291 research outputs found

    Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model

    Get PDF
    Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and mathematical models are an important tool for probing proposed biological mechanisms. The most well-known mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show there are fundamental similarities between these two models. The implications are illustrated with two important sleep-wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep episodes occur at grazing bifurcations.This provides the theoretical underpinning for numerical results showing that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from study of the two-process model can be used to inform understanding of the mutual inhibition model. This is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters associated with the circadian and homeostatic processes are very different from those that have been experimentally measured in the context of the two-process model

    Stochastic Regular Grazing Bifurcations

    Full text link
    A grazing bifurcation corresponds to the collision of a periodic orbit with a switching manifold in a piecewise-smooth ODE system and often generates complicated dynamics. The lowest order terms of the induced Poincare map expanded about a regular grazing bifurcation constitute a Nordmark map. In this paper we study a normal form of the Nordmark map in two dimensions with additive Gaussian noise of amplitude, epsilson [e]. We show that this particular noise formulation arises in a general setting and consider a harmonically forced linear oscillator subject to compliant impacts to illustrate the accuracy of the map. Numerically computed invariant densities of the stochastic Nordmark map can take highly irregular forms, or, if there exists an attracting period-n solution when e = 0, be well approximated by the sum of n Gaussian densities centred about each point of the deterministic solution, and scaled by 1/n, for sufficiently small e > 0. We explain the irregular forms and calculate the covariance matrices associated with the Gaussian approximations in terms of the parameters of the map. Close to the grazing bifurcation the size of the invariant density may be proportional to the square-root of e, as a consequence of a square-root singularity in the map. Sequences of transitions between different dynamical regimes that occur as the primary bifurcation parameter is varied have not been described previously.Comment: Submitted to: SIAM J. Appl. Dyn. Sy

    Two-parameter nonsmooth grazing bifurcations of limit cycles: classification and open problems

    Get PDF
    This paper proposes a strategy for the classification of codimension-two grazing bifurcations of limit cycles in piecewise smooth systems of ordinary differential equations. Such nonsmooth transitions (C-bifurcations) occur when the cycle interacts with a discontinuity boundary of phase space in a non-generic way. Several such codimension-one events have recently been identified, causing for example period-adding or sudden onset of chaos. Here, the focus is on codimension-two grazings that are local in the sense that the dynamics can be fully described by an appropriate Poincaré map from a neighbourhood of the grazing point (or points) of the critical cycle to itself. It is proposed that codimension-two grazing bifurcations can be divided into three distinct types: either the grazing point is degenerate, or the the grazing cycle is itself degenerate (e.g. non-hyperbolic) or we have the simultaneous occurrence of two grazing events. A careful distinction is drawn between their occurrence in systems with discontinuous states, discontinuous vector fields, or that have discontinuity in some derivative of the vector field. Examples of each kind of bifurcation are presented, mostly derived from mechanical applications. For each example, where possible, principal bifurcation curves characteristic to the codimension-two scenario are presented and general features of the dynamics discussed. Many avenues for future research are opened.

    Grazing bifurcations in impact oscillators

    Get PDF
    International audienceImpact oscillators demonstrate interesting dynamical features. In particular, new types of bifurca-tions take place as such systems evolve from a nonimpacting to an impacting state (or vice versa), as a system parameter varies smoothly. These bifurcations are called grazing bifurcations. In this paper we analyze the different types of grazing bifurcations that can occur in a simple sinusoidally forced oscilla-tor system in the presence of friction and a hard wall with which the impacts take place. The general picture we obtain exemplifies universal features that are predicted to occur in a wide variety of impact oscillator system

    Discontinuity induced bifurcations of non-hyperbolic cycles in nonsmooth systems

    Full text link
    We analyse three codimension-two bifurcations occurring in nonsmooth systems, when a non-hyperbolic cycle (fold, flip, and Neimark-Sacker cases, both in continuous- and discrete-time) interacts with one of the discontinuity boundaries characterising the system's dynamics. Rather than aiming at a complete unfolding of the three cases, which would require specific assumptions on both the class of nonsmooth system and the geometry of the involved boundary, we concentrate on the geometric features that are common to all scenarios. We show that, at a generic intersection between the smooth and discontinuity induced bifurcation curves, a third curve generically emanates tangentially to the former. This is the discontinuity induced bifurcation curve of the secondary invariant set (the other cycle, the double-period cycle, or the torus, respectively) involved in the smooth bifurcation. The result can be explained intuitively, but its validity is proven here rigorously under very general conditions. Three examples from different fields of science and engineering are also reported
    • …
    corecore