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Abstract

This paper proposes a strategy for the classification of codimension-two grazing bifurc-
ations of limit cycles in piecewise smooth systems of ordinary differential equations. Such
nonsmooth transitions (C-bifurcations) occur when the cycle interacts with a discontinuity
boundary of phase space in a non-generic way. Several such codimension-one events have
recently been identified, causing for example period-adding or sudden onset of chaos. Here,
the focus is on codimension-two grazings that are local in the sense that the dynamics can
be fully described by an appropriate Poincaré map from a neighbourhood of the grazing
point (or points) of the critical cycle to itself. It is proposed that codimension-two grazing
bifurcations can be divided into three distinct types: either the grazing point is degenerate,
or the the grazing cycle is itself degenerate (e.g. non-hyperbolic) or we have the simultaneous
occurrence of two grazing events. A careful distinction is drawn between their occurrence
in systems with discontinuous states, discontinuous vector fields, or that have discontinuity
in some derivative of the vector field. Examples of each kind of bifurcation are presented,
mostly derived from mechanical applications. For each example, where possible, principal
bifurcation curves characteristic to the codimension-two scenario are presented and general
features of the dynamics discussed. Many avenues for future research are opened.

1 Introduction

A wide range of systems of relevance to science and engineering applications can be modelled
by sets of ordinary differential equations (ODEs) of the form

ẋ = f(x), x ∈ R
n, (1)

featuring different types of discontinuous right-hand sides (RHS) f(x) where x is the state vec-
tor (see for example[Brogliato 1999, Zhusubaliyev, et al. 2001, Leine 2000, di Bernardo, et al.
2004, di Bernardo, et al. 2005]). (Dependence of f(x) on parameters µ ∈ R

m is not indicated
for simplicity). Examples in applications include, just to mention a few, power converters in
electronic engineering [Banerjee & Verghese 2001, di Bernardo, et al. 1998], mechanical sys-
tems with impacts and/or friction [Brogliato 1999, Chin, et al. 1994, Dankowicz & Nordmark
1999, di Bernardo, et al. 2003b], walking robots [Brogliato 1999, Piiroinen 2002], hybrid and
relay control systems [Kowalczyk & di Bernardo 2001b]. Recently, it has been shown that these
systems can exhibit complex dynamics whose occurrence cannot be explained using bifurcation
analysis tools developed for smooth dynamical systems. For example, one of the most strik-
ing feature of this class of systems is that they often exhibit sudden transitions from periodic
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attractors to chaos in the absence of any period-doubling or other bifurcation cascade usually
observed in their smooth counterparts. In fact, a new class of bifurcations, or nonsmooth bi-
furcations, needed to be introduced to explain these phenomena. As further detailed below,
so-called border collision and grazing bifurcations were shown to be the main cause for such
unexpected transitions which were left unexplained for a relatively long time in the nonlinear
dynamics literature (see for example [Banerjee & Verghese 2001] for an account of the historical
developments in the analysis of nonlinear phenomena in power electronic systems).

Most of the analysis of nonsmooth bifurcations has focused so far on those transitions that can
be observed under variation of one of the system parameters. More precisely, codimension-one
nonsmooth bifurcations were the subject of much research effort aimed at their classification and
analytical characterisation. Despite the successes of nonsmooth bifurcation theory in explaining
the complex behaviour observed, for instance, in power converters or mechanical systems with
impacts and friction many open problems still remain. Among these, the strongest limitation of
the existing theory of nonsmooth bifurcations is probably the ability to study phenomena that
can be observed by varying just one parameter. In applications, systems are often characterised
by many parameters of interest. Take, for example, a power electronic circuit. Here, the simplest
possible circuit schematic will contain at least three components (a resistor, an inductance and a
capacitor). Therefore, it is of utmost importance to be able to characterise the system bifurcation
behaviour under variation of two or more parameters.

The main aim of this paper is to present a first attempt at classification of possible codimension-
two nonsmooth bifurcations of limit cycles in impacting and piecewise-smooth flows. Rather
than being an exhaustive review of available results, the aim is to offer a preview of a number of
possible codimension-two events unique to nonsmooth systems which will be unfolded in details.
In so doing, only hints will be given of the ensuing dynamics but for each chosen possibility, a
representative system will be used as an example to illustrate the effects of the codimension-two
bifurcation under investigation. Our hope is that this paper can act as a spur for future analyses
of other codimension-two degeneracies and for other to use as a guide for understanding dynam-
ics in nonsmooth applications. The paper provides the foundations of a rational classification
of two-parameter nonsmooth bifurcations of limit cycles in flows based on their codimension. It
is worth emphasising here that most of the novel codimension-two bifurcations described in the
paper are presented here for the first time.

The rest of the paper is outlined as follows. In Sec. 3, after a brief resumé of codimension-one
grazing bifurcations and their non-degeneracy conditions, a broad classification of codimension-
two C-bifurcations into three different types is proposed. In the three sections that follow
examples of each type are presented. Sec. 4 treats codimension-two C-bifurcations that fail
a non-degeneracy condition at the grazing point, using sliding bifurcations in a dry friction
oscillator as an physical example. Sec. 5 treats C-bifurcations where the linearisation around
the non-grazing limit cycle is degenerate, again using a dry-friction example in the sliding case,
but also an example of an impacting system where there is grazing of a non-hyperbolic orbits.
The third type of codimension-two C-bifurcations, where two independent grazing events occur
along a cycle, is discussed in Sec. 6, again looking at a specific example in a sliding system.
Finally, in Sec. 7 conclusions and open problems are discussed.

2 Systems of interest

Here, as in [di Bernardo et al. 2004, di Bernardo et al. 2005], we will assume that the discon-
tinuities occur across finitely many manifolds in phase space, called discontinuity or switching
sets. Following [Leine 2000], we divide the nonsmooth dynamical systems of interest into three
different categories, depending on the discontinuity type of their orbits and vector fields f :

Class A. Systems with discontinuous orbits, or impacting systems. These are represented by
ODEs with Dirac δ discontinuities in the RHS function f , for example impacting systems
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or vibro-impacting machines [Brogliato 1999, Pavlovskaia & Wiercigroch 2003]. Such
systems are more commonly formulated without using delta-functions, as a hybrid system
[Van der Schaft & Schumacher 2000] with the discontinuous jumps (such as a restitution
law) described by auxiliary maps.

Class B. Systems with continuous but not continuously differentiable orbits, that is, Filippov
systems [Filippov 1988] with discontinuous f . Such systems arise as models of power-
electronics voltage converters [di Bernardo et al. 1998, Fossas & Olivar 1996], and dry-
friction oscillators [Galvanetto 1997, Popp & Shelter 1990] and relay-controlled ecosys-
tems [Dercole, et al. 2003]. Such systems often feature so called sliding motion, that is
constrained to move within a discontinuity set.

