lot of values of primary and derived variables 
that are written in HDF5 (Folk et al. 2011) files. Spherical particles are 
represented by spherical glyphs generated by using default VTK input parameters. 
The last three rows show the information on the generated geometry of glyphs 
that can be rendered on screen. 

 
Fig. 3.2. The sizes of the considered data sets 
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Figure 3.2 illustrates the sizes of the considered data sets. The size of HDF5 
files (the curve HDF5) is larger than the size of the investigated data sets (the 
curve DS), because the files include other data, which were not visualized in the 
performed benchmark tests. The most important fact is that the size of the 
rendered polygon mesh (the curve GL) is significantly larger than the size of the 
investigated data set (the curve DS). Usually, the second-order difference can be 
observed, for example, 6.948 MB and 923 MB. It makes the described benchmark 
very specific and inconvenient for some visualization tools. On the contrary, 
particle shaders can perform this benchmark very efficiently. Rather than 
representing particles as glyphs, they are rendered directly to viewport as spherical 
primitives, supplying only a position, radius and any scalar attribute mapped to 
colour. 

 
Fig. 3.3. Parallel computations of tri-axial compaction problem: particles coloured 

according to process ID 

Parallel visualization of polydispersed particle systems (Figure 3.3) of the tri-
axial compaction problem (Kačianauskas et al. 2010) is considered for 
performance analysis of VisPartDEM. The visualization benchmark is based on 
the glyph generation, because particles, computed velocities and obtained forces 
are often represented by glyphs that can be coloured by investigated scalar values 
or oriented by the examined vectors. The examined data sets contain 100036, 
150119 and 200194 heterogeneous particles. Meaningful data are composed from 
the positions of particles and their radius, therefore, the real sizes of the visualized 
data are quite small (3.13 MB in case of 100036 particles). Numerical results 
include a lot of values of variables that are written in HDF5 files, therefore, the 
size of complete HDF5 file is equal to 21.39 MB in case of 100036 particles. The 



3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 55 

 

total size of partitioned result files is up to 21.63 MB, which is close to the size of 
the single file. The size of the single file containing the results of 150119 
polydispersed particle system is equal to 32.09 MB, while the total size of 16 
partitions is equal to 32.37 MB. In case of the polydispersed particle system 
containing 200194 heterogeneous particles, the size of the single file is equal to 
42.79 MB, while the total size of partitioned files is up to 43.07 MB. Particles are 
represented by generated spherical glyphs. The size of the object, which 
encapsulates data of generated glyphs, is equal to 326 MB in case of 100036 
polydispersed particles. It makes the described benchmark very specific, because 
a generated geometry is larger than the initial data set.  

The data sets obtained in solving the uniaxial tension problem were 
visualized to validate the effectiveness of the developed methods for visualization 
of crack propagating in monodispersed particle systems. The considered DEM 
model (Rojek et al. 2011) is able to describe the elastic solid problem exhibiting 
non-uniform distribution of fracture force values. To illustrate the extraction of 
crack surfaces fracture phenomena in the rectangular plate were considered to be 
a two-dimensional benchmark. Two plate boundaries were clamped by connecting 
them to rigid walls, while other boundaries were free. The external excitation was 
implemented via the motion of the clamped boundaries defined by the constant 
velocity (u = 0.05 m/s) in order to simulate tension in the specimen with the 
dimensions of 0.376×0.107 m. The simulated system consisted of 4679 particles 
with the radius equal to 1.58 mm. The lattice was formed of 13722 springs, which 
were considered to be the connections between the neighbouring particles. The 
initial defect, specified by 3 broken connections, is marked by using a red colour 
(Figure 3.4). 

 
Fig. 3.4. Geometry and lattice of the 2D benchmark 

A three-dimensional benchmark is based on the data sets obtained by 
simulating crack propagation in a rectangular cuboid. Two domain boundaries are 
also clamped, while their constant velocity is equal to 0.025 m/s. The dimensions 
of the cubical specimen are equal to 0.211×0.1×0.1 m. The simulated system 
consists of 46875 particles with the radius of 2 mm. The lattice is formed of 
267674 springs. Three data sets, A, B and C, with the initial defects of various 
sizes, were investigated. The initial defects of different rectangular shapes defined 
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by 125, 245 and 121 broken connections are located in the middle of the specimen 
bottom. The geometries of the benchmark problem relevant to data set A, B, C are 
shown in Figures 3.5a, 3.5b and 3.5c, respectively. The considered benchmark 
problems are often investigated in order to understand fracture phenomena. 

 
Fig. 3.5. The geometry of the 3D benchmark problem and the shape of the initial 

defects: a) data set A, b) data set B, c) data set C 

 

a) 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
c) 
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The data set produced by DEM computations includes the positions, 
velocities, accelerations, radii and material properties of particles, as well as the 
lattice connections between the neighbouring particles and their attributes, such 
as the connection state, the force and the fracture force limit. The complete 
numerical results can include a number of values of other primary and derived 
variables. The size of the visualized 2D data set, storing the results of 1284 
selected time steps, is equal to 1.4 Gb. The size of all three-dimensional data sets, 
storing the results of 200 selected time steps in HDF5 files, is about 2.5 Gb. 

 
                                    a)                                                                      b) 

Fig. 3.6. Growth of the number of broken connections: a) 2D, b) 3D 

The time consumed by visualization methods depends on the number of the 
broken lattice connections. Figure 3.6 demonstrates the variation of the number 
of broken connections in time. Rapid changes in the number of broken 
connections can be observed between time steps 80 and 215 in the 2D case, while 
the same phenomenon reveals between time steps 85 and 95 in the case of all 3D 
data sets. In the last time step of the 3D data sets, the number of the broken 
connections made 6.4%, 4.9% and 4.3% of all lattice connections and 4.0% in 
case of the 2D data set. 

3.2. Performance of Distributed Visualization 
Software and Partial Data Set Transfer 

3.2.1. Performance of VizLitG Including Partial  
Data Set Transfer 

A series of benchmark tests examining computational performance of the VizLitG 
e-service were performed on an ordinary personal computer (PC) and HP xw4600 
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workstation. Both computers served as UIG installed at Vilnius Gediminas 
Technical University (VGTU). Hardware characteristics of the PC are listed 
below: Intel® Core2Quad Q6600 2.40 GHz CPU (2 x 4 MB L2 cache and bus 
frequency equal 1067 MHz), 4 GB DDR2 RAM, 320 GB HDD (SATA II 
Extensions and 16 MB cache), Nvidia GeForce 9600GT (512 MB) GPU. 
Hardware characteristics of HP xw4600 are listed below: Intel® Core2Quad 
Q9450 2.66 GHz CPU (12 MB L2 cache and bus frequency equal 1333 MHz), 
8 GB DDR2 RAM, 2 x 250GB HDD (SATA 3 GB/s NCQ 7200), Nvidia Quadro 
FX4600 (768 MB) GPU.  

Hardware characteristics of the experimental SE maintained at VGTU are 
listed below: AMD Athlon X2 Dual Core BE-2300 1.9 GHz CPU, 2 GB DDR2 
800 RAM, 3 x 500GB SATA II Extensions, Software Raid0, 1 Gbps LAN. In 
geographically distributed environment, the data transfer tests were performed 
employing SEs maintained by other LitGrid partners. Hardware characteristics of 
the experimental SE maintained at Kaunas Technical University are listed below: 
Intel®Xeon 5130 2.00 GHz CPU, 2 GB DDR2 800 RAM, 3 x 200GB SATA II 
Extensions, Software Raid5, 1 Gbps LAN. Hardware characteristics of the 
experimental SE maintained at Klaipėda University are listed below: Intel®Xeon 
5110 1.6 GHz CPU, 1 GB DDR2 800 RAM, 3 x 80GB SATA II Extensions, 
Software Raid5, 1 Gbps LAN. 

The performance analysis was concentrated on the server side of the 
visualization e-service, because hardware characteristics of a client PC can be 
very different and hardly predictable. However, three different client computers 
were employed to perform benchmark in geographically distributed grid 
environment. The PC named C-1 and connected to the network in the same 
building as UIG was used as a client computer to illustrate the usual conditions at 
a research laboratory. The hardware of C-1 was identical to hardware of the PC 
described above. The laptop C-2 (AMD Turion 64 X2 Mobile Technology TL-60, 
2 GHz CPU, 2 GB DDR II RAM 667 MHz, ATI Mobility Radeon HD 2600 GPU 
with 512 MB) and other personal computer C-3 (AMD Sempron Dual Core 
Processor 2300, 1800 MHz CPU, 1 GB DDR II RAM 667 MHz, ATI Radeon 
X1200 GPU with 128 MB) with low end hardware were employed to simulate 
less favourable conditions like home environments. The laptop C-2 was connected 
to the network in other district of Vilnius, while C-3 was located in the town 
Alytus. 

Table 3.2. Network load between user interface for graphics and storage elements. 

Network load UIG → VGTU UIG → KTU UIG → KU 

Round-trip time, ms 

(Min/Average/Max) 
0.07/0.08/0.09 1.00/2.06/4.39 4.15/4.65/7.88 

Network bandwidth, Mbit/s 480 184 167 
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Performing the initial benchmark, heterogeneous particles were represented 
by coloured spherical glyphs. The attention was focused on the performance of 
the vtkGlyph3D filter and rendering of the resulting polygon meshes. Mapping 
was not considered because it took a very short time equal approximately to 
0.0001 s. The interactive session handled by GVid software took about 1 s. The 
detailed investigation of interactive performance is provided at the end of this 
section. Parameter transferring between the client (GUI) and the server 
(visualization engine) was fast enough because of the small data size. Performing 
benchmarks, e-service received about 26.3 kB and sent about 6.9 kB. 
Communication lasted less than one-tenth of a second. The data set transfer 
between SE and visualization server performed by JAX-WS Runtime was 
considered. In Table 3.2 second column shows network load, round-trip time and 
network bandwidth messured by using Iperf (Tirumala et al. 2006), between UIG 
and experimental SE (VGTU) connected to the same switch, during the 
benchmark. The average system load of the SE was 10% during the benchmark. 
The benchmark tests were repeated up to ten times and the averaged values were 
examined. 

 
                                   a)                                                                      b) 

Fig. 3.7. Visualization benchmark based on glyphs: a) total visualization time, 
 b) contribution of different visualization procedures to the total benchmark time 

Figure 3.7 shows the total visualization time consumed by the VizLitG 
performing the benchmark based on glyphs and full data set transfer. In Figure 
3.7a, the curve PC64 represents the total visualization time measured on the 
considered PC running Scientific Linux 5.5 64 bit operating system. The curves 
HP32 and HP64 show visualization time obtained on HP xw4600 running 
Scientific Linux 5.5 32 bit and 64 bit, respectively. Almost identical performance 
was observed on the HP workstation, running 32 bit and 64 bit operating systems. 
The measured performance difference between PC (the curve PC64) and HP (the 
curves HP32 and HP64) did not exceed 12.5% of the visualization time. In Figure 
3.7b, the chart compares the contribution of full data transfer from storage element 
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(SEF), file reading from HDD (Reader), glyphs generation (Glyph) and rendering 
(Ren) to the total visualization time measured on HP workstation. It is obvious 
that glyph generation and rendering consumed the amount of time exceeding 93% 
of the total visualization time. The data set transfer became less important, 
because it consumed only about 5% of the time. It can be explained by the fact 
that the size of the generated glyphs was significantly larger than the size of the 
transferred data. 

