192,344 research outputs found

    A peer-to-peer service architecture for the Smart Grid

    Get PDF
    Short paperThe Smart Grid vision needs to address hard challenges such as interoperability, reliability and scalability before it can become fulfilled. The need to provide full interoperability between current and future energy and non-energy systems and its disparate technologies along with the problem of seamless discovery, configuration, and communication of a large variety of networked devices ranging from the resource constrained sensing devices to the large machines inside a data center requires an agnostic Service Oriented Architecture. Moreover, the sheer scale of the Smart Grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. In this position paper, we propose a generic framework, based on Web Services for interoperability, and epidemic or gossip based communication protocols for reliability and scalability, that can serve a general management substrate where several Smart Grid problems can be solved. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios.Important challenges in interoperability, reliability, and scalability need to be addressed before the Smart Grid vision can be fulfilled. The sheer scale of the electric grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. Moreover, the need to provide full interoperability between diverse current and future energy and non-energy systems, along with seamless discovery and configuration of a large variety of networked devices, ranging from the resource constrained sensing devices to servers in data centers, requires an implementation-agnostic Service Oriented Architecture. In this position paper we propose that this challenge can be addressed with a generic framework that reconciles the reliability and scalability of Peer-to-Peer systems, with the industrial standard interoperability of Web Services. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios

    Discovery of extreme particle acceleration in the microquasar Cygnus X-3

    Full text link
    The study of relativistic particle acceleration is a major topic of high-energy astrophysics. It is well known that massive black holes in active galaxies can release a substantial fraction of their accretion power into energetic particles, producing gamma-rays and relativistic jets. Galactic microquasars (hosting a compact star of 1-10 solar masses which accretes matter from a binary companion) also produce relativistic jets. However, no direct evidence of particle acceleration above GeV energies has ever been obtained in microquasar ejections, leaving open the issue of the occurrence and timing of extreme matter energization during jet formation. Here we report the detection of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3, an exceptional X-ray binary which sporadically produces powerful radio jets. Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE satellite simultaneously with special spectral states of Cygnus X-3 during the period mid-2007/mid-2009. Our observations show that very efficient particle acceleration and gamma-ray propagation out of the inner disk of a microquasar usually occur a few days before major relativistic jet ejections. Flaring particle energies can be thousands of times larger than previously detected maximum values (with Lorentz factors of 105 and 102 for electrons and protons, respectively). We show that the transitional nature of gamma-ray flares and particle acceleration above GeV energies in Cygnus X-3 is clearly linked to special radio/X-ray states preceding strong radio flares. Thus gamma-rays provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables version submitted to Nature on August 7, 2009 (accepted version available at http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf

    Systematic ranging and late warning asteroid impacts

    Full text link
    We describe systematic ranging, an orbit determination technique especially suitable to assess the near-term Earth impact hazard posed by newly discovered asteroids. For these late warning cases, the time interval covered by the observations is generally short, perhaps a few hours or even less, which leads to severe degeneracies in the orbit estimation process. The systematic ranging approach gets around these degeneracies by performing a raster scan in the poorly-constrained space of topocentric range and range rate, while the plane of sky position and motion are directly tied to the recorded observations. This scan allows us to identify regions corresponding to collision solutions, as well as potential impact times and locations. From the probability distribution of the observation errors, we obtain a probability distribution in the orbital space and then estimate the probability of an Earth impact. We show how this technique is effective for a number of examples, including 2008 TC3 and 2014 AA, the only two asteroids to date discovered prior to impact
    • 

    corecore