Class C. Nonsmooth systems whose orbits and vector fields are everywhere continuous, or
piecewise smooth continuous systems. Such systems have continuously-differentiable orbits
but discontinuities in the first or higher derivatives of f . Examples include mechanical
systems with bi-linear elastic support [Shaw & Holmes 1983, Thompson, et al. 1983]

Sometimes systems from classes B and C together are called piecewise-smooth (PWS) flows.
We write such systems as

ẋ = Fi(x), x ∈ Gi, (2)

where Gi, i = 1, 2, . . . , N , are finitely many open domains of an n-dimensional state space (phase
space) which is a differentiable manifold. The (n − 1)-dimensional boundaries between Gi and
Gj are labelled as Σij for i < j. We assume that these discontinuity sets are smooth, that is
they can be defined by

Σij = {Hij(x) = 0} ,

where Hij is a smooth function from R
n to R. For example, when only one smooth discontinuity

set is present
Σ = Σ12 = {H(x) = 0} (3)

(2) can be written in the form

ẋ =

{

F1(x), H(x) > 0,
F2(x), H(x) < 0

(4)

For a system with discontinuous orbits (class A), several formalisms are available. For
example, we can write a differential equation (1) with δ-function discontinuities in the RHS. Such
an equation is more properly regarded as a measure differential inclusion [Aubin & Cellina 1984].
Alternatively, we can use the terminology of complementarity systems [Brogliato 1999] which
are inspired by mechanical systems with inequality constraints. Perhaps the most natural way
to study them though is as a specific form of hybrid systems, where a set of smooth differential
equations (4) is augmented with reset maps of the form

Rij,kl : Σij → Σkl, x+ = gij,kl(x
−).

Near a single discontinuity boundary, we shall assume the following simplified form [di Bern-
ardo et al. 2004]

ẋ = F (x) if H(x) > 0 (5)

with impact at the surface defined by H(x) = 0, and where the impact law takes the form

x+ = R(x−) = x− + G(x−)HxF (x−). (6)

with G being a smooth function. Note that more complicated forms of the reset map are possible:
for example in systems modelling impact with friction, e.g. [Stewart 2000]. For convenience, we
will also define the velocity and acceleration (of the vector field F relative to H)

v(x) = HxF (x)

a(x) = (HxF )xF (x).
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2.1 Codimension-one nonsmooth bifurcations

Apart from standard bifurcations (fold, Hopf etc.), systems from all three of the classes presented
in the previous section can undergo topological changes to their phase portraits that are unique
to nonsmooth systems. For example, as a parameter is varied, an equilibrium point in Gi can
approach a boundary Σij. Many possibilities can emerge from such a nonsmooth bifurcation
point. For example, Hopf-like bifurcations can occur, generating limit cycles from the boundary
equilibrium, but with a linear rather than square-root growth in amplitude [Bautin & Leontovich
1976, Filippov 1988, Gubar’ 1971, Kunze 2000, Kuznetsov, et al. 2002]. There are also nonsmooth
analogues of folds [Leine 2000]. Limit cycles of discontinuous systems can also exhibit other
novel nonsmooth transitions as elucidated in the the pioneering work in the Russian and Czech
literature, such as that of Feigin [Fedosenko & Feigin 1972, Feigin 1970, Feigin 1974, Feigin 1978,
Feigin 1995, Feigin 1994] and Peterka [Peterka 1974a, Peterka 1974b, Peterka 1992]. In Feigin’s
work, all scenarios involving invariant sets undergoing a non-structurally stable interaction with
a discontinuity set were given the collective name of C-bifurcations (C stands for the Russian
word for ‘sewing’). As remarked in [di Bernardo, et al. 2003a], however, such a definition does not
necessarily imply a bifurcation in the strict mathematical sense of transition to a topologically
non-equivalent phase portrait (see, e.g. [Kuznetsov 2004]), because the existence and stability of
invariant sets can be unaffected by such an interaction (especially for systems of class C). So, it
might be more correct to refer to such discontinuity-set driven events as nonsmooth transitions
rather than bifurcations in the classical sense.

Bifurcations of fixed points in PWS discrete-time maps were more recently studied in the
West by Yorke and collaborators [Nusse & Yorke 1992, Nusse, et al. 1994, Yuan, et al. 1998].
Interactions of periodic points with the discontinuity set in continuous piecewise-linear (PWL)
maps were termed border-collision bifurcations. It was later shown in [di Bernardo, et al. 1999]
that border-collision bifurcations may be interpreted in terms of Feigin’s theory. Thus, they lead
to a number of bifurcation scenarios (saddle-node like cases, period doublings, transcritical-like
transitions), which can be classified in n−dimensional cases by applying a set of appropriate
conditions on the eigenvalues of the linear part of a PWS map on either side of the discontinuity.

Another important class of C-bifurcations are so-called grazing bifurcation, when a limit
cycle undergoes either a tangential interaction with a discontinuity set, or passes through the
intersection between two discontinuity sets. It is these nonsmooth transitions that form the
subject of this paper. To analyse and classify the dynamics that can ensue from such limit
cycle transitions, an established technique is to derive PWS maps as ‘normal forms’ for the
bifurcation. Iterates of the derived maps then give the existence of nearby invariant sets. The
derivation of such maps is based on the concept of the zero time discontinuity mapping (ZDM)
introduced by Nordmark [Nordmark 1991]. These normal forms were derived for all three classes
of nonsmooth dynamical systems mentioned above [Nordmark 1991, Fredriksson & Nordmark
2000, di Bernardo, et al. 2001b, di Bernardo, et al. 2001a, Kowalczyk & di Bernardo 2004].
Interestingly, in none of the cases, other than a boundary-intersection crossing in a class B
system [di Bernardo et al. 2001b] does this lead to a locally piecewise-linear map of the kind
studied by Feigin or Yorke. Instead, depending on the local properties of the vector fields across
the discontinuity, tangential grazing in the absence sliding leads to a ZDM with an O(k + 1/2)
term, for some non-negative integer k [di Bernardo et al. 2001a, Fredriksson & Nordmark 2000].
In contrast, boundary intersection in the absence of sliding leads to maps with a discontinuity of
one order less than that of the vector field. There are more possibilities of grazing bifurcations in
vector fields in which sliding occurs, as we shall see in the next section. In general these all lead to
maps with jumps in derivatives of higher than linear order, except for the so-called grazing-sliding
case. This case, which occurs in models of dry-friction oscillators [Wiercigroch & de Kraker 2000]
and relay controllers [Kowalczyk & di Bernardo 2001b], leads to a piecewise-linear normal form
map. However, this map is not of the form used by Feigin or Yorke, because it is non-invertible
on one side of the discontinuity. Such non-invertibility has significant implications regarding
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possible bifurcation scenarios that can be observed (see [Parui & Banerjee 2002, Kowalczyk
2005] for further details).

So far, the investigation of nonsmooth bifurcations has focused on one-parameter transitions.
Here, we should comment on the notion of the codimension of C-bifurcations. Assuming the
weak definition as non-generic interaction with a discontinuity set, we propose to use a utilitarian
definition of the codimension of a bifurcation completely analogous to the one used for smooth
systems – see e.g [Kuznetsov 2004]. Namely, the codimension of a bifurcation is defined as the
difference between the dimension of the parameter space and the corresponding set of parameters
for which the bifurcation occurs.

Recent theory has provided unfoldings of several different kinds of codimension-one C-
bifurcations of limit cycles in piecewise-smooth systems. The following subsections itemise the
cases that have so far been analysed. We give only the scantiest details but provide references
where the interested reader may find out more. It might also be useful to point out that there
are other cases of more global bifurcations that have been treated in full for planar systems
[Kuznetsov et al. 2002] and of various ad hoc analyses in special cases, e.g. [Zhusubaliyev &
Mosekilde 2003].