 
                                    a)                                                                      b) 

Fig. 3.8. Contribution of visualization procedures to the total visualization time of 
benchmark performed by using shaders: a) PC transferring the full data set, b) HP 

transferring part of the data set 

However, visualization of spherical particles can be performed by GLSL 
shaders on GPU, which leads to the huge increase of performance. Figure 3.8 
shows the visualization time measured performing the same benchmark by the 
implemented particle shader. The charts compare the contribution of full data 
transfer from storage element (SEF), partial data set transfer from storage element 
(SEP), file reading (Reader) and particle shading (Shader) to the total visualization 
time. Figure 3.8a shows the contribution of different visualization procedures to 
the total benchmark time measured on PC transferring the full data set, while 
Figure 3.8b shows that measured on HP transferring only the selected part of the 
data set. The total visualization time was reduced by an order of magnitude, 
because the shader performed the work made by glyph generation and rendering. 
The measured shading time varied from 0.04 s to 0.07 s. The full data set transfer 
consumed from 50% to 62% of the total visualization time in spite of the fact that 
time values of insecure transfer were presented in Figure 3.8a. Moreover, the 
contribution of data transfer to the total visualization time grew while data set size 
increased. It is obvious that the reduction of time consumed by data set transfer 
becomes crucial for interactive visualization of the considered data sets. The 
employed partial data set transfer reduced the transfer time up to an order of 
magnitude. Moreover, partial data set transfer consumed less than 21% of the total 
visualization time measured on HP xw4600 (Figure 3.8b). 
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Figure 3.9 shows the time consumed by data transfer from SE. Different 
transfer protocols and software was employed to present the quantitative 
comparison for the investigated data sets. The curve GFTP represents GridFTP 
from Java CoG Kit jGlobus module. The curve LFC represents the means of 
Logical File Catalog included in glite/EMI distribution. The curve JWS shows the 
time consumed by JAX-WS Runtime for transferring the complete data sets over 
SSL. Finally, the curve PDT means partial data set transfer from the experimental 
SE provided by the developed Data Service (Figure 2.14). This secure data 
transfer was also performed by JAX-WS Runtime. The performance of JAX-WS 
Runtime was the best for the considered data sets, because they were not of a large 
size. Employing partial data set transfer, the communication time was reduced by 
up to 7.6 times and became almost negligible. 

 
Fig. 3.9. Data set transfer from SE by using different software 

Figure 3.10 illustrates how secure data transfer over SSL influenced the time 
consumed. The dashed curves, FnoS and FSSL, represent the time consumed by 
insecure full data set transfer and full data set transfer over SSL, respectively. 
Other curves, PnoS and PSSL, show the time consumed by insecure partial data 
set transfer and partial data set transfer over SSL, respectively. Insecure data 
transfer applied instead of the SSL mechanism reduced the time of partial data set 
transfer up to 40%. In the case of full data sets, the obtained percentage was even 
higher (about 42%), because a larger amount of data need to be encoded and 
transferred. However, insecure communication is not recommended for grid e-
services, because the security of important data can be violated.  
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Fig. 3.10. Time consumed by secure and insecure data set transfer 

Figure 3.11 illustrates the performance of the developed Data Service in the 
geographically distributed grid environment. SE components located in the towns 
Kaunas and Klaipėda were employed for measuring the time consumed by the 
data transfer performed by JAX-WS Runtime. Table 3.2 shows network load, 
between UIG at VGTU and SE at KTU in Kaunas, and SE at KU in Klaipėda, 
during the benchmark. The average system load of the investigated SE at KTU 
and KU was 30% and 35%, respectively. The curves, PD_V, PD_Ka and PD_Kl, 
represent the time consumed by the partial data set transfer from the SE located 
in Vilnius, SE located in Kaunas and SE located in Klaipėda, respectively. The 
dashed curves, FD_V, FD_Ka and FD_Kl represent the time consumed by the full 
data set transfer from the SE located in Vilnius, SE located in Kaunas and SE 
located in Klaipėda, respectively. As expected, data transfer from the SE located 
in Kaunas was faster than that from the SE in Klaipėda because of lower latency 
and higher network bandwidth. In the case of full data set transfer, the significant 
time increase was observed when the data was transferred between the distant 
locations. On the contrary, in transferring partial data sets, the time difference 
varied about 0.1 s, which was insignificant. 

The performance of interactivity (Figure 3.12) was also investigated in the 
case of the geographically distributed grid. The Remote Viewer is based on the 
GVid software, which transports the efficiently compressed standard video stream 
to the remote output device and handles interactive events. Video stream is 
encoded by using XviD codec (Xvid 2009). The transfer of several encoded 
frames of different size (179.7 kB and 308.6 kB) was investigated. These typical 
frames result from interactive processing of the image shown in Figure 3.1, which 
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consists of 900 x 900 pixels. The image encoding (Encode), frame sending (Send) 
and receiving (Receive) as well as decoding (Decode) and displaying (Display) 
were considered in the performed benchmark. The image encoding and frame 
sending time is measured on the server UIG (HP xw4600), while receiving, 
decoding and displaying time was measured on three different clients. Interactive 
events were captured and transferred very quickly, therefore, their time 
consumption was not included.  

 
Fig. 3.11. Data set transfer from geographically dist ributed  

SE components to UIG 

Table 3.3 shows network load, round-trip time and network bandwidth 
messured by using Iperf (Tirumala et al. 2006), between UIG and three different 
clients, located in the VGTU building (C1), located in another district of Vilnius 
(C2) and located in Alytus (C3). A low quality network was tested to simulate 
extreme cases representing a bottleneck for interactive visualization. The 
benchmark tests were repeated up to one hundred times and the averaged values 
were presented. 

Table 3.3. Network load between user interface for graphics and clients 

Network load UIG → C1 UIG → C2 UIG → C3 

Round-trip time, ms 

(Min/Average/Max) 
0.17/0.19/0.21 1.89/2.82/44.77 3.12/18.93/1417.73 

Network bandwidth, Mbit/s 933 177 2.1 
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Fig. 3.12. Image coding and frame transfer for remote interactivity 

Figure 3.12 shows the time consumed by GVid on three clients and the server 
UIG. The stacked columns, CL-1, CL-2 and CL-3, represent the time consumed 
by processing larger encoded frame (308.6 kB), which was transferred to the 
clients C-1, C-2 and C-3, respectively. The stacked columns, CS-1, CS-2 and CS-
3, represent the time consumed by processing smaller encoded frame (179.7 kB), 
which was transferred to the clients C-1, C-2 and C-3, respectively. The encoding 
was performed on the server, therefore, it consumed almost the same amount of 
time for the defined frame. The time of encoding of different frames was slightly 
different. Different time values were measured transferring the frames to different 
clients, while the receiving time was negligibly small in all cases. Frame decoding 
strongly depended on the client hardware. The C-1 equipped by the 
Intel® Core2Quad Q6600 2.40 GHz CPU was significantly faster than other 
clients. Displaying of the decoded frame lasted about 0.01 s. However, in the case 
of the low end graphics cards like ATI Radeon X1200 installed on the client C-3, 
a longer time was observed. It is evident that frame sending strongly depends on 
the network connection and the frame size. It is not suitable for interactive 
purposes in the case of the low bandwidth and high latency networks like the 
connection between the UIG and C-3 located in Alytus. However, the GVid is 
well designed for a variable or low bandwidth, because of the efficient 
compression codec XviD and rate adaptation to the current network bandwidth. 
Thus, the frame rate was automatically adapted to a low bandwidth, and the 
transferred data was reduced. 
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Fig. 3.13. Contribution of visualization procedures to the total visualization time 

Figure 3.13 presents a comparison of the total visualization time consumed 
by the locally distributed e-service with that measured in geographically 
distributed grid environment. The stacked columns compare the contribution of 
secure partial data set transfer from the storage element (SEP), file reading 
(Reader), particle shading (Shader) and minimal interactive session including two 
calls of vtkRenderWindow (Interact) to the total visualization time. Test cases 
L50880, L97038, L147408 and L202215 represent visualization benchmark of 
different polydispersed particle systems performed on the locally distributed 
components of e-service. Thus, UIG, SE and the client C-1 were located in the 
VGTU building. Moreover, UIG and SE were connected to the same switch. Test 
cases D50880, D97038, D147408 and D202215 represent the same benchmark 
performed on geographically distributed grid components. The UIG (HP xw4600) 
was located at VGTU in Vilnius, while the SE was located in Kaunas. Moreover, 
the client C-2 was connected to the network in another district of Vilnius to 
simulate visualization in home environment. The employed hardware and network 
characteristics measured during the benchmark were provided above. 

The geographically distributed components of the infrastructure increased 
the total visualization time from 24% to 34% (Figure 3.13). As expected, time 
values of particle shading were very close in all cases because shading was 
performed by the same GPU. The differences in time consumed by data reading 
were insignificant. The most significant time increase was observed during the 
interactive session, because of the low performance of the laptop hardware 
employed for frame decoding (Figure 3.12). The increase in time consumed by 
the partial data set transfer from the distant SE was not significant. In the case of 
the largest system of particles, the measured difference was equal to 0.091 s. It 
can be concluded that the developed Data Service, providing a secure partial data 
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set transfer from the SE, considerably reduced the size of the transferred data and 
demonstrated good performance in the geographically distributed grid 
environment. 

3.2.2. Performance of VisPartDEM Including Parallel 
Visualization 

The desktop-delivered visualization and grid computing might become the 
solutions providing sufficient performance by visualizing a relatively large data 
set with the help of relatively cheap hardware. A benchmark was run to illustrate 
the performance of the developed software for visualization of discrete particle 
systems. 

VisPartDEM benchmark was performed on BalticGrid-II site ce2.grid.vgtu.lt 
collected from ordinary PCs equipped by GPUs. This glite/EMI CE maintained 
by VGTU was considered for benchmark, because it supported direct GPU 
rendering and it was based on the multi-core architecture. The CE consisted of 14 
HP Compaq dc7900 personal computers (nodes) including Pentium(R) Dual-
Core CPU E5300 2.60 GHz, 4 GB DDR2 RAM 800 MHz, 500 GB HDD. Each 
node is equipped by GPU (Nvidia GeForce 9600GT 512 MB 256 bit). Nodes are 
connected to 1 Gbps Ethernet LAN by 3Com Baseline Switch 2928-SFP Plus (24 
auto sensing 10/100/1000Mbps Base–TX ports). Hardware characteristics of the 
storage element se.grid.vgtu.lt (SE-1) maintained by VGTU are listed below: 
AMD Athlon X2 Dual Core BE-2300 1.9 GHz CPU, 2 GB DDR2 800 RAM, 3 x 
500 GB SATA II Extensions, Software Raid0 and 1 Gbps LAN. The SE-1 was 
connected to the same switch as the ce2.grid.vgtu.lt. In geographically distributed 
environment, the data transfer tests were performed employing the storage 
element se.bg.ktu.lt (SE-2) located at Kaunas Technical University (KTU). 
Hardware characteristics of the SE-2 are listed below: Intel®Xeon 5130 2.00 GHz 
CPU, 2 GB DDR2 800 RAM, 3 x 200 GB SATA II Extensions, Software Raid5, 
1 Gbps LAN. 

