13,148 research outputs found

    The Role Of The Receptive Field Structure In Neuronal Compressive Sensing Signal Processing

    Get PDF
    The receptive field structure ubiquitous in the visual system is believed to play a crucial role in encoding stimulus characteristics, such as contrast and spectral composition. However, receptive field architecture may also result in unforeseen difficulties in processing particular classes of images. We explore the potential functional benefits and shortcomings of localization and center-surround paradigms in the context of an integrate-and-fire neuronal network model. Utilizing the sparsity of natural scenes, we derive a compressive-sensing based theoretical framework for network input reconstructions based on neuronal firing rate dynamics [1, 2]. This formalism underlines a potential mechanism for efficiently transmitting sparse stimulus information, and further suggests sensory pathways may have evolved to take advantage of the sparsity of visual stimuli [3, 4]. Using this methodology, we investigate how the accuracy of image encoding depends on the network architecture. We demonstrate that the receptive field structure does indeed facilitate marked improvements in natural stimulus encoding at the price of yielding erroneous information about specific classes of stimuli. Relative to uniformly random sampling, we show that localized random sampling yields robust improvements in image reconstructions, which are most pronounced for natural stimuli containing a relatively large spread of dominant low frequency components. This suggests a novel direction for compressive sensing theory and sampling methodology in engineered devices. However, for images with specific gray-scale patterning, such as the Hermann grid depicted in Fig. 1, we show that localization in sampling produces systematic errors in image encoding that may underlie several optical illusions. We expect that these connections between input characteristics, network topology, and neuronal dynamics will give new insights into the structure-function relationship of the visual system

    End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks

    Full text link
    In this work we present a novel end-to-end framework for tracking and classifying a robot's surroundings in complex, dynamic and only partially observable real-world environments. The approach deploys a recurrent neural network to filter an input stream of raw laser measurements in order to directly infer object locations, along with their identity in both visible and occluded areas. To achieve this we first train the network using unsupervised Deep Tracking, a recently proposed theoretical framework for end-to-end space occupancy prediction. We show that by learning to track on a large amount of unsupervised data, the network creates a rich internal representation of its environment which we in turn exploit through the principle of inductive transfer of knowledge to perform the task of it's semantic classification. As a result, we show that only a small amount of labelled data suffices to steer the network towards mastering this additional task. Furthermore we propose a novel recurrent neural network architecture specifically tailored to tracking and semantic classification in real-world robotics applications. We demonstrate the tracking and classification performance of the method on real-world data collected at a busy road junction. Our evaluation shows that the proposed end-to-end framework compares favourably to a state-of-the-art, model-free tracking solution and that it outperforms a conventional one-shot training scheme for semantic classification

    Error-correcting codes and neural networks

    No full text

    Place Categorization and Semantic Mapping on a Mobile Robot

    Full text link
    In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot without environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot's behaviour during navigation tasks. The system is made available to the community as a ROS module
    corecore