2.1.1 Tangential grazing in PWSC systems (Class C)

Grazing in piecewise smooth continuous systems (class C) have been analysed in some generality
by Dankowicz & Nordmark [Dankowicz & Nordmark 1999] and by di Bernardo, Budd and
Champneys [di Bernardo et al. 2001a]. Here we present results only for the special case of so-
called uniform discontinuity of degree m across the discontinuity boundary Σ at which grazing
occurs. That is one can write

F2(x) = F1(x) + W (x)H(x)m−1. (7)

for some smooth function W . Then the following result holds:

Theorem 2.1 ([Nordmark 2002]) Suppose a hyperbolic periodic orbit grazes quadratically
from the C1 side at x = x∗ with a discontinuity boundary Σ (3) in a PWS system (4) with
discontinuity of type (7) for m ≥ 2. That is

H(x∗) = 0, HxF1(x
∗) = 0, (HxF1)xF1(x

∗) > 0, (8)

the ZDM is given by

x 7→
{

x if Hmin(x) ≥ 0
x + e(x, y)y2m−1 if Hmin(x) ≤ 0

(9)

where y =
√

−Hmin(x) and Hmin(x) is the local minimum value of H(x) attained along an orbit
flowing under F1. here, e is a smooth function whose lowest order term is

e(x, 0) = 2(−1)m+1I(m)W (x)

√

2

(HxF1)xF1(x)
,

with

I(m) =

∫

1

0

(1 − ξ2)m−1dξ; I(2) =
2

3
, I(3) =

8

15
, I(4) =

16

35
, . . . .

Let P be the Poincaré map associated with the periodic orbit, ignoring any local touching
of Σ. The dynamics of the composite map P ◦ ZDM can be unfolded by adding parameters
in a generic way. Note that since the singularity of the map (9) is of order x3/2 or higher to
leading order, then there is no immediate bifurcation of the simplest fixed point of the map
corresponding to the periodic orbit. However, in applications this singularity can cause a local
bifurcation, such as a catastrophic fold or period doubling cascade, leading to chaos to occur
for very nearby parameter values [Dankowicz & Nordmark 1999]. Note the non-degeneracy
condition in (8) which guarantees that the grazing bifurcation is of codimension-one.
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2.1.2 Tangential grazing in impacting systems (Class A)

As with class C systems, we can formulate defining and non-degeneracy conditions for a point
x0, assumed to part of a limit cycle to be a grazing point. We demand that

H(x0) = 0 (10)

HxF (x0) = 0 (11)

(HxF )xF (x0) > a0 > 0 (12)

Theorem 2.2 (Nordmark’s ZDM for grazing impact [di Bernardo et al. 2004]) Given
the non-degeneracy conditions (10), (11) and (12), then close to x0 the ZDM can be written as

ZDM(x) = x +

{

0 if Hmin(x, v) ≥ 0
β(x, y, v)y if Hmin(x, v) < 0

(13)

where

β(x, y, v) = −G(x)
√

2a + r2(x, y, v)

r2(x, y, v) → 0 if y, v → 0

y(x, v) =
√

−Hmin(x, v)

Hmin(x, v) = H(x) − v2

(

1

2a
+ r1(x, v)

)

(14)

r1(x, v) → 0 if v → 0

v(x) = HxF (x)

a(x) = vxF (x),

and r1,2 are smooth in their arguments.

Hence the local change to the Poincaré map close to grazing has a square root singularity.
Depending on the Floquet multipliers of the periodic orbit prior to grazing, this can lead to
the sudden onset of chaotic attractors with a characteristic fingered structure, or to a sequence
of period-adding bifurcations. The interested reader is referred to [Chin et al. 1994, Nordmark
2002, Budd & Dux 1994], for example, for more details of these intricate dynamical possibilities.

2.1.3 Sliding bifurcations in Filippov systems (class B)

Sliding occurs when the vector fields F1 and F2 point toward Σ from both sides of the manifold.
The sliding region of Σ is denoted by Σ̂ in Fig. 1 and what follows. Whilst sliding, the flow can
be shown to correspond to an effective vector field Fs given by [Filippov 1988, Utkin 1992]

Fs =
F1 + F2

2
+

F2 − F1

2
β(x) (15)

where

β(x) = −Hx(F1 + F2)

Hx(F2 − F1)
∈ [−1, 1]. (16)

We define the sliding region as

Σ̂ := {x ∈ Σ : |β(x)| ≤ 1} (17)

and its boundaries as
∂Σ̂± := {x ∈ Σ : β(x) = ±1}. (18)
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∂Σ̂
−

∂Σ̂
+

F2

Hx

Σ Σ

F1

G2

G1

Σ̂

Figure 1: Schematic illustration of the vector fields F1 and F2 close to a sliding portion of a
discontinuity boundary Σ in a class B system.
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a
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Figure 2: codimension-one sliding bifurcations of limit cycles in a class B system.
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Bifurcations ZDM leading order term

crossing-sliding ε2 + O(ε3)

grazing-sliding ε + O(ε3/2)

switching-sliding ε3 + O(ε4)

adding-sliding ε2 + O(ε5/2)

Table 1: Leading order terms of the zero-time discontinuity mappings for sliding bifurcations.

In the following we only consider the case when the sliding region is attracting; that is when

Hx(F2 − F1) > 0, (19)

(although repelling sliding can arise as a consequence of the bifurcations we consider).
Sliding bifurcations are defined as tangential interactions between a limit cycle and the

boundary of the sliding region ∂Σ̂. Four distinct cases have been identified [Feigin 1994, Kowal-
czyk & di Bernardo 2001b, Kowalczyk & di Bernardo 2001a], see Fig. 2. Here one should
interpret the three orbit segments a, b and c as belonging to a limit cycle at different parameter
values. Following the now generally agreed nomenclature [di Bernardo et al. 2004], the scenario
in Fig. 2(a) is called a crossing-sliding bifurcation, the case in panel (b) is called a grazing-sliding
bifurcation, that in panel (c) a switching-sliding bifurcation, and that in (d) an adding-sliding
bifurcation. See [di Bernardo, et al. 2002, di Bernardo et al. 2003b], for an unfolding of the
dynamics that must ensue close to each such singularity. Table 1 summarises information on
the leading-order term in the ZDM, i.e. the jump that ensues in the appropriate Poincaré map
that unfolds the bifurcation.

It will be instructive for what follows to delineate the non-degeneracy hypotheses that underly
the geometry in Fig. 2. We focus here only on the crossing-sliding case in panel (a). To be
definite, using the notation from Fig. 1, we consider bifurcations with respect to the boundary
∂Σ̂−, so that the outgoing flow is generated by the vector fields F1 or Fs but the incoming one
might be generated by any of the three vector fields F1, F2 or Fs depending on the bifurcation
scenario. Also, note from the orbit labelled b in Fig. 2(a) and (b), that the outgoing flows behave
in a qualitatively equivalent way. Thus, the same set of analytical conditions defines these two
sliding bifurcation scenarios. To make a distinction between them, knowledge of the incoming
flows is also required.