The tests were repeated up to ten times and the averaged values were 
investigated. The main attention was focused on the performance of the data 
transfer from SE, speed-up of visualization procedures and the interactive 
performance. Mapping was not considered, because it took a very short time equal 
approximately to 0.0001 s. In the performed benchmark, MPI communication for 
message passing between working nodes is employed for composition of the final 
image. Detailed investigation of MPI communication is not presented, because it 
lasts negligible time (less than 0.002 s). HDF5 files were transferred from the SE 
to WNs by using LFC means. Each process of VisPartDEM transferred its data 
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file independently, in asynchronous fashion. In case of the considered data sets 
asynchronous data transfer can be up to 11 times faster than the synchronous one.  

Table 3.4. Network load between compute element to storage 

Network load CE → SE-1 CE → SE-2 

Round-trip time, ms 

(Min/Average/Max) 
0.161/0.229/2.218 1.00/2.06/4.39 

Network bandwidth, Mbit/s 583 184 

 
The asynchronous data transfer is investigated in geographically distributed 

grid. Each process independently transfers its data file from the SE to its WN. The 
longest transfer time is picked up from times consumed by all parallel processes. 
The network load, between CE to SE-1 at VGTU in Vilnius and CE to SE-2 at 
KTU in Kaunas, is described in Table 3.4. The average system load, during the 
geographically distributed benchmark, of the SE-1 and SE-2 was equal to 10% 
and 30%, respectively.  

 
Fig. 3.14. Time consumed by the data transfer from SEs to WNs 

Figure 3.14 shows the time consumed by the asynchronous data transfer. The 
curves VGTU-100, VGTU-150 and VGTU-200 represent time consumed by 
transferring data sets of 100036, 150119 and 200194 particles, respectively, from 
SE-1 to WNs of ce2.grid.vgtu.lt. The dotted curves KTU-100, KTU-150 and 
KTU-200 represent transferring data sets of 100036, 150119 and 200194 particles, 
respectively, from SE-2 located at KTU to CE located at VGTU. The 
asynchronous data transfer helps to reduce transferring time in case of very small 
number of processes. All parallel processes use the same network equipment and 
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the same hardware of the employed SE. Encountered bottlenecks do not allow 
attaining parallel speed-up in data transfer. The distant data transfer strongly 
depends on the network load, therefore, the curves representing data sets of 
different size are not so gradually distributed. As expected, data transfer from the 
distant SE-2 was slower than that from SE-1 located in the same building as CE. 

Table 3.5. Network load between compute element and client 

Network load CE → C-1 CE → C-2 

Round-trip time, ms 

(Min/Average/Max) 
0.17/0.19/0.21 1.75/9.25/71.64 

Network bandwidth, Mbit/s 933 1.95 

 
The performance of interactivity was also investigated in the case of the 

geographically distributed grid. The Remote Viewer is based on the GVid 
software, which transports the efficiently compressed standard video stream to the 
remote output device and handles interactive events. Video stream is encoded by 
using XviD codec (Xvid 2009). The transfer of the encoded frame of 302.6 kB 
size was investigated, which consists of 1100 x 600 pixels. The image encoding 
(Encode), frame sending (Send) and receiving (Receive) as well as decoding 
(Decode) and displaying (Display) were considered in the performed benchmark. 
The image encoding and frame sending time is measured on CE in VGTU, while 
receiving, decoding and displaying time was measured on two different clients. 
Interactive events were captured and transferred very quickly, therefore, their time 
consumption was not included. Table 3.5 shows network load between CE to the 
client C-1 located in VGTU building and C-2 located in Alytus. A low quality 
network was tested to simulate extreme cases representing a bottleneck for 
interactive visualization. The benchmark tests were repeated up to one hundred 
times and the averaged values were presented. 

Figure 3.15 shows the time consumed by GVid on two clients (the curves C-
1 and C-2) and the CE. The encoding was performed on the server, therefore, it 
consumes almost the same amount of time for the defined frame. Different time 
values were measured transferring the frames to different clients, while the 
receiving time was negligibly small in all cases. Frame decoding strongly 
depended on the client hardware. The C-1 equipped by the Intel® Core2Quad 
Q6600 2.40 GHz CPU was significantly faster than the other client. Displaying of 
the decoded frame lasted about 0.01 s. However, in the case of the low end 
graphics cards like ATi Radeon X1200 installed on the client C-2, a longer time 
was observed. It is evident that frame sending strongly depends on the network 
connection and the frame size. It is not suitable for interactive purposes in the case 
of the low bandwidth and high latency networks like the connection between the 
CE and C-2 located in Alytus.  
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Fig. 3.15. Image coding and frame transfer for remote interactivity 

 
Fig. 3.16. Parallel speed-up attained 

Figure 3.16 illustrates parallel speed-up of VisPartDEM. The curves G-200, 
G-150 and G-100-2P represent visualization of 200194, 150119 and 100036 
particles employing GPU rendering performed by two processes per multi-core 
node, respectively. The curve G-100-1P represents visualization of 100036 
particles employing GPU rendering performed by one processes per node while 
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the curve G-100-CPU represents visualization of 100036 particles employing 
CPU rendering. The special curve Ideal shows the ideal speed-up. 

Parallel speed-up of visualization employing GPU rendering is lower than 
that of visualization based on CPU rendering. However, execution time of 
visualization employing GPU is significantly shorter than that of using CPU 
rendering. Higher speed-up was measured visualizing larger discrete particle 
systems. It becomes obvious that in usual grid conditions, when two processes use 
one GPU on multi-core architecture, parallel speed-up achieved by GPU 
rendering is moderate. It can be concluded that Figure 3.16 proves sufficient 
speed-up of visualization performed on grid testbed based on multi-core 
architecture. 

 
Fig. 3.17. Contribution of visualization procedures to the total benchmark time 

In Figure 3.17, the chart compares the contribution of data transfer 
(Transfer), visualization (Visualize) and interactive session (Inter) to the total 
visualization time of 200194 particles measured on the CE. Visualization includes 
data reading, glyphs and parallel GPU rendering, while interactive session 
consists of image encoding, frame sending, receiving, decoding and displaying as 
well as processing interactive events. The stacked columns G-1, G-2, G-4, G-8, 
G-12 and G-16 represent visualization time on grid site by using 1, 2, 4, 8, 12 and 
16 processes, respectively. Figure 3.17 shows that visualization time was 
significantly reduced employing parallel processing. Moreover, performing 
glyphs-based benchmark the time consumed by interactive session is negligible. 
However, the overall problem is not scalable, because of the data transfer from 
SE, which is insignificantly growing. 
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3.3. Performance of Crack Surface Generation and 

Visualization 

3.3.1. Visual Results of the Proposed Methods  

The developed visualization methods were applied to visualize geometry of 

propagating cracks. 

 
Fig. 3.18. Visualization of the lattice and cracks in 2D 

Figure 3.18 presents visualization of cracks performed by the cell attribute-

based method in 2D. The lattice connections represented by coloured tubes are 

plotted for illustrative purposes. A red tube indicates that the corresponding lattice 

connection is already broken and the force coupling neighbouring particles is 

equal to zero. Cracks are visualized by colour mapping of the calculated cell 

attributes on the generated triangles (2.1). The predefined colour table is employed 

for relevant visualization of the investigated phenomenon. The cells coloured in 

blue do not contain cracks, which indicates zero values of the cell attribute 

calculated by the formula (2.2). The triangles including only one broken 
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connection are coloured in cyan. The cells that have two broken connections are 

coloured in yellow. It means that crack cuts the cell. The triangles coloured in red 

contains the branching crack, because all edges of the cell are broken and the 

investigated region is highly fractured. 

 
Fig. 3.19. Visualization of cracks in 3D 

Figure 3.19 shows crack propagation in 3D. In this case, the colour mapping 

is more sophisticated, because the generated topology contains two types of cells, 

i.e. pyramids with triangular or quadrilateral bases. The 3D cells that do not 

contain the broken connections are extracted by the filter vtkExtractCells. 

Pyramids containing small defects, i.e. one or two broken connections, are 

coloured in cyan. The yellow colour represents the cells containing 3 or 4 broken 

connections, which illustrates the cells cut by the crack surface. The red pyramids, 

containing more than 4 broken connections, indicate the highly fractured regions 

of material. The crack propagating upwards from the specimen bottom, damaged 

by the initial defect, can be clearly observed in Figure 3.19. 

Figure 3.20 presents visualization of cracks propagating in the rectangular 

plate. The local Voronoi decomposition is generated in the vicinity of cracks to 

define the extended contact surfaces of the particles coloured in blue. The cracks 

are represented by red tubes that are plotted on the contact surfaces. Model 

validation is illustrated by rendering the coloured lattice connections. The 

elongated connections are represented by green tubes while the high deformation 

areas are shown by yellow tubes. In the regions containing a lot of broken lattice 

connections the particles have more freedom to move. Consequently, high 
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deformations can prevent generating the Voronoi decompositions suitable for 

visualization purposes. 

 
Fig. 3.20. Visualization of cracks, extended contact surfaces and model validation 

Figure 3.21 shows visualization of the crack surfaces propagating in the 

three-dimensional domain. The cracks are plotted on the extended contact surfaces 

represented by the faces of the local Voronoi decomposition. The crack surface is 

coloured in red, while the edges of the relevant Voronoi faces are represented by 

tubes. It is worth noting that the numerical results of the lattice–based DEM at the 

micro-level are scattered, because of the randomly distributed material properties 

of the individual particles. It is well-known that fractures can be of stochastic 

nature and have scattered defects at the micro-level (F. Zhou et al. 2005). The 

visualization confirms that the crack surface is continuous only at the location of 

the initial defect. The holes and disjoint pieces of the surfaces appearing due to 

the scattered nature of fractures can be observed in the upper part of the cracked 

region. The visualization of cracks on the extended contact surfaces facilitates the 

analysis of the structure and topological connectivity of crack surfaces as well as 

the identification of holes.  

Figure 3.22 presents visualization of the crack curves extracted by applying 

two different methods in a case of the two-dimensional benchmark. The cracks 

are represented by red tubes, while local decompositions are shown by blue tubes. 

Figure 3.22a and Figure 3.22c show the cracks extracted by using the cell cut-

based method, while Figure 3.22b and Figure 3.22d illustrate an application of 

the cell centre-based method. It is worth noting that the methods generate local 

decompositions of different topologies. The cracks obtained by using the cell cut-

based method seem to  be  smaller  and  contain  separate  vertices,  representing  
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Fig. 3.21. Visualization of cracks surfaces using local Voronoi-based method 
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                   a)                     b)                          c)                                         d) 

Fig. 3.22. Local decompositions and cracks extracted by the investigated methods in 2D: 
a) the cell cut-based method, b) the cell centre-based, 

c) application of the cell cut-based technique to highly fractured and deformed regions, 
d) application of the cell centre-based technique 

 to highly fractured and deformed regions 

spatially disconnected broken connections. The cell centre-based method 

represents such connections as disconnected lines (tubes) plotted in the contact 

region between the neighbouring particles. Figure 3.22c and Figure 3.22d 

demonstrate the application of the developed extraction methods to the fractured 

regions of a highly deformed lattice marked by green connections. In the regions 

containing a lot of broken connections of the lattice, the particles have more 

freedom to move. In the fractured regions, the initial topological connectivity of 

the nearest contacting particles fixed by the connections of the computational 

lattice does not hold because of the intensely changing positions of the particles. 

