3,605 research outputs found

    Densest Diverse Subgraphs: How to Plan a Successful Cocktail Party with Diversity

    Full text link
    Dense subgraph discovery methods are routinely used in a variety of applications including the identification of a team of skilled individuals for collaboration from a social network. However, when the network's node set is associated with a sensitive attribute such as race, gender, religion, or political opinion, the lack of diversity can lead to lawsuits. In this work, we focus on the problem of finding a densest diverse subgraph in a graph whose nodes have different attribute values/types that we refer to as colors. We propose two novel formulations motivated by different realistic scenarios. Our first formulation, called the densest diverse subgraph problem (DDSP), guarantees that no color represents more than some fraction of the nodes in the output subgraph, which generalizes the state-of-the-art due to Anagnostopoulos et al. (CIKM 2020). By varying the fraction we can range the diversity constraint and interpolate from a diverse dense subgraph where all colors have to be equally represented to an unconstrained dense subgraph. We design a scalable Ω(1/n)\Omega(1/\sqrt{n})-approximation algorithm, where nn is the number of nodes. Our second formulation is motivated by the setting where any specified color should not be overlooked. We propose the densest at-least-k⃗\vec{k}-subgraph problem (Dalk⃗\vec{k}S), a novel generalization of the classic DalkkS, where instead of a single value kk, we have a vector k{\mathbf k} of cardinality demands with one coordinate per color class. We design a 1/31/3-approximation algorithm using linear programming together with an acceleration technique. Computational experiments using synthetic and real-world datasets demonstrate that our proposed algorithms are effective in extracting dense diverse clusters.Comment: Accepted to KDD 202

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure
    • …
    corecore