Defining equations for the two bifurcations in question can be expressed by the following
conditions evaluated precisely at the grazing point:

H(x) = 0, Hx 6= 0, (20)

d(H(Φ1(x, t)))

dt

∣

∣

∣

∣

t=0

= HxF1 = 0. (21)

where Φi represents the flow corresponding to vector field Fi; for ease of presentation we assume
that Σ is locally flat, that is {H = 0} is a hyperplane. To this we must add non-degeneracy
conditions. For crossing-sliding we require an additional condition to ensure that after grazing,
the orbit does indeed leave Σ:

d(β(Φ1(x, t)))

dt

∣

∣

∣

∣

t=0

= βxF1 < 0. (22)

where βx is given by

βx = −2
HxF1x

HxF2

. (23)

is a vector normal to normal to ∂Σ̂− within Σ. Note that (22) is really a non-degeneracy
condition, because positive βx makes no sense in this context; we should interpret this as saying
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Figure 3: Schematics illustrating the (a) correspondence between an orbit that crosses the
intersection between two discontinuity sets, and (b) in the case where F1 = F3 = F4 found in
DC/DC power converters

that no extra tangency occurs that would be quantified by a zero of βx. After substituting for
βx and noting that HxF2 > 0 on ∂Σ̂−, (see eq. (19)) we can write condition (22) above as

d2(H(Φ1(x, t)))

dt2

∣

∣

∣

∣

t=0

= HxF1xF1 > 0. (24)

2.1.4 Boundary-intersection crossing bifurcations

Another codimension-one case that will concern us in what follows is when two discontinuity
surfaces cross as in Fig. 3(a). Then again, it will generically be a codimension-one phenomenon
for a limit cycle to cross such an (n − 2)-dimensional boundary-intersection surface. Motivated
by examples in power electronics where a power source is switched on or off by comparing an
output with a saw-tooth signal [di Bernardo et al. 2001b, Banerjee & Verghese 2001, Fossas &
Olivar 1996], we shall in what follows consider the simpler situation where three of the vector
fields at such a point are identical. Then we can consider the boundary intersection as a single
nonsmooth discontinuity, i.e. having a corner [di Bernardo et al. 2001b] (see Fig. 3(b)). In the
neighbourhood of such an effective discontinuity in the discontinuity set it is convenient to write
Σ12 = Σ1 ∪ Σ2, where

Σ1 = {H1(x) = 0, H2(x) ≤ 0}, Σ2 = {H2(x) = 0, H1(x) ≤ 0}, (25)

where each of the H1,2 are smooth functions.
Suppose we have a class B system. The simplest case is that we have no sliding in the

vicinity of the corner-colliding limit cycle. Such a case was analysed in [di Bernardo et al. 2001b].
Taking the form of discontinuity sets Σ1 and Σ2 given by (25), non-degeneracy hypotheses can
be formulated in terms of the angles between Fi and Hi. Specifically we assume (without loss
of generality, up to a reversal of time if necessary)

H1xFi > 0, H2xFi > 0, for i = 1, 2. (26)

Note that there are two kinds of orbit that can satisfy these constraints, which we refer to as an
external or internal corner collision, see Fig. 4.

We consider external corner-collision; the internal case is analysed in an entirely analogous
manner [di Bernardo et al. 2001b]. Then it can be shown that the ZDM for an orbit that crosses
the wedge, when solving for the flow as if the vector field F1 applied everywhere, is given by

x 7→
{

x if non-crossing,
x + (F 0

1 − F 0
2 )a2x + o(|x|) if crossing,

(27)
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(a) (b) (c)

p(t)

Σ1 Σ1 Σ2
Σ2

G2

G1

G2

G1

Σ1 Σ2

G2

G1
c cc

Figure 4: Schematic, in a general two-dimensional slice, of orbits in the neighbourhood of the
three types of interaction with the corner depicted in Fig. 3(b): (a) external corner-collision; (b)
internal; and (c) which does not satisfy the hypotheses (26)

where

a2 = J2 − J2F
0
1 J1, Ji =

H0
ix

H0
ixF

0
i

. (28)

which gives a piecewise-linear map when composed with the smooth Poincaré map around the
corner-colliding periodic orbit. Note that similar arguments show that if the vector field were
continuous, but with discontinuous nth derivative, then one should generically expect a map
with a jump in the (n + 1)st derivative.

3 Proposed classification of codimension-two C-bifurcations

The classification approach proposed here is similar to the one used to classify codimension-
two bifurcations in smooth systems. Generically, smooth codimension-two bifurcations are en-
countered when [Guckenheimer & Holmes 1983, Wiggins 1990, Kuznetsov 2004]:

(1) standard codimension-one bifurcations (e.g. a saddle-node cycle), with an additional de-
generacy in the nonlinear terms of the normal form (e.g. a cusp of cycles);

(2) the linear part of the vector field or the associated Poincaré map at the bifurcation event
is doubly degenerate, e.g. quasiperiodic instability with strong resonances;

(3) a global and a local event occur simultaneously, e.g. a Shilnikov-Hopf bifurcation, a homo-
clinic orbit to a resonant saddle, or a non-central homoclinic orbit to a saddle-node;

(4) two global bifurcations happen at once, e.g. the appearance of two homoclinic orbits to a
saddle or two heteroclinic orbits connecting two saddles (“a heteroclinic contour”).

We shall now use a similar approach to that for smooth bifurcations outlined above to classify
the different ways that these bifurcations may become degenerate, while remaining local in the
sense that they can be unfolded in terms of Poincaré maps defined in a neighbourhood of the
grazing point(s). Thus, we propose that codimension-two C-bifurcations for limit cycles can be
put into one of the following three types:

Type I: Degenerate grazing point; that is, there is a degeneracy of one of the analytical
conditions determining the properties of the vector fields local to the grazing event. This
is analogous to degenerate normal form coefficients for smooth bifurcations. This is likely
to influence the leading order term of the normal form map derived via the discontinuity
mapping.

10



Type II: C-bifurcations of degenerate cycles, i.e. bifurcations where the linear part of the
Poincaré map around the orbit contains a degeneracy. The most obvious case, and the one
we shall focus on in this paper is that the critical cycle is non-hyperbolic. Note however
that to determine hyperbolicity of the critical cycle might be non-trivial. For instance,
the critical cycle undergoing a grazing-sliding bifurcation can be viewed as a cycle with
and without the zero-length sliding segment. In the former case its stability and hence its
hyperbolicity can be determined by solving variational equations. In the later we need to
solve variational equations together with the ZDM techniques.

This type can be also seen as a combination of a smooth and a nonsmooth bifurcation
occurring at the same parameter value.

Type III: Simultaneous occurrence of two grazings at two different points along the
critical orbit. The possibilities here are large. Each of the bifurcations outlined in the
previous section could occur along lines in a parameter plane. Independently, at another
point along the critical periodic orbit, a second grazing event could occur. This would then
form the intersection point in two-parameter space between these two lines of independent
codimension-one bifurcations. However, in an unfolding one might well find that other
bifurcation curves necessarily emerge from such a codimension-two point.

In this paper we do not consider global bifurcations other than in the sense that the inter-
action between the discontinuity boundary and a limit cycle can be viewed in some sense as a
global bifurcation involving a distinguished point on a limit cycle (analogously to homoclinic
orbits). We make further comments about such possibilities in Sec. 7. In what follows, we shall
further illustrate possibilities for each of the types highlighted above, drawing on representative
examples and their numerical unfolding.

4 Type I: Degenerate grazing point

Let us start our considerations with Type I codimension-two C-bifurcations. We choose to
consider sliding bifurcations of limit cycles accompanied by the violation of one of the analytical
conditions which determine standard codimension-one sliding bifurcations. Therefore, we focus
on codimension-two C-bifurcations falling into the category classified as Type I.