Consequently, high deformations of the computational lattice can prevent 

generation of accurate space decompositions suitable for visualization purposes. 

In spite of these difficulties both developed methods were able to extract cracks 

in the last time step of computations containing 548 broken connections. 

Figure 3.23 shows visualization of cracks propagating in a three–dimensional 

domain. Figure 3.23a presents 103-rd time step of the data set A visualized by 

using the cell cut-based method, while Figure 3.23b shows visualization of the 

same time step obtained by using the cell centre-based method. The crack surfaces 

are coloured in red, while the edges of the faces and lines of the cracks are 

represented by green tubes. Red points show the disjoint vertices of the cracks 

resulting from the application of the cell cut-based method to separate broken 

connections, having no direct topological connectivity with the fractured regions. 

The transparent faces of the cracks help to explore the overlapping surfaces. In 

the presented figure, the extracted surfaces are not smoothed to visualize the 
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simulation results accurately and to provide researchers with the possibility 

visually to check the accuracy of the employed numerical method. The curved 

surfaces extracted by the cell centre-based method are more continuous. 

Moreover, they consist of faces and do not have any primitives of lower 

dimensionality, such as lines and vertices. However, the surfaces extracted by the 

cell cut-based method perfectly illustrate the straightforward propagation of the 

main crack.  

 
                                    a)                                                                      b) 

Fig. 3.23. Visualization of crack surfaces extracted by using different methods: 
 a) cell cut-based method, b) cell centre-based method 

Visualization confirms that the crack surface is only continuous at the 

location of the initial defect. The holes and disjoint pieces of the surfaces formed 

due to the scattered nature of the fracture phenomena can be observed in the upper 

part of the cracked region. The extraction of the crack surfaces facilitates the 

analysis of the structure and topological connectivity of cracks as well as the 

identification of holes. 

3.3.2. Performance Analysis 

The benchmark tests were carried out on two personal computers to validate the 

computational performance of the visualization methods. Hardware 

characteristics of the personal (C1) are listed below: Intel® Core i7-3770 3.40 

GHz CPU, 2x1 TB HDD, 16 GB DDR3 1600 MHz RAM and Nvidia GeForce 

GTX 660 Ti GPU (1344 CUDA cores, 2 GB GDDR5, 144.2 GB/sec memory 

bandwidth). Hardware characteristics of the personal (C2) are listed below: Intel® 
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Core i7-4790 3.60 GHz CPU, 2x1 TB HDD, 32 GB DDR3 1600 MHz RAM and 

NVIDIA Quadro K5000 GPU (1536 CUDA cores, 4 GB GDDR5, 173 GB/sec 

memory bandwidth). Performing the benchmark, the attention was focused on the 

performance of the crack extractions methods, reader and renderer of the resulting 

polygon meshes. Mapping was not considered, because it took a very short time 

equal approximately to 0.0001 s. The benchmark tests were repeated up to ten 

times and the averaged values were examined. 

 
Fig. 3.24. Contribution of visualization procedures of the local  

Voronoi-based method to the total benchmark time 

Figure 3.24 shows the contribution of the execution time of the various 

visualization procedures used in performing the 3D benchmark of local Voronoi–

based method on personal computer C1. The columns A_F, B_F and C_F 

represent visualization of the first time step of the simulations of the data sets A, 

B and C, respectively. The columns A_M, B_M and C_M represent visualization 

of the middle time step of the simulations of the data sets A, B and C, respectively. 

The columns A_L, B_L and C_L represent visualization of the last time step, 

containing a large number of broken connections of the data sets A, B and C, 

respectively. The chart compares the contribution of the data reader (Reader), 

preparation of data structures (Prepare), generation of Voronoi decomposition 

(Voronoi) and rendering (Render) to the total visualization time.  

In the visualization of the first time step, the reader took 7.1% of the total 

benchmark time. In the case of other time steps, the time percentage for data 

reading did not exceed 8.6% of the total time. The preparation of data structures 

also took a considerable time in the case of the first time step, but later it did not 

exceed 16.5%. The time consumed by rendering, made 27.4%, 26.9% and 26.1% 

of the execution time in visualizing the last time step on the data sets A, B and C, 
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respectively. In the case of the last time step, the method took the largest amount 

of time, because it generated the largest local decomposition. The generation of 

the local Voronoi decompositions took 52.2%, 49.7% and 48.7% of the execution 

time of the data sets A, B and C, respectively. 

 
Fig. 3.25. Contribution of different visualization procedures of the cell cut-based method 

and the cell centre-based method to the total execution time 

Figure 3.25 shows the contribution of the execution time of various 
procedures used in visualizing the data set A of a 3D benchmark on personal 
computer C1. The columns CU_F and CC_F present the visualization of the first 
time step of the simulations by using the cell cut-based method and the cell centre-
based method, respectively, while the columns CU_L and CC_L present the 
visualization of the last time step. The columns CU_M and CC_M present the 
visualization of the time step requiring the longest execution time. Usually, it 
happens during the time step, when quickly propagating cracks occupy the largest 
new area and local decomposition needs the largest augmentation. The chart 
compares the contribution of the data reader (Reader), preparation of data 
structures (Prepare), generation of cells from the lattice connections (Cells), 
generation of crack surfaces (Alg) and the rendering time (Render) with respect 
to the total visualization time.  

Data reading took nearly equal time intervals, which did not exceed 0.015 s. 

In the case of the time step requiring the maximum amount of computations, the 

reader took up to 13.6% of the total benchmark time. The preparation of data 

structures took more than 60% of the execution time, visualizing the first time 

step, but in other presented cases, it did not exceed 8.0% of the total benchmark 

time. On the contrary, the longest rendering time was measured by visualizing the 

last time step of the computations, because of the largest number of graphical 

primitives employed to represent the developed cracks. In general, the cell cut–
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based method produced a large number of disjoint vertices or lines, which were 
rendered more quickly than the faces generated by the cell centre-based extraction 
method. In the case of the data set A, the measured difference was equal to 3.6% 
of the total benchmark time. In the case of other data sets, the obtained difference 
did not exceed 7.6% of the total visualization time. In the case of the maximum 
visualization load, the generation of cells from the lattice connections took 
approximately 0.074 s, which makes 68.7% and 51.0% of the total visualization 
time measured by the cell cut-based method and the cell centre-based method, 
respectively. It can be easily observed that the generation of the local cell-based 
decomposition consumed the largest amount of time, when it was necessary to 
cover the significant percentage of space by cells. It is obvious that the cell cut-
based method generated the crack surfaces faster than the cell centre-based 
method, because it produced additional local decomposition based on the 
geometrical cell centre. The observed difference made 33.1% of the total 
execution time in the case of the last time step, when the geometric cell centre-
based decomposition was the largest. It is worth noting that the geometry of this 
decomposition depends on the positions of particles, which change in time. 
Therefore, it is hardly possible to use the effective augmentation strategy in this 
case. 

Figure 3.26 presents the quantitative comparison of the execution time of 
local Voronoi-based method including visual validation and global Voronoi 
diagrams on personal computer C1. Figure 3.26a shows the dependency of the 
execution time on the visualized time step of the 2D benchmark, Figure 3.26b 
presents this dependency for the 3D benchmark. The curves LV_A, LV_B and 
LV_C represent the execution time of the local Voronoi-based method of data 
sets A, B and C, while the curve GV represent the generation of the global 
Voronoi diagrams. Voro++ library (Rycroft 2009) was employed to generate the 
global Voronoi diagrams for the sake of quantitative comparison. The obtained 
results show that the execution time of the local Voronoi-based method was 
performed much faster than the construction of the global Voronoi diagrams. In 
spite of long execution time required for model validation, the local Voronoi–
based method took 25.0%, 20.4% and 19.1% of the time required for generating 
the global Voronoi diagram. In the case of 2D benchmark, containing, the local 
Voronoi-based method took only 7.8% of time consumed by the global Voronoi 
diagrams. 

The time consumed for generating the local decompositions depends on the 
number of the broken lattice connections and the area of the fractured region. 
Figure 3.27 demonstrates the time variation of the number of broken connections 
and the number of faces of the generated local decompositions. The curves 
Broken_A, Broken_B and Broken_C represent the number of broken connections 
in the case of data sets A, B and C, respectively. The curves Faces_A, Faces_B 
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and Faces_C represent the number of generated faces in the case of data sets A, B 
and C, respectively. Rapid changes in the number of broken connections can be 
observed between the time steps 80 and 110 in the case of all data sets. A 
considerable increase in the generated faces of the Voronoi cells was also 
observed in this interval. In 2D case, the faces of the local Voronoi decomposition 
had 16.1% of the faces of the global Voronoi diagram covering the whole solution 
domain. The generated faces of the local decompositions had 20.2%, 17.4% and 
15.5% of the faces of the global Voronoi diagram in the case of the 3D data sets 
A, B and C, respectively. 

 
                                    a)                                                                      b) 

Fig. 3.26. Time consumed by local Voronoi-based method and the global 
Voronoi diagrams: a) in 2D, b) in 3D 

  
Fig. 3.27. The number of broken connections and 

faces of the generated local decompositions 
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Figure 3.28 shows the quantitative comparison of the time consumed by three 
different visualization methods on two personal computers named C1 and C2. 
Figures 3.28a, 3.28b and 3.28c presents the visualization time of data sets A, B 
and C, respectively. The curves including acronyms LV, CC and CU represent the 
extraction of crack surfaces performed by the local Voronoi-based method, the 
cell centre-based method and the cell cut-based method, respectively. The curves 
including acronyms C1 and C2 represents the execution time measured on 
computers C1 and C2, respectively. 

In the first time step, high values were obtained, because of the time 
consuming preparation of data structures (Figures 3.24 and 3.25). The main 
increase in the consumed time could be observed when approaching the 100-th 
time step, because of the fastest increase in the number of the broken connections 
and the relevant fractured regions, which had to be covered by local 
decompositions. In the case of the cell centre-based method and the cell cut–based 
method, the effective augmentation strategy caused the following decrease in the 
growth ratio leading to the reduction of the consumed time, because the largest 
fractured regions had been already covered by the generated decompositions. In 
the case of the local Voronoi-based method, the execution time remained at the 
same level, when fractured regions stopped to grow. Thus, the Voronoi based-
method required the longest execution time. 

It can be easily observed that the cell cut-based method helps to extract the 
crack surfaces much faster than the cell centre-based method. At the end of the 
visualized time interval, the surface extraction performed by the cell cut-based 
method took 46.2%, 39.5% and 41.8% of the time consumed by the cell centre–
based extraction of cracks in the case of data sets A, B and C, respectively. It is 
worth noting that the visualization workload strongly depends on the size and 
distribution of the fractured regions as well as on the percentage of the broken 
connections in the fractured regions. In the opposite, the employed different 
computes did not have the large influence to visualization time. For example, at 
the end of computational interval of the data set A the difference equal to 12.80%, 
8.24% and 6.07% of the total execution time was observed on different hardware 
in the case of the local Voronoi-based method, the cell centre-based method and 
the cell cut-based method, respectively. 

Figure 3.29 presents the obtained dependence of execution time of 
visualization on the number of broken connections. Figures 3.29a, 3.29b and 3.29c 
presents the visualization time of data sets A, B and C, respectively. The curves 
LV, CC and CU represent the extraction of crack surfaces performed by the local 
Voronoi-based method, the cell centre-based method and the cell cut–based 
method, respectively. In the case of the local Voronoi-based method, almost linear 
growth rates can be observed until the number of broken connections reached 
some threshold value, which was different  for  the  investigated  data  sets.  This  
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Fig. 3.28. Time consumed by using different visualization methods:  

a) data set A, b) data set B, c) data set C 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
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Fig. 3.29. The dependence of the execution time on the number of broken connections: 

a) data set A, b) data set B, c) data set C 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
 



84 3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 

 

 
Fig. 3.30. Accumulated execution time consumed by the different visualization methods 

value was related to the development of the fractured region covered by the local 
decomposition. The effective augmentation strategy caused the reduction of 
visualization time despite the increasing number of broken connections and the 
growing fractured region in the case of the cell centre-based method and the cell 
cut-based method. 

Figure 3.30 shows the execution time consumed by the different surface 
extraction methods for visualization of all time steps of data sets A, B and C on 
different computers. The columns LV, CC and CU represent visualization of 
cracks performed by the local Voronoi-based method, the cell centre-based 
method and the cell cut-based method, respectively. The columns including 
acronyms C1 and C2 represent the execution time measured on computers C1 and 
C2, respectively. The columns including acronyms A, B and C present the 
visualization time of data sets A, B and C, respectively. It can be observed that 
the cell cut-based method extracted the crack surfaces much faster than the other 
methods. The local Voronoi-based method needed the longest execution time, 
because it was hardly possible to implement the effective augmentation strategy 
into its structure. The surface extraction performed by the cell cut-based method 
took 23.4%, 20.2% and 22.2% of the time consumed by the local Voronoi-based 
extraction of cracks in the case of data sets A, B and C, respectively. The 
visualization performed by the cell centre-based method took 47.2%, 43.8% and 
46.4% of the time consumed by the local Voronoi-based visualization in the case 
of data sets A, B and C, respectively. The largest difference in hardware 
performance equal to 12.35% was observed in the case of the local Voronoi–based 
method, because the longest execution time. The performance difference 
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measured on different computers was equal to 9.19% and 7.55% in the case of the 
cell centre- and cell cut-based methods. 

3.3.3. Accuracy 

Accurate visualization of crack surfaces is still a challenging problem, 
particularly, in the regions of the highly deformed lattice. Particles have more 
freedom to move and to deform the lattice in the regions containing large numbers 
of the broken connections. It is worth mentioning that the most of computational 
models also have limitations in these complex cases. The surface extraction 
methods based on the Voronoi diagrams cannot be applied in such regions, 
because of increasing inconsistency between the lattice connections and the faces 
of the generated Voronoi decompositions.  

 
Fig. 3.31. Time variation of the number of inconsistencies between  

the lattice and cells of Voronoi decomposition 

In general, the crack surfaces can cut particles, reducing the accuracy of the 
applied surface extraction methods. Faces of local Voronoi decompositions are 
used as extended contact surfaces of neighbouring particles. Thus, the Voronoi–
based method accurately defines crack surfaces, because faces are located 
between neighbouring particles (Figure 2.8). The cell centre-based method for 
extracting the crack surfaces was developed as an alternative to the cell cut–based 
method to obtain the crack surfaces more accurately by taking into account the 
spherical shape of the particles. This method can be applied in the regions of the 
highly deformed lattice, where the Voronoi-based method cannot be applied. 
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However, the faces of cell centre-based decomposition cut particles in the regions 
of deformed lattice (Figure 2.12).  

  
Fig. 3.32. Time variation of the total depth of the cuts made  

by the extracted crack surfaces in particles 

The penetration depth of the particular cut can serve as a good accuracy 
measure. Figure 3.32 shows time variation of the total depth of the cuts produced 
by the extracted crack surfaces. The curves CU_A, CU_B and CU_C represent 
the total depth resulting from the application of the cell cut-based method to the 
data sets A, B, and C, respectively. The curves CC_A, CC_B and CC_C represent 
the cell centre-based method applied to the data sets A, B, and C, respectively. 
The total depth of the cuts resulting from the application of the cell centre-based 
method made 12.6%, 14.1% and 8.9% of the depth produced by the cell cut-based 
method in the case of the data sets A, B and C, respectively. The largest difference 
as well as the largest total depth value could be observed in the case of the data 
set A, which had the largest number of the broken lattice connections. The 
extracted crack surfaces most deeply penetrated the particles in the highly 
fractured regions covered by the highly deformed lattices. 

3.4. Conclusions of Chapter 3 

1. The grid visualization e-service VizLitG, employing GLSL shaders and 
partial data set transfer from SE, was able to efficiently perform remote 
visualization of the considered discrete particle systems. 



3. EXPERIMENTAL RESEARCH ON THE PROPOSED VISUALIZATION METHODS… 87 

 

2. The applied GLSL particle shaders reduced the visualization time by an order 
of magnitude, while the full data set transfer from SE consumed more than 
50% of the total benchmark time. 

3. The performance of different transfer protocols and software was investigated 
in order to present the quantitative comparison of time consumed by the data 
transfer. The performance of JAX-WS Runtime was the best for the 
considered data sets.  

4. Employing partial data set transfer, the communication time of JAX-WS 
Runtime was reduced by up to 7.6 times and became almost negligible. 

5. High parallel speed-up of visualization equal to 14.8 is achieved on 16 
working nodes of grid testbed by using CPU rendering. Lower speed-up equal 
to 13.5 is measured performing visualization based on GPU rendering on 16 
working nodes. However, execution time of visualization employing GPU is 
significantly shorter than that of using CPU rendering. 

6. In the 3D case, the number of the broken connections made 6.4%, 4.9% and 
4.3% of all lattice connections, while the local Voronoi decompositions had 
20.2%, 17.4% and 15.5% of the faces of the global Voronoi diagram in the 
case of the data sets A, B and C, respectively.  

7. The quantitative comparison showed that the generation of the local Voronoi 
decompositions including model validation took 25.0%, 20.4% and 19.1% of 
the time consumed by the global Voronoi filter in the case of the data sets A, 
B and C, respectively. 

8. The surface extraction performed by the cell cut-based method took 23.4%, 
20.2% and 22.2% of the time consumed by the local Voronoi-based extraction 
of cracks in the case of data sets A, B and C, respectively. 

9. The surface extraction performed by the cell centre-based method took 47.3%, 
43.8% and 46.4% of the time consumed by the local Voronoi-based extraction 
in the case of data sets A, B and C, respectively. 

10. The number of inconsistent connections makes 0.12%, 0.26% and 0.10% of 
the total amount of connections in the case of the data sets A, B and C, 
respectively. 

11. The total depth of the cuts resulting from the application of the cell centre–
based method made 12.6%, 14.1% and 8.9% of the depth produced by the cell 
cut-based method in the case of the data sets A, B and C, respectively. 
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General Conclusions 

1. Literature review and initial analysis show that data transfer between remote 
parts of distributed visualization systems and infrastructures consumes 
significant part of visualization time, which is very difficult to reduce. 
Moreover, visualization of crack surfaces, propagating in discrete particle 
systems, presents great challengers to researchers because of disjoint pieces 
of surfaces and unavailability of a suitable scalar field defining the geometry 
of cracks. 

2. The quantitative comparison of the performance of the developed service with 
other data transferring software available on grid revealed that the 
performance of JAX-WS Runtime was the best for the considered data sets. 
Moreover, the developed partial data set transfer reduced the transfering data 
size, therefore, the communication time was diminished up to 7.6 times in 
comparison with full dataset transfer. 

3. The quantitative comparison showed that the developed software, based on 
the local decompositions, significantly outperformed the code based on the 
global Voronoi diagrams. The generation of the local Voronoi decomposition 
took from 19.1% to 25.0% of the time consumed by the global Voronoi filter, 
respectively. 

4. The quantitative comparison of visualization methods revealed that the cell 
cut-based method was capable of extracting the crack surfaces much faster 
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than the other methods. The surface extraction performed by the cell cut–
based method took up to 23.4% of the time consumed by the method based 
on the geometrical cell centre. The observed difference in time consumed by 
the local Voronoi decomposition and the decomposition based on the cell 
centre was up to 47.3% of the total benchmark time. 

5. The local Voronoi decompositions do not cut particles revealing the highest 
accuracy. The accuracy of the cell centre-based surface extraction is 
significantly higher than that of the cell cut-based method. The total depth of 
the cuts resulting from the application of the cell centre-based surface 
extraction did not exceed 14.1% of the depth obtained, when the cell cut–
based method was used. 
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Summary in Lithuanian 

Įvadas 

Problemos formulavimas 

Vizualizavimo priemonės vaidina svarbų vaidmenį mokslinės analizės bei matematinio 
modeliavimo cikle, kurį sudaro duomenų paruošimas, skaitinis uždavinio sprendimas, 
grafinė rezultatų analizė ir tolesnis valdančiųjų parametrų koregavimas (Hansen et al. 
2005). Tiek diskrečiųjų dalelių sistemų (Cundall et al. 1979) moksliniai skaičiavimai, tiek 
ir modernūs fiziniai eksperimentai generuoja didelius duomenų kiekius, kuriuos analizuoti 
bei suvokti tampa vis sunkiau. Gautų rezultatų vizualizavimas tampa vis svarbesniu, 
siekiant išanalizuoti sudėtingas priklausomybes, greitai suvokti rezultatus ir priimti 
teisingus sprendimus aukštųjų technologijų kūrimo procese. Dideli nagrinėjamų duomenų 
kiekiai ir nutolusi jų dislokacija kelia vis naujus iššūkius vizualizavimo sistemų kūrėjams. 
Išskirstytosios vizualizavimo sistemos atlieka intensyvius skaičiavimus ir teikiamas 
paslaugas skirtinguose kompiuteriuose, kad pagerintų efektyvumą. Daugelis aktualių 
uždavinių sprendžiami „Rocks“ kompiuterių klasteriuose ir „glite/EMI“ išteklių tinklo 
infrastruktūroje. Išskirstytieji išteklių tinklo (GRID) resursai suteikia naudotojams 
didžiules galimybes, bet kartu iškelia ir sudėtingus uždavinius. Analizuojant rezultatus 
reikia išskirstytosios vizualizavimo programinės įrangos, kuri greitai atlieka vizua-
lizavimo užduotis ir efektyviai tvarko duomenis moderniose informacinių technologijų 
(IT) infrastruktūrose. 