4.1 Degenerate sliding bifurcations

We begin by discussing in more detail when degenerate sliding bifurcations can be encountered.
They occur when the vector field generating an incoming or an outgoing flow takes a non-generic
position with respect to the boundary of the sliding region. In what follows the degenerate
sliding-bifurcations will refer to codimension-two sliding bifurcations characterised by degeneracy
of the outgoing flow only.

4.1.1 Degenerate crossing-sliding bifurcation

Suppose that a Filippov system (class B) exhibits a crossing-sliding bifurcation scenario. Let us
assume that an additional continuous parameter variation makes the outgoing flow degenerate.
Degeneracy of the vector field generating the outgoing flow Φ1 can be viewed as an additional
tangency of F1 to the manifold

Θ = {β(x) = −1}
crossing Σ along ∂Σ̂− (see Fig. 5(b)). Depending on the behaviour of the vector field F1 at the
point of interaction with ∂Σ̂−, the outgoing flow might leave the switching manifold or evolve
within the discontinuity set. We assume that at the contact with the boundary of the sliding
region the orbit leaves Σ.
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Figure 5: Critical orbit and the vector field generating the outgoing flow in (a) the crossing-
sliding and (b) the degenerate crossing-sliding cases. Short arrows illustrate the behaviour of
the vector field F1 at the bifurcation point.

Information on the geometric properties of the vector field F1 when interacting with ∂Σ̂− al-
lows us to formulate a set of analytical conditions that must be satisfied by F1 at the codimension-
two bifurcation point.

The degeneracy in the position of the vector field with respect to ∂ Σ̂− is expressed by the
condition

d(β(Φ1(x, t)))

dt

∣

∣

∣

∣

t=0

= βxF1 = 0. (29)

Expressing condition (29) in terms of Hx and F1 yields

d2(H(Φ1(x, t)))

dt2

∣

∣

∣

∣

t=0

= HxF1xF1 = 0. (30)

Since we require the orbit to leave the switching manifold, the vector field F1 should exhibit
a local maximum with respect to ∂Σ̂−. Thus the non-degeneracy condition can be written as

d2(β(Φ1(x, t)))

dt2

∣

∣

∣

∣

t=0

= βxF1xF1 < 0. (31)

Expressing (31) in terms of Hx, F1 gives

d3(β(Φ1(x, t)))

dt3

∣

∣

∣

∣

t=0

= Hx(F1x)2F1 > 0. (32)

A critical orbit in the case of codimension-one crossing-sliding bifurcation can be compared
with the critical orbit when the crossing-sliding is degenerate (see Fig. 5(a) and (b) respectively).

A full unfolding of this codimension-two scenario is contained in [Kowalczyk & di Bernardo
2004]. There it can be shown that three independent codimension-one sliding bifurcations em-
anate from the codimension-two point. These are standard crossing-sliding, switching-sliding
and grazing-sliding; see Fig. 6 for a graphical explanation. That all three must occur can be
seen from the character of the vector field generating the outgoing flow, and by considering
small perturbations applied to the system. Certain perturbations will cause a limit cycle to
interact with the boundary of the sliding region with the vector field F1, that no longer ex-
hibits a maximum with respect to ∂Σ̂−. The vector field will either point out of, or into, the
sliding region. Thus we should observe either the crossing or the switching-sliding scenario –
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Figure 6: Codimension-one sliding bifurcations unfolded from the degenerate crossing-sliding of
codimension-two. (a) crossing-sliding, (b) switching-sliding and (c) grazing-sliding bifurcation
scenario.

see Fig. 6(a) and (b). In Fig. 6, Cα and Cβ denote the boundaries of the sliding region and
correspond to the crossing-sliding and switching-sliding boundaries in phase space. A denotes
a point on ∂Σ̂− where the vector field F1 exhibits a local maximum. Lower case letters a, b
and c denote segments of orbits forming parts of a limit cycle “before”, “at” and “after” the
bifurcation. By I, II and III we denote regions on Σ around A such that orbits rooted in each
region differ by the number of different segments forming an orbit before a particular orbit leaves
the neighbourhood of A. Note that the orbit starting in I, locally to A, has only a segment
generated by the vector field F1. The orbit rooted in region III has two segments locally to A –
one formed by the vector field Fs another by F1. Finally, the orbit rooted in region II features
three segments locally to A – first generated by F1 then by Fs and the third segment generated
again by F1. The crossing-sliding and switching sliding of codimension-one take into account
transitions between orbits rooted in regions I − II and III − II correspondingly. Note that
around A there is also possible transition between orbits rooted in regions I and III under the
variation of one parameter. Such a transition would correspond to the grazing-sliding scenario
as depicted in Fig. 6(c), but does not lead to any immediate topological change in the limit cycle
since the ZDM of such a C-bifurcation is differentiable.

4.1.2 Other cases of degenerate sliding bifurcations of codimension-two

Different instances of degenerate sliding bifurcations can also occur. In fact, a straightforward
analysis (presented in detail in [Kowalczyk & di Bernardo 2004]) shows what other codimension-
one curves of sliding bifurcations must necessarily emanate from each such degenerate point.
These results are summarised in Table 2. Here the defining conditions listed are just those
that must be satisfied in addition to the usual ones defining the codimension-one singularity in
question. Note the apparent discrepancy that the degenerate adding-sliding bifurcation scenario
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Degenerate sliding Defining & non-degeneracy Other codim 1
bifurcation conditions bifurcations in unfolding

crossing-sliding HxF1xF1 = 0 crossing-sliding
Hx(F1x)2F1 > 0 switching-sliding

grazing-sliding

grazing-sliding HxF1xF1 = 0 grazing-sliding,
Hx(F1x)2F1 < 0 adding-sliding

switching-sliding same as above but switching-sliding,
incoming flow generated by F2 crossing-sliding,

adding-sliding

adding-sliding same as above but also adding-sliding
Hx(F1x)2F1 = 0 grazing-sliding

HxF1xF1xxF1F1 + Hx(F1x)3F1 < 0

Table 2: Analytical conditions determining other three cases of degenerate codimension-two
sliding bifurcations.

is characterised by two, not one, additional defining conditions. However, it can be argued
that this is still a codimension-two event. The argument proceeds by considering the fact that
the flow which interacts with the boundary of the sliding region is confined to evolution on
the n − 1 dimensional switching manifold Σ. In some sense, this loss of system dimension is
reflected in the number of conditions determining the bifurcation and also in the number of
non-degeneracy conditions that must be assumed. Further details of this subtle point are to be
found in [Kowalczyk & di Bernardo 2004].

4.1.3 Example 1: Degenerate crossing-sliding in a forced linear dry-friction oscil-
lator

We shall now give an example of a system where the degenerate crossing-sliding bifurcation
scenario has been detected. In what follows we discuss the characteristic features of this C-
bifurcation. In particular, we will focus on the parameter portrait around the codimension-two
point.

Let us consider a dry-friction oscillator with external forcing, which can be expressed in
non-dimensionalised form as:

ẍ + x = sin(ωt) − F sgn(ẋ), (33)

where x is the position and ẋ the velocity of the oscillating mass, while ω is the frequency of
the forcing term and F is the amplitude of the dry friction. We can express equation (33) as a
set of first order autonomous ODEs on the cylinder. After setting the variables x1 = x, x2 = ẋ
and x3 = ωt(mod2π), (33) becomes:

ẋ =





x2

−x1 + sin(x3) − F sgn(x2)
ω



 . (34)

The system orbit evolves smoothly in two subspaces defined by the sign of the scalar function
H(x) = x2. We can write (34) in the form (4) with

F1 =





x2

−x1 + sin(x3) − F
ω



 , (35)

F2 =





x2

−x1 + sin(x3) + F
ω



 . (36)
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Figure 7: (a) A simple periodic orbit, and (b) corresponding time series of the velocity coordinate
for ω−1 = 1.5 and F = 0.3 (see point ‘1’ in Fig. 8).