Diskrečiųjų dalelių sistemų (Cundall et al. 1979) modeliavimas yra pagrįstas dalelių 
pozicijomis ir tarp jų veikiančiomis jėgomis. 1D jungtys tarp dalelių netinka pilnavertei 
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interpoliacijai ir standartinėms vizualizavimo technikoms 3D erdvėje. Diskrečiosiomis 
dalelėmis modeliuojant kontinuumo mikrostruktūrą, tarp dalelių nutrūkusios jungtys 
identifikuoja mikropažeidimą (Rojek et al. 2011). Jungdamiesi tarpusavyje pažeidimai 
gali sudaryti sudėtingos formos plyšius, kurių geometrija nėra žinoma. Vizualizuojant 
plyšius, reikia sukonstruoti plyšių paviršių geometriją iš tarp dalelių nutrūkusių jungčių 
topologijos ir kaimyninių dalelių pozicijų. Sudėtinga plyšių forma su skylėmis ir plyšį 
apibrėžiančio skaliarinio lauko nebuvimas riboja standartinių paviršių ištraukimo metodų 
taikymo galimybes. Jungčių tarp judančių dalelių topologija yra fiksuota, todėl negalima 
tiesiogiai taikyti standartinių Voronojaus dekompozicijų (Aurenhammer 1991) ir 
Delauney tinklų (Amenta et al. 2001) generavimo metodų. 

Darbo aktualumas 

Vizualizavimas tampa galingu įrankiu duomenims analizuoti ir rezultatams pateikti 
įvairiose mokslo ir pramonės srityse (Hansen et al. 2005). Dideli duomenų kiekiai ir 
sudėtingas vizualizavimo procesas reikalauja daug programinės įrangos kūrėjų pastangų 
ir kompiuterinių resursų. Dideliems informacijos srautams analizuoti taikomos 
vizualizavimo sistemos ir e. paslaugos, veikia moderniose IT infrastruktūrose: 
kompiuterių klasteriuose, išteklių tinkluose (GRID) ir „debesyse“. Siekiant interaktyvių 
vizualizavimo greičių, efektyvus duomenų perdavimas tarp išskirstytosios infrastruktūros 
komponentų tampa ypatingai aktualiu. 

Medžiagos pažeidimų evoliucijos analizė yra didelis iššūkis daugeliui tarpdalykinių 
mokslų, tame tarpe ir vizualizavimui (Gobron et al. 2001). Plyšių susidarymas aktualus 
statybinėse konstrukcijose, keramikoje (Uematsu 2014), džiovinimo procesuose 
(Kitsunezaki 2011) ir miltelių aglomeratuose (Khanal et al. 2009). Tiksliai apibrėžta 
plyšio paviršiaus geometrija palengvina vizualinę skaičiavimo rezultatų analizę ir irimo 
procesų suvokimą. Plyšio geometriją sukonstravus iš grafinių primityvų, gautą paviršių 
galima eksportuoti į inžinerinių uždavinių sprendimo programinę įrangą tolimesnei 
makrostruktūrų analizei.  

Tyrimų objektas 

Darbo tyrimų objektas – diskrečiųjų dalelių sistemų, modeliuojamų diskrečiųjų elementų 
metodu,  vizualizavimas. 

Darbo tikslas 

Disertacijos tikslas – patobulinti diskrečiųjų dalelių sistemų, modeliuojamų diskrečiųjų 
elementų metodu, vizualizavimo metodus bei padidinti metodų realizacijos išskirstytojoje 
programinėje įrangoje greitaveiką. 

Darbo uždaviniai 

Darbo tikslui pasiekti ir mokslinei problemai spręsti darbe buvo iškelti šie uždaviniai: 

1. Išanalizuoti diskrečiųjų dalelių sistemų išskirstytosios programinės įrangos 
vizualizavimo technologijas bei plyšių, sklindančių dalelių sistemose konti-
nuumui modeliuoti, geometrijos konstravimo ir vizualizavimo metodus. 
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2. Sukurti programinį modulį, leidžiantį sumažinti duomenų kiekį tarp išteklių 
tinklo infrastruktūros komponentų ir ištirti jo realizacijos greitaveiką. 

3. Sukurti naujus plyšių, sklindančių diskrečiųjų dalelių sistemose, paviršių 
geometrijos konstravimo ir vizualizavimo metodus bei realizuoti pasiūlytus 
metodus išskirstytojoje vizualizavimo programinėje įrangoje. 

4. Ištirti ir palyginti sukurtų diskrečiųjų dalelių sistemų vizualizavimo metodų 
realizacijų išskirstytosiose vizualizavimo sistemose greitaveiką. 

5. Ištirti sukurtų diskrečiųjų dalelių sistemų vizualizavimo metodų tikslumą. 

Tyrimų metodika 

Darbe taikomi lyginamosios analizės ir literatūros analizės metodai, naudoti siekiant 
išanalizuoti tyrimo objektą ir atlikti literatūros analizę. Kompiuterinės grafikos ir 
skaičiuojamosios geometrijos žinios buvo taikomos plyšių vizualizavimo metodams kurti. 
Eksperimentinio tyrimo metodai buvo taikomi vykdant sukurtų vizualizavimo metodų ir 
prototipų efektyvumo bandymus. 

Darbo mokslinis naujumas 

Darbo mokslinis naujumas pagrįstas šiais rezultatais: 

1. Sukurta originali dalinio duomenų rinkinio siuntimo iš „gLite/EMI“ išteklių 
tinklo duomenų saugyklos realizacija, kuri interaktyvaus vizualizavimo metu 
sumažina siunčiamų duomenų kiekį tarp resursų tinklo komponentų. 

2. Sukurti nauji plyšių, sklindančių diskrečiųjų dalelių sistemose kontinuumui 
modeliuoti, geometrijos vizualizavimo metodai, pagrįsti Voronojaus ir geometrinių 
celių centrų dekompozicijomis. Lokalios dekompozicijos sudarytos fiksuotos 
jungčių tarp judančių dalelių topologijos pagrindu, todėl standartiniai Voronojaus 
dekompozicijų ir Delauney tinklų generavimo metodai negali būti pritaikyti. 

Darbo rezultatų praktinė reikšmė 

Darbe sukurta vizualizavimo programinė įranga leis analizuoti didelių diskrečiųjų dalelių 
sistemų modeliavimo rezultatus, reikalingus kuriant aukštąsias technologijas Lietuvoje. 
Nauji kintančių paviršių geometrijos vizualizavimo metodai, pagrįsti Voronojaus ir 
geometrinių celių centrų dekompozicijomis, reikalingi irimo mechanikos ir medžiagotyros 
mokslams bei naujų konstrukcijų ir medžiagų kūrimo procesui pagreitinti. Tikslus kintančio 
plyšio geometrijos nustatymas leis daug toliau ir giliau nagrinėti medžiagos irimo procesą 
bei mikro- ar net nanolygiuose gautus rezultatus tiesiogiai perkelti į taikomąją programinę 
įrangą, kuri inžinerinius uždavinius sprendžia makrolygyje. Sukurti metodai įdiegti projekte 
„Virtualizavimo, vizualizavimo ir saugos e. paslaugų technologijų kūrimas ir tyrimai“ (VP1-
3.1-ŠMM-08-K) tiriamoje programinėje įrangoje. 

Ginamieji teiginiai 

1. Dalinio duomenų rinkinio siuntimo iš gLite/EMI duomenų saugyklos realizacija 
sutrumpina vizualizavimo laiką, mažindama tarp grid infrastruktūros kompo-
nentų siunčiamų duomenų kiekį. 
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2. Sukurti originalūs metodai sukonstruoja plyšio geometriją ir leidžia vizualizuoti 
plyšio sklidimą monodispersinėse dalelių sistemose, modeliuojamuose diskre-
čiųjų elementų metodu. 

Darbo rezultatų aprobavimas 

Disertacijos tema paskelbti 6 moksliniai straipsniai. Trys iš jų yra publikuoti recen-
zuojamuose mokslo žurnaluose, kurie įtraukti į Thomson Reuters ISI Web of Science 
duomenų bazę ir turi citavimo indeksą. 

Disertacijos rezultatai buvo aprobuoti 5 konferencijose, keturios iš jų yra tarptautinės 
mokslinės konferencijos: 

• The Fourth International Conference on Parallel, Distributed, GRID and Cloud 
Computing for Engineering (PARENG2015). 2015 m. kovo 24–27, 
Dubrovnikas, Kroatija. 

• 7th World Congress on Particle Technology (WCPT7), 2014 m. gegužės 19–22, 
Beijing, Kinija. 

• The Third International Conference on Parallel, Distributed, GRID and Cloud 
Computing for Engineering (PARENG2013), 2013 m. kovo 25–27, Pécs, 
Vengrija. 

• 18th International Conference on Information and Software Technologies 
(ICIST 2012). 2012 m. rugsėjo 13–14, Kaunas, Lietuva. 

• LMA IIth jaunųjų mokslininkų konferencija „Fizinių ir technologijos mokslų 
tarpdalykiniai tyrimai“. 2012 m. vasario 14, Vilnius, Lietuva. 

Disertacijos struktūra 

Disertaciją sudaro įvadas, trys pagrindiniai skyriai, bendrosios išvados, literatūros šaltinių 
sąrašas, autoriaus publikacijų disertacijos tema sąrašas, santrauka lietuvių kalba. Darbo 
apimtis – 126 puslapiai neskaitant priedų, tekste yra 10 formulės, 63 paveikslai ir 6 
lentelės. Rašant disertaciją buvo panaudota 110 literatūros šaltinių. 

1. Išskirstytųjų vizualizavimo sistemų ir plyšių  
vizualizavimo metodų apžvalga 

Skyriuje apžvelgta vizualizavimo programinė įranga, išskirstytosios vizualizavimo siste-
mos išteklių tinklo (GRID) aplinkose, dalelių sistemų modeliavimas diskrečiųjų elementų 
metodu ir plyšių, sklindančių diskrečiųjų dalelių sistemose, vizualizavimo metodai. 

Vizualizavimo e. paslaugos sparčiai populiarėja išteklių tinkle ir kitose išskirs-
tytosiose informacinių technologijų infrastruktūrose, nors jų valdymas ir duomenų perda-
vimas heterogeninėse sistemose yra labai sudėtingi. Atlikta programinės įrangos apžvalga 
parodė, kad daugelis vizualizavimo sistemų nėra tiesiogiai pritaikytos išteklių tinklui, 
todėl reikalauja didelių programuotojų pastangų siekiant jas naudoti pasirinktoje išteklių 
tinklo aplinkoje. Dauguma apžvelgtų nutolusių vizualizavimo naudotojo sąsajų išteklių 
tinklo aplinkose labai priklauso nuo išteklių tinklo programinės įrangos sistemos arba 
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„midleware“, komunikacijos sąsajų, taikomųjų uždavinių tipo bei bazinės vizualizavimo 
sistemos. Literatūros analizė atskleidė, kad pakankamai daug universalių vizualizavimo 
sistemų integruota į išteklių tinklus, pagrįstuose Globus sistemine įranga. Didelė dalis 
Europos išteklių tinklo infrastruktūros, sukurtos gLite/EMI sisteminės įrangos pagrindu. 
Didelė dalis vizualizavimo technologinių sprendimų negali būti tiesiogiai perkelta iš 
Globus į gLite/EMI aplinką. Dėl šios priežasties sudėtinga rasti universalias nutolusio 
vizualizavimo sistemas, veikiančias gLite/EMI aplinkoje ir gebančias atsiųsti tik dalį 
vizualizuojamo duomenų rinkinio iš duomenų saugyklų. Egzistuoja modernūs vizualiza-
vimo įrankiai, pritaikyti tik siųsti pilnus duomenų rinkinius ir vizualizuoti atskirus 
uždavinius išteklių tinklo aplinkoje. 