In Fig. 7(a) we depict a simple symmetric orbit that is an orbit built from two segments of
period 2π

ω : one segment was generated by the vector field F1 and the other by the vector field
F2, at parameter values ω−1 = 1.5, F = 0.3. The time series of the velocity coordinate x2 is
depicted in Fig. 7(b).

Under the variation of the bifurcation parameter F we found that the symmetric orbit
undergoes the crossing-sliding bifurcation scenario at ω−1 = 1.5 and F = 0.6656. Past the
bifurcation point two additional sliding segments form part of the orbit.

The aforementioned bifurcation point belongs to a one-parameter crossing-sliding bifurcation
curve which we shall term Bα, given by

F =
ω2

ω2 − 1
sin

[

cot−1

(

ω sin(πω−1)

1 + cos(πω−1)

)

+ π

]

for ω ∈ (0.5, ∞), ω 6= 1. (37)

If we now follow periodic orbits along Bα it turns out that for (ω−1, F ) = (0.5, 1

3
) the non-

degeneracy condition HxF1xF1 > 0 for the crossing-sliding bifurcation scenario is violated (it
becomes zero) and Hx(F1x)2F1 > 0. Thus the set of analytical conditions determining the
degenerate codimension-two crossing-sliding bifurcation is satisfied.

In the case of the degenerate crossing-sliding bifurcations, two curves of codimension-one
sliding bifurcations, namely grazing-sliding and switching-sliding (which we shall denote by Bγ

and Bβ respectively), branch out from the node where Bα terminates. Moreover, Bβ and Bγ

join Bα in a smooth way; that is Bα − Bγ and Bα − Bβ form at least C1-differentiable curves
in the neighbourhood of the codimension-two node in the two parameter space. This can be
seen in Fig. 8 where the three curves Bα, Bβ and Bγ are depicted. All the bifurcation curves
depicted in the figure were obtained using a numerical continuation technique, based on shooting,
developed for sliding bifurcations. Analytical and numerical curves Bα agree with high accuracy
and cannot be distinguished in Fig. 8. The crossing of different bifurcation boundaries around
the codimension-two node leads to creation of additional segments of the orbit forming a limit
cycle but the stability and period of orbits remain unchanged.

Orbits around the node before and after crossing the Bα boundary, for (ω−1, F ) = (1.8, 0.35)
and (ω−1, F ) = (2, 0.35) respectively, are depicted in Fig. 9(a) and (b). Subsequent parameter
variations such that the orbit crosses Bβ will lead to two additional segments of the orbit.
Time series of an orbit before, for (ω−1, F ) = (2.5, 0.2), and after, for (ω−1, F ) = (2.5, 0.15),
crossing Bβ are depicted in Fig. 10. The additional non-sliding segment of the orbit born in the
bifurcation is more clearly visible in Fig. 11, which is a zoom into the boxed area depicted in
Fig. 10(b).
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Figure 9: (a) Time series of a simple orbit corresponding to point ‘2’ in Fig. 8, and (b) time
series of a limit cycle after crossing-sliding scenario – corresponding to ‘3’ in Fig. 8
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Figure 10: (a) Time series of an orbit corresponding to point ‘4’ in Fig. 8, and (b) time series
of a limit cycle after switching-sliding scenario – corresponding to ‘5’ in Fig. 8; boxed area in
the figure is magnified in Fig. 11 where additional segment of the orbit born in the bifurcation
is visible.
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Figure 11: Zoom into the boxed area from Fig. 10(b) depicting additional segment of the orbit
born after the switching-sliding bifurcations
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Figure 12: (a) Time series of an orbit corresponding to point ‘6’ in Fig. 8, and (b) zoom into
the region where grazing occurs

Finally, we present the time series of the limit cycle under the variation of the bifurcation
parameter F such that the boundary Bγ is crossed. After crossing Bγ we enter the region where
a simple orbit exists. Such an orbit for the parameters (ω−1, F ) = (2.5, 0.12) is depicted in
Fig. 12. Thus, our numerical investigations indeed confirm that the degenerate codimension-two
crossing-sliding bifurcation is an origin of three codimension-one sliding bifurcation curves.

4.2 Degenerate corner-collision bifurcations

Let us now focus on external corner-collisions, where one of the non-degeneracy hypotheses (26)
that prevent sliding from occurring locally is violated.

4.2.1 Corner-collision with external grazing

We first consider a degenerate case where the vector field F1 is tangent to Σ1 at the corner, say
x = χ. We can write the defining and non-degeneracy conditions for such a bifurcation as

H1xF1 = 0,

H2xFi > 0,

H1xF2 < 0.

An additional non-degeneracy condition would be required on the curvature of the incoming
orbit at the critical point. The simplest case would be that the orbit exhibits a local minimum
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Figure 13: (a) Codimension-two degenerate corner-collision bifurcation and unfolding depict-
ing (b) codimension-one corner-collision and (c) codimension-one grazing-sliding featuring the
repelling sliding set.

with respect to Σ1. This condition can be expressed as

dH2
1 (Φ1(x, t))

dt2

∣

∣

∣

∣

t=0

= H1xF1xF1 > 0. (38)

An unfolding of this codimension-two scenario leads to two codimension-one C-bifurcations:
namely a standard codimension-one corner-collision and a grazing-sliding with a repelling sliding
set. The later scenario leads to a catastrophe — a limit cycle undergoing this type of sliding
bifurcation is destroyed by collision with an (infinitely) unstable cycle that evolves along the un-
stable sliding set. Part of the critical limit cycle featuring degenerate contact with the switching
manifold is depicted in Fig. 13(a).

One of the unfoldings, depicting a standard codimension-one corner-collision is illustrated
in Fig. 13(b). In the figure, the label ‘a’ depicts an orbit segment (assumed to be part of a
limit cycle) that does not reach the corner. Under parameter variation the limit cycle hits the
corner (orbit labelled ‘b’). Further parameter variation causes the orbit to hit Σ1, then switch
to being governed by vector field F2. This scenario is analogous to a standard corner-collision
bifurcation.

Another unfolding leads to a grazing-sliding case with a repelling sliding set, where the
bifurcating orbit grazes Σ1 tangentially (orbit ‘b’ in Fig. 13(c)). Variation of the bifurcation
parameter leads the orbit to hit the manifold Σ1 outside of the sliding subset and then to switch
to the vector field F2. Since F2 points out from Σ1, in this case the original limit cycle is
destroyed and we encounter a catastrophe.

4.2.2 Corner-collision with internal grazing

Consider instead a case where the a tangency between F2 and Σ1 occurs at the degenerate
corner-collision. that is H1xF2 = 0 at the codimension-two point. We now have the following
defining and non-degeneracy conditions defining this scenario

H1xF2 = 0,

H2Fi > 0,

H1xF1 < 0.

In this case we can encounter two distinct codimension-two scenarios depending on the non-
degeneracy condition which reflects the curvature of the vector field F2 with respect to the
switching manifold; that is depending on whether F2 exhibits a local maximum or minimum
with respect to Σ1.
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Figure 14: (a) Degenerate codimension-two corner-collision and codimension-one C-bifurcations
unfolded from this scenario: (b) standard corner-collision of codimension-one, (c) corner-collision
in the presence of sliding, and (d) crossing-sliding bifurcation.

Let us first suppose that F2 exhibits a local maximum with respect to Σ1 at the codimension-
two point. That is, we require

dH2
1 (Φ2(x, t))

dt2

∣

∣

∣

∣

t=0

= H1xF2xF2 < 0. (39)

Unfolding of this scenario implies that three codimension-one events are possible: a standard
corner-collision bifurcation, a crossing-sliding scenario and a corner-collision of codimension-
one but with a sliding motion on Σ1. The third scenario has not been analysed as yet in the
literature.

The critical degenerate orbit is sketched in Fig. 14(a) and the unfoldings are schematically
depicted in Fig. 14(b), (c) and (d). We use the same standard notation of labelling by ‘a’ the
orbit before, by ‘b’ at, and by ‘c’ after the bifurcation.

Fig. 14(b) depicts the standard external corner-collision scenario. Fig. 14(c) depicts in turn
a corner-collision scenario, but this time an orbit after the bifurcation instead of following
Φ2 moves along the switching manifold until the corner of the discontinuity set is reached. In
Fig. 14(d) we can see an orbit (labelled ‘a’) crossing Σ1 transversally. Parameter variation would
cause this orbit to hit the boundary of the sliding set formed on Σ1 and to the creation of an
additional sliding segment forming part of an orbit. Thus, we have arrived at a codimension-one
crossing-sliding bifurcation (compare with Fig. 2(a)).

Let us now consider the other case, where the flow corresponding to F2 exhibits a local
minimum with respect to Σ1. The non-degeneracy condition in this case can be expressed as

dH2
1 (Φ2(x, t))

dt2

∣

∣

∣

∣

t=0

= H1xF2xF2 > 0. (40)

Now unfolding of the codimension-two scenario leads to a standard corner-collision and a corner-
collision with a switching manifold featuring sliding as depicted for the previous case. There is
also a third codimension-one C-bifurcation different from the one observed in the previous case;
instead of a crossing-sliding we observe a switching-sliding.

Figure 15(a) depicts the critical orbit at the codimension-two point. The unfolded switching-
sliding scenario is depicted in Fig. 15(b). Before the bifurcation the orbit hits Σ1 within the
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Figure 15: (a) Degenerate codimension-two corner-collision bifurcation and (b) one of the C-
bifurcations unfolded from this codimension-two bifurcation.

sliding region (orbit labelled by ‘a’ in the figure). Variation of the bifurcation parameter leads to
an orbit (labelled ‘b’) which hits the boundary of the sliding region. Further parameter variation
leads to formation of an additional orbit segment ‘c’, generated by F2, which can be compared
with the typical switching-sliding case depicted in Fig. 2(c)).

4.2.3 Example 2: A degenerate corner collision in an artificial model

A full unfolding of the scenarios described above, including the more general case of boundary
intersection, rather than a corner-collision, is left for future work. Instead we shall end this
section with an example. Note that power electronics has many examples of corner-collision
bifurcations which can occur when a component switches on or off, as a result of comparing a
signal to a saw tooth. Codimension-one corner-collisions have been found in such systems by a
number of authors and shown to undergo many of the dynamical scenarios undergone by border-
collision bifurcations of piecewise-linear maps [Yuan et al. 1998, Deane & Hamill 1990, Fossas &
Olivar 1996]. In fact, in [di Bernardo et al. 1998] the dynamics of a five-piece chaotic attractor
in a DC-DC buck converter was shown to be organised by the near-occurrence of a codimension-
two corner collision of a five-periodic orbit. However, in that case the vector fields F1,2 are
both linear, so that the curvature condition (38) is replaced by equality, leading to a degenerate
codimension-two bifurcation where the critical orbit actually slides over an O(1) distance of Σ1.
Small adjustments to this model, to include for example nonlinear corrections to Ohm’s law,
would lead to the bifurcation scenario described in Sec. 4.2.1 above. Rather than study such
a model here, we instead study a canonical model for this bifurcation, which is obtained by
explicit construction.

Following [di Bernardo et al. 2001b] we take a system
{

ẋ = γ
ẏ = δ

}

for x > 0, −x tanα < y < x tanβ (region G1)
{

ṙ = εr(a − r)

θ̇ = 1

}

otherwise (region G2)
(41)

where
x + 1 = r cos θ, y = r sin θ,

and γ, δ, β, ε and a are real constants; see Fig. 16(a).
Consider the system (41). For a > 0 there is a limit cycle which is stable if ε > 0. At

a = 1 this limit cycle collides with the boundary of region G2 in an external corner collision
bifurcation. Specifically we take

H1(x, y) = −y, H2(x, y) = y cos β − x sinβ.

Note that the non-degeneracy condition for the corner-collision to be codimension-one is (26)
are satisfied provided

0 < α, β < π/2, δ > γ tan β, δ > −γ tan α. (42)
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Figure 16: (a) Sketch of the phase portrait of (41) undergoing a codimension-one corner-collision
bifurcation at a = 1 (b) A codimension-two case defined by α = π/2.

Since the systems in regions G1 and G2 are solvable in closed form one can explicitly construct
the Poincaré map x0 7→ Πx0 associated with the Poincaré section {y = 0, x > −1} (details of
the analysis are contained in [di Bernardo et al. 2001b]), and perfect agreement was found with
the ZDM. Here we shall just rely on the former approach. After some routine calculation, using
the fact that the critical periodic orbit is just r = 1, one can linearise and construct the Poincaré
map to be:

x̂ 7→ N

(

1 − [γ̂ + δ̂ tan α] tan(α + β)

γ̂ tan(α + β) − δ̂
x̂

)

+ M cos αµ (43)

Here x̂ is a co-ordinate in the Poincaré section (see Fig. 16)

µ = a − 1, γ̂ = γ cos α − δ sinα, δ̂ = δ cos α + γ sinα,

and
N = exp(−2επ), M = (1 − exp(−2επ)).

Now consider the codimension-two corner bifurcation that occurs when all the conditions
(42) are satisfied except α = π/2. Then the flow F1, which is locally vertical at the grazing
point, becomes precisely tangent to the switching set Σ1. Thus, in the notation of the above
sections, this corresponds to a corner-collision with internal grazing. Looking at the explicitly
constructed local Poincaré map (43), we can see immediately that this can no longer be described
by the piecewise-linear normal form. This is because the term tan α becomes infinite, which tells
us that the asymptotic expansion used in [di Bernardo et al. 2001b] has become invalid. Instead
we should expect to see a map with a jump at higher than the linear order. Maps with such
behaviour are known to be able to give rise to the sudden jump to broad-band chaos. Thus
a complete unfolding of this degeneracy within the context of this example would seem to be
pressing.

Finally it might be pertinent to point out that other codimension-two corner-collisions can
be found by breaking other inequalities in (42). For example, by letting δ = −γ tanα, we would
get a corner-collision with internal grazing as described in Sec. 4.2.2. However, in order to satisfy
one of the non-degneracy constraints (39) or (40) we would need to adjust the system to make
either the vector field F2 or the manifold Σ1 nonlinear.