Medžiagoje atsirandančių pažeidimų evoliucijos analizė yra didelis iššūkis daugeliui 
tarpdalykinių mokslų, tame tarpe ir vizualizavimui. Esant didelėms apkrovoms 
medžiagoje atsiranda mikropažeidimai. Jungdamiesi tarpusavyje pažeidimai sudaro 
sudėtingos geometrinės formos plyšius. Egzistuojantys metodai nustato atsirandančius 
pažeidimus pradinėje stadijoje, bet negali tiksliai apibrėžti plyšio geometrijos. Plyšio 
atsiradimas 1D jungtyse nustatomas remiantis jėgos tarp dviejų dalelių dydžiu, o plyšys 
sklinda tarp daugelio dalelių 3D erdvėje. Diskrečiųjų elementų metodu modeliuojamuose 
dalelių sistemose plyšiai dažniausiai vizualizuojami technikomis, kurios nekonstruoja 
plyšio geometrijos. Dalelės spalvinamos pagal įvairių atributų reikšmes. Plyšiai, kurių 
plotis artimas ar didesnis už dalelių skersmenį, gali būti vaizduojami nuspalvintomis 
dalelėmis (S1a pav.). Tais atvejais, kai dalis jungčių jau nutrūko, bet tarpai tarp dalelių 
išlieka mažesni nei dalelių skersmuo, dalelių geometrija negali aiškiai pavaizduoti 
susidariusio plyšio paviršiaus 3D erdvėje. Pagrindine alternatyva, kuri plačiai paplitusi ne 
tik diskretinių elementų metodo (DEM), bet ir baigtinių elementų metodo programiniuose 
paketuose, laikomos nuspalvintos nutrūkusios jungtys (S1b pav.), vaizduojamos cilindrais 
ar atkarpomis. Nutrūkusios jungtys parodo vietą kurioje pažeistas medžiaga, bet 
nesuteikia jokios informacijos apie susidariusio plyšio geometriją. 3D erdvėje sklindančių 
plyšių paviršiai, apbrėžti 2D grafiniais primityvais, pateikia daugiau informacijos nei 1D 
nutrūkusių jungčių grafinės reprezentacijos, kuriomis pagrįsti paplitę vizualizavimo 
metodai. 

 
                                    a)                                                                      b) 

S1 pav. Plyšio sklidimas vizualizuotas 2D erdvėje: a) dalelių geometrija,  

b) nutrūkusios jungtys tarp dalelių 
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Atlikta literatūros analizė atskleidė, kad standartiniai paviršiaus rekonstrukcijos 
metodai netinka plyšiams vizualizuoti, nes nėra tinkamo skaliarinio lauko ar patogios 
erdvės diskretizacijos. Paviršiaus konstravimas yra labai komplikuotas, nes sudėtinga 
plyšių geometrija yra sudaryta iš atskirų dalių su skylėmis. Literatūros analizė parodė, kad 
standartiniai Voronojaus diagramų generavimo metodai taip pat netinka diskretiniu 
elementų metodu (DEM) modeliuojamoms dalelių sistemoms vizualizuoti. Skaičiavi-
mams naudojama 1D jungčių topologija nekinta laiko atžvilgiu, tačiau to negalima 
pasakyti apie dalelių pozicijas, apibrėžiančias dalelių sistemos geometriją. Po tam tikro 
laiko tarpo dalelių sistemos geometrija ženkliai pasikeičia, o jos pradinio 1D jungčių 
tinklelio topologija tampa nesuderinama su standartine Voronojaus diagrama. 
Standartiniai metodai generuoja Voronojaus diagramos pagal dalelių pozicijas, o defektų 
atsiradimas nustatomas remiantis pradinėmis 1D jungtimis tarp dalelių. 

2. Vizualizavimo metodai ir jų realizacijos išskirstytojoje 
programinėje įrangoje diskrečiųjų dalelių sistemoms 
vizualizuoti 

Skyriuje detaliai analizuojami sukurti metodai, kurie naudojami plyšio paviršiams vizua-
lizuoti.  

Celių atributų ir celių kirtimo metodai. Celių atributų metodas skirtas plyšiams 
vizualizuoti monodispersinėje dalelių sistemoje. Siūlomas metodas generuoja srities 
dekompoziciją, naujas celes kurdamas iš 1D tinklelio jungčių. Taikant metodą 
suskaičiuojamos kiekvienos celės nutrūkusias briaunas, o rezultatą išsaugo skaliariniame 
celės atribute. Celės spalvinamos pagal atributo reikšmes, remiantis pasirinkta spalvų 
paieškos lentele (S2a pav.). Taip parodomos celės, kuriose yra nutrūkusių jungčių, o jų 
spalva pateikia kiekybinę informaciją apie nutrūkusių jungčių skaičių. 

 
                                            a)                                                        b) 

S2 pav. Metodų iliustracijos: a) celių atributų metodas; b) celių kirtimo metodas 

Deja, celių atributo metodas neapibrėžia plyšio geometrijos, todėl jo funkcionalumas 
buvo praplėstas celių kirtimo metode. Sugeneravęs lokalią srities dekompoziciją ir 
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kiekvienoje celėje suskaičiavęs nutrūkusias jungtis, celių kirtimo metodas generuoja 
plyšio paviršių. Naudodamas informaciją apie nutrūkusias celės jungtis, metodas 
apytiksliai nustato plyšio paviršiaus geometriją nagrinėjamoje celėje, panašiai kaip ir 
žygiuojančių kubų metodas. Paviršiaus geometrija nusakoma grafiniais primityvais. 
Siekiant padidinti metodo greitaveiką, celių kirtimo metodas generuoja lokalią srities 
dekompoziciją ir taiko veiksmingą auginimo strategiją. 

S2 paveikslai iliustruoja metodų taikymą 2D erdvėje. Plonos linijos vaizduoja 
tinklelio jungtis, kur raudona plona linija žymi nutrūkusią jungtį. S2a paveikslas vaizduoja 
celių atributų metodo schemą. Metodo sukurtos celės spalvojamos pagal apskaičiuoto 
skaliarinio atributo reikšmę. Žydrai spalvojamos celės, kurių skaliarinio atributo reikšmė 
lygi vienam, t. y. celė turi vieną nutrūkusią jungtį. Geltonai spalvojamos celės turinčios 
dvi nutrūkusias jungtis. Raudonai spalvojamos celės turinčios tris nutrūkusias jungtis. 
S2b paveikslas vaizduoja celių kirtimo metodo schemą. Metodas sujungia nutrūkusių 
jungčių vidurinius taškus, o gautą liniją vizualizuojame raudonu vamzdeliu. Celių kirtimo 
metodas nėra labai tikslus, nes net reguliaraus dalelių išsidėstymo atveju sugeneruotas 
paviršius kerta daleles. 

Voronojaus dekompozicijos metodas. Sukurtas metodas yra skirtas lokaliai 
Voronojaus dekompozicijai generuoti, panaudojant dalelių pozicijas ir nekintančias 1D 
jungtis tarp dalelių. Lokalios dekompozicijos generavimo principas pagrįstas plokštumų, 
statmenų jungtims tarp dalelių, susikirtimais. 

 
                           a)                                              b)                                             c) 

S3 pav. Voronoi dekompozicijos metodo iliustracijos 

Pagrindinis ciklas vykdomas per daleles, jungiamas nutrūkusių jungčių, apie 
kiekvieną dalelę kuriant Voronojaus celes. Po to vykdomas ciklas per nagrinėjamos 
dalelės kaimynus – sukuriama kaimynines daleles skirianti plokštuma ir ieškoma sankirtų 
su turimomis plokštumomis. Daugiakampių ir tinklelių jungčių atitikimas turi būti 
patikrintas didelės deformacijos regionuose, kai standartinė Voronojaus diagrama 
neatitinka stacionarios 1D jungčių topologijos (S3a pav.). Sugeneruota celė bus 
Voronojaus celė, jeigu visi pradiniai mazgai atitiks tuščios sferos sąlygą (S3b pav.). 
Nustačius didelių deformacijų regioną, persidengiančios lokalios dekompozicijos celės 
nepiešiamos, o regionas pažymimas nuspalvintomis jungtimis (S3c pav.). Nutrūkusios 
jungtys, daleles veikiančios jėgos ir kiti atributai iš jungčių tiesiogiai perkeliami į 
atitinkamas Voronoi celių briaunas tolimesniam vizualizavimui. Šis metodas generuoja 
Voronoi dekompoziciją tik plyšio aplinkoje, siekiant taupyti kompiuterio išteklius. 
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S3 paveiksle vaizduojamas plyšys vizualizuotas lokalia 2D erdvės Voronoi 
dekompozicija. Plyšio geometrija vizualizuota raudonais cilindrais, o mėlyni cilindrai 
vaizduoja lokalią Voronoi dekompoziciją. Geltonais cilindrais pažymėti didelių 
deformacijų regionai. Žalias ir rausvas apskritimai iliustruoja sferos sąlygos tikrinimą 
deformuoto jungčių tinklelio regione. 

Celių centrų metodas. Celių centrų metodas skirtas išplėsti plyšių vizualizavimo 
sritį, nes, skirtingai nei Voronoi dekompozicijos metodą, jį galima taikyti stipriai 
deformuoto jungčių tinklelio regionuose (S4 pav.). Celių centrų metodas tiksliau apibrėžia 
plyšio paviršiaus geometriją nei celių kirtimo metodas, nes atsižvelgia į dalelių sferinę 
formą. 

 
S4 pav. Plyšio vizualizavimas celių centrų metodu deformuotame 

1D jungčių tinklelio regione 

Pirmiausia, celių centrų metodas pažeistuose medžiagos regionuose iš 1D jungčių 
tarp dalelių generuoja srities dekompoziciją, analogišką celių kirtimo metodo 
dekompozicijai. Po to apskaičiuoja dekompozicijos celių geometrinius centrus. Finale iš 
pirmosios dekompozicijos celių geometrinių centrų sudaro antrąją erdvės dekompoziciją. 
Sugeneruota dekompozicija apibrėžia plyšio geometriją ne taip tiksliai, kaip lokali 
Voronoi dekompozicija, bet gali būti taikoma didesnių jungčių tinklelio deformacijų 
regionuose. Siekiant padidinti metodo greitaveiką, celių centrų metode taikoma 
veiksmingą dekompozicijų auginimo strategiją. 

S4 paveiksle iliustruoja celių centrų metodo taikymą deformuotame 1D jungčių 
tinklelio regione. Plonos raudonos linijos nurodo nutrūkusias 1D jungtis, o juodos linijos 
vaizduoja nenutrūkusias jungtis. Plyšio paviršiai pavaizduoti raudonais cilindrais, o 
mėlyni cilindrai vaizduoja lokalią dekompoziciją. Žali cilindrai vaizduoja didelių 
deformacijų regionus. 

Sukurti plyšių vizualizavimo metodai įdiegti vizualizavimo e. paslaugoje VizLitG ir 
išskirstytojoje vizualizavimo sistemoje VisPartDEM. Sukurtas vizualizavimo e. paslaugos 
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VizLitG (S5 pav.) prototipas, skirtas skaičiavimų rezultatams, dislokuotiems nutolusiose 
išteklių tinklo duomenų saugyklose (SE), interaktyviai nagrinėti, patogiai atsiųsti ir 
efektyviai vizualizuoti. VizLitG paremta kliento-serverio architektūra. E. paslaugos 
serveris realizuotas GlassFish taikomųjų programų serveryje, o kliento grafinė aplinka 
realizuota Java Swing biblioteka.  

 
S5 pav. Vizualizavimo e. paslaugos VizLitG architektūra 

Įdiegta lanksti skaičiavimų rezultatų, saugomų HDF5 formatu, interaktyvaus 
nuskaitymo programinė įranga, nepriklauso nuo programavimo kalbos ir operacinės 
sistemos, todėl puikiai tinka heterogeninėms išteklių tinklo sistemoms. VizLitG leidžia ne 
tik atsiųsti visą rezultatų failą LFC/LCG ar GridFTP įrankiais. Duomenų saugykloje 
įdiegta paslauga „Data Service“ vartotojui suteikia galimybę parsisiųsti į VizLitG severį 
tik pasirinktas duomenų rinkinio dalis. 

3. Pasiūlytų vizualizavimo metodų ir sukurtos programinės 
įrangos eksperimentiniai tyrimai 

Skyriuje aprašomi atlikti dalinio duomenų persiuntimo iš duomenų saugyklos tyrimai. 
Diskrečios dalelių sistemos vizualizuojamos GLSL šešėliuokliais, kurių pagalba galima 
pasiekti interaktyvius vizualizavimo greičius. Didelių duomenų rinkinių siuntimas iš 
duomenų saugyklų sudaro didžiąją laiko dalį vizualizavimo procese, todėl pasirinktos 
dalinio duomenų siuntimo technologija leidžia sumažinti siunčiamų duomenų kiekį ir 
padidinti vizualizavimo greitį. 

S6 paveiksle vaizduojamas duomenų siuntimo iš saugyklos SE laikas. Siekiant 
pateikti kiekybinį duomenų siuntimo rezultatų palyginimą, buvo ištestuoti skirtingi 
protokolai ir įvairi programinė įranga. Kreivė GFTP iliustruoja rezultatus, gautus taikant 
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GridFTP protokolą, įdiegtą Java CoG Kit jGlobus modulyje. Kreivė LFC skirta loginio 
failų katalogo (Logical File Catalog) priemonių, įtrauktų į gLite distribuciją, rezultatams 
vaizduoti. Kreivė JWS iliustruoja laiką, kurį sunaudojo JAX-WS visam duomenų rinkiniui 
siųsti. Kreivė PDT iliustruoja laiką, kurį JAX-WS sugaišo siunčiant tik duomenų rinkinio 
dalį, būtiną vizualizavimui. Atlikti testai parodė, kad siunčiant nagrinėjamo dydžio 
duomenis, JAX-WS dirba efektyviausiai. Dar daugiau, siunčiant tik būtiną duomenų 
rinkinio dalį, siuntimo laiką pavyko sumažinti apytiksliai 7,6 karto, todėl jis tapo beveik 
nereikšmingu, lyginant su visu vizualizavimo procesu. 

 
S6 pav. Duomenų siuntimas iš SE 

Darbe nagrinėti plyšių vizualizavimo metodų greitaveikos ir tikslumo kiekybiniai 
palyginimai. Atliktas kiekybinis lokalios Voronoi dekompozicijos metodo realizacijos 
greitaveikos palyginimas su kitų autorių sukurtos Voro++ bibliotekos (Rycroft 2009) 
greitaveika. S7 paveiksle pateikti programų vykdymo laikai nagrinėjamais laiko 
žingsniais. Kreivės LV_A, LV_B ir LV_C rodo lokalios Voronoi dekompozicijos metodo 
vykdymo laiką vizualizuojant duomenų rinkinius A, B ir C. Kreivė GV iliustruoja 
globalios Voronoi diagramos generavimo, naudojant Voro++ biblioteką, laiką. Visų 
duomenų rinkinių atveju generuojama labai panaši globali Voronoi diagrama, todėl 
sugaištamas vienodas laikas ir pateikta tik viena kreivė. Atlikti testai parodė, kad lokali 
Voronoi dekompozicija generuojama daug greičiau negu globali Voronoi diagrama. 
Nepaisant ilgo laiko, reikalingo patikrinti tinklelio jungčių atitikimus, lokalios Voronoi 
dekompozicijos metodo vykdymo laikas sudarė 25,0 %, 20,4 % ir 19,1 % globalios 
Voronoi diagramos generavimo laiko duomenų rinkiniams A, B ir C. 

S8 paveiksle pateiktas trijų vizualizavimo metodų kiekybinis palyginimas naudojant 
du kompiuterius, pavadintus C1 ir C2. S8a, S8b ir S8c paveiveikslai iliustruoja vykdymo 
laiką naudojant duomenų rinkinius A, B ir C. Kreivės LV, CC ir CU vaizduoja lokalios 
Voronoi dekompozicijos, celių centrų ir celių kirtimo metodų greitaveiką. Staigų 
vykdymo laiko augimą ties 100 laiko žingsniu, lėmė greitas nutrūkusių jungčių skaičiaus 
padidėjimas tuo laiko momentu. Celių kirtimo ir celių centrų metodai naudoja veiksmin- 
gą dekompozicijos  auginimo  laike  strategiją.  Praėjusiame  laiko  žingsnyje  sugeneruota  
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S7 pav. Vykdymo laikas naudojant globalų Voronoi metodą ir lokalų 

 Voronoi dekompozicijos metodą 

dekompozicija išsaugoma sekančio laiko žingsnio rezultatams vizualizuoti, todėl 
vykdymo laikas naudojamas tik dekompozicijos auginimui. Dėl šios priežasties po 
staigaus šuolio vykdymo laikas sumažėja, nes didžiausi pažeistų regionų plotai buvo 
padengti lokalia dekompozicija praėjusiuose laiko žingsniuose, o nagrinėjamame laiko 
žingsnyje nutrūkusių jungčių skaičius ir naujai pažeistų regionų plotas yra pakankamai 
nedideli. Lokalaus Voronoi dekompozicijos metodo vykdymo laikas išlieka toks pats, net 
kai plyšys nedidėja, nes Voronoi dekompozicijos celių viršūnių koordinatės kinta 
kiekviename žingsnyje, o metodas negali išnaudoti praėjusio laiko žingsnio topologijos. 
Dėl šios priežasties lokalios Voronoi dekompozicijos metodo vykdymo laikas buvo 
ilgiausiais visų nagrinėjamų duomenų rinkinių atveju. 

Rezultatai parodė kad celių kirtimo metodas vizualizuoja plyšio paviršių greičiau 
negu celių centrų metodas. Celių kirtimo metodo vykdymo laikas sudarė 46,2 %, 39,5 % 
ir 41,8 % celių centrų metodo vykdymo laiko, duomenų rinkiniams A, B ir C. Verta 
pastebėti, kad vykdymo laikas stipriai priklauso nuo plyšio dydžio ir nutrūkusių jungčių 
pasiskirstymo. Vykdymo laiko skirtumas naudojant du skirtingus kompiuterius sudarė 
12,80 %, 8,24 % ir 6,07 % vykdant, lokalios Voronoi dekompozicijos, celių centrų ir celių 
kirtimų metodus, atitinkamai. 

Ištraukti plyšių paviršiai gali kirsti daleles, taip sumažindami metodų tikslumą. Tik 
Voronoi dekompozicijos metodu ištrauktas paviršius nekerta dalelių, bet jo negalima 
taikyti stipriai deformuotose jungčių tinklelio regionuose. Celių centrų metodo sukurtas 
paviršius kerta daleles tik stipriai deformuoto jungčių tinklelio regionuose. Celių kirtimo 
metodas nėra tikslus, nes net reguliaraus dalelių išsidėstymo atveju sugeneruotas plyšio 
paviršius kerta daleles. Paviršių įsiskverbimo į daleles gylis pasirinktas sukurtų metodų 
tikslumui matuoti. 
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S8 pav. Vizualizavimo metodų vykdymo laikas:  

a) duomenų rinkinys A, b) duomenų rinkinys B, c) duomenų rinkinys C 

 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
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S9 pav. Bendras kirtimų gylis kertant daleles ištrauktu plyšio paviršiumi 

S9 paveikslas iliustruoja susumuotą, sugeneruotų paviršių, įsiskverbimo į visas 
daleles gylį. Kreivės CU_A, CU_B ir CU_C vaizduoja suminį celių kirtimo metodo 
įsiskverbimo gylį, o kreivės CC_A, CC_B ir CC_C – suminį celių centrų metodo 
įsiskverbimo gylį. Celių centrų metodo įsiskverbimo gylis sudarė tik 12,6 %, 14,1 % ir 
8,9 % celių kirtimo metodo įsiskverbimo gylio duomenų rinkiniams A, B ir C. Didžiausias 
skirtumas pastebėtas duomenų rinkinyje A, kadangi jame yra didžiausias nutrūkusių 
jungčių kiekis. Ištraukti plyšio paviršiai giliausiai kerta daleles stipriai deformuoto 
tinklelio regionuose. 

Bendrosios išvados 

1. Literatūros apžvalga atskleidė, kad duomenų siuntimas tarp išskirstytųjų 
vizualizavimo programinės įrangos komponentų sunaudoja didelę vizualizavimo 
laiko dalį. Plyšių, sklindančių diskrečiųjų dalelių sistemose, vizualizavimas kelia 
daug iššūkių, nes plyšiai sudaryti iš atskirų dalių su skylėmis. 

2. Dalinio duomenų siuntimo realizacijos greitaveikos kiekybinis palyginimas su 
alternatyvios išteklių tinklo duomenų siuntimo programinės įrangos greitaveika 
parodė, kad JAX-WS Runtime nagrinėjamus duomenų rinkinius siuntė greičiausiai. 
Dalinis duomenų rinkinio siuntimas sumažino perduodamų duomenų kiekį, todėl 
siuntimo laikas sumažėjo iki 7,6 karto, lyginant su pilnų duomenų rinkinio siuntimu. 

3. Kiekybinis greitaveikos palyginimas atskleidė, kad lokalios dekompozicijos gene-
ruojamos žymiai greičiau negu globalios Voronojaus diagramos. Lokali Voronojaus 
dekompozicija sunaudojo nuo 19,1 % iki 25,0 % globalios Voronojaus diagramos 
generavimo kitų autorių sukurta programine įranga laiko. 
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4. Plyšių vizualizavimo metodų realizacijų greitaveikos palyginimas atskleidė, kad 
panaudojus celių kirtimo metodą, galima sukonstruoti plyšio paviršių greičiau negu 
kiti metodai. Celių kirtimo metodo vykdymo laikas sudaro iki 23,4 % celių centrų 
metodo vykdymo laiko. Celių centrų ir lokalios Voronojaus dekompozicijos metodų 
vykdymo laiko skirtumas sudarė iki 47,3 % vizualizavimo testo vykdymo laiko. 

5. Lokali Voronojaus dekompozicija nekerta dalelių, todėl užtikrinamas didžiausias 
vizualizavimo tikslumas. Celių centrų metodu sukonstruotų plyšių paviršių tikslumas 
yra ženkliai didesnis negu celių kirtimo metodu sukonstruotų paviršių. Suminis celių 
centrų metodo įsiskverbimo gylis sudaro iki 14,1 % celių kirtimo metodo 
įsiskverbimo gylio. 
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