5 Type II: C-bifurcations of degenerate cycles

Here we consider different cases of C-bifurcations of non-hyperbolic orbits. That is eigenvalues
(i.e. Floquet multipliers) of the Jacobian matrix of a map P built around the periodic point
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of the critical orbit, ignoring any contact with Σ, lie on the unit circle. This possibility can
easily occur as an additional degeneracy for each of the codimension-one bifurcations described
in Sec. 2.1. The complete unfolding of each case remains an open question. However, since
the degeneracy is in the global Poincaré map rather than the grazing it should be relatively
straightforward to explicitly construct examples in which such codimension-two C-bifurcations
occur using a methodology like that of Example 2 above. This is left for future work. Sec 5.1
presents just one case of a non-hyperbolic sliding bifurcation, giving a numerical unfolding for
a particular example. Then, in Sec 5.2, we focus on the one case that has been worked out in
some detail, that of grazing bifurcations in class A systems. We present results by example;
more general results will appear elsewhere.

The minimum dimension of phase space where the scenarios described here can be observed
is n = 2 in the case where an eigenvalue of the map P is 1, and n = 3 for eigenvalues −1 or a
complex pair at the codimension-two point.

5.1 Example 3: Flip-grazing in a forced nonlinear dry-friction oscillator

Following [Yoshitake & Sueoka 2000, di Bernardo et al. 2003b], consider a dry friction oscillator
described by the equation

ẍ + x = α1 sgn(1 − ẋ) − α2(1 − ẋ) + α3(1 − ẋ)3 + α4 cos(ωt). (44)

Here the positive real constants α1, α2, α3 are the coefficients of the kinematic friction character-
istics, α4 is the amplitude of the forcing and ω its angular frequency. Introducing x1 = x, x2 =
ẋ, x3 = ωt(mod2π), we obtain an autonomous Filippov system (4) on the cylinder with

F1,2(x) =





x2

−x1 ± α1 − α2(1 − x2) + α3(1 − x2)
3 + α4 cos(x3)

ω



 , (45)

and
H(x, α) = x2 − 1. (46)

It is known (see [di Bernardo et al. 2003b]) that at

α1 = α2 = 1.5, α3 = 0.45, α4 = 0.1, ω ≈ 1.7078

a 8π
ω -cycle exists in the region H(x, α) < 0, and touches the discontinuity boundary Σ (see

Fig. 17). This is a grazing-sliding bifurcation of the system. Starting with the numerical
solution corresponding to Fig. 17, one can continue this bifurcation in two control parameters
α4 and ω.

It turns out that a branch denoted by TCH2 in the (α4, ω) plane, presented in Fig. 18,
corresponding to a family of 8π

ω -cycles undergoing the grazing-sliding bifurcation terminates at
some point A1 = (α4, ω) ≈ (1.324, 2.548). At this point a limit cycle with period 8π

ω undergoes
a period-doubling bifurcation. To be precise we observe a period doubling of a 4π

ω -cycle which
at A1 becomes an 8π

ω -cycle for decreasing values of the bifurcation parameter α4. Thus, at
A1 the periodically forced dry-friction oscillator exhibits a codimension-two bifurcation when a
nonhyperbolic 4π

ω -cycle touches the discontinuity set.
A bifurcation curve corresponding to a family of limit cycles characterised by 4π

ω -period was
then followed in the (α4, ω) parameter space. This bifurcation curve is denoted as TCH1 in
Fig. 18. Another branch point was detected at A2 = (α4, ω) ≈ (2.814, 3.034), where the grazing
cycle undergoes a period-doubling bifurcation. Finally, Fig. 18 contains a curve PD1 emanating
from point A1 on which the smooth flip (period-doubling) bifurcation of the 4π

ω -cycle occurs.
Limit cycles depicting qualitatively different types of orbits around the codimension-two

point are presented in Fig. 19. A 4π
ω -cycle depicted in Fig. 19(a) was obtained for the parameter
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Figure 17: A grazing cycle of the periodically forced dry-friction oscillator (44).
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Figure 18: Bifurcation curves of (44): TCH1 - grazing-sliding bifurcation of the 4π
ω -cycle; PD1

- flip (period-doubling) bifurcation of the 4π
ω -cycle; TCH2 - grazing-sliding bifurcation of the

8π
ω -cycle; A1,2 - codimension-two flip-grazing points.
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Figure 19: Qualitatively different types of limit cycles around the codimension-two bifurcation
point detected for α1 = α2 = 1.5, α3 = 0.45, ω = 2.5, and (a) α4 = 1, (b) α4 = 1.19, (c)
α4 = 1.22 and (d) α4 = 1.5.

values corresponding to point ‘1-c’ in Fig. 18. Under the variation of α4 this limit cycle will cross
the branch PD1. Thus, it will undergo period doubling. An orbit with double period at point
‘2-c’ in Fig. 18 is depicted in Fig. 19(b). Further variation of α4 leads the to the period-two
orbit undergoing a grazing-sliding bifurcation (crossing of TCH2). In our current example the
8π
ω -cycle after grazing-sliding scenario preserves its stability and period, and acquires a ‘sliding’
segment. Such an 8π

ω -cycle with a sliding segment is depicted in Fig. 19(c) (at point ‘2-sc’
in Fig. 18). Finally, further increase of α4 leads to another grazing-sliding scenario when the
curve TCH1 is crossed. In this bifurcation the period-two orbit with sliding disappears and a
4π
ω -cycle with sliding is born. Such limit cycle with a sliding segment is depicted in Fig. 19(d)
(point ‘1-sc’ in Fig. 18). It is worth noting that the grazing-sliding scenario occurring along
TCH1 on either side of A1 leads to two distinct bifurcation scenarios. If TCH1 is crossed on
the right from A1 (for α4 > 1.324 we observe a continuous transition from a 4π

ω -cycle with
sliding to a 4π

ω -cycle without sliding or vice versa, depending whether parameter ω is increased
or decreased). On the other hand if TCH1 is crossed on the left from A1 (for α4 < 1.324) we
observe a transition from a stable 4π

ω -cycle with sliding to an unstable 4π
ω -cycle without sliding.

This scenario is accompanied by a birth of a stable 8π
ω -cycle with sliding (if ω is decreased we

observe a transition to a limit cycle with sliding and disappearance of a period-two orbit).

5.2 Example 4: Non-hyperbolic grazings in a forced impact oscillator

Consider now an example of a class A system which models a periodically forced mechanical
single-degree of freedom oscillator that can impact with a rigid stop. It has three state variables,
where x1 is position, x2 velocity and x3(mod2π) is the driving phase.
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Figure 20: Grazing orbit with λ = 1

The system is assumed to obey the ODE system

ẋ1 = x2 (47)

ẋ2 = − 1

w2
x1 −

2d

w
x2 + A

([

1

w2
− 1

]

cos(x3) −
2d

w
sin(x3)

)

(48)

ẋ3 = 1 (49)

for x1 > −1, with the rigid stop being at x1 = −1. At the stop, a Newton restitution law is
assumed

x+
2

= −rx−
2

, (50)

where x−
2

is the incoming velocity, immediately prior to impact, and x+
2

is the outgoing velocity
instantaneously later. The dimensionless parameters of the system are: d which represents the
damping coefficient, w the ratio of the driving frequency to the undamped natural frequency, r
the coefficient of restitution, and A the amplitude of the trivial periodic response of the system
(the particular integral solution). When 0 < A < 1 the system admits the non-impacting
periodic solution

x1 = A cos(x3), x2 = −A sin(x3),

which is stable if d > 0 and w > 0. Besides this solution, the system may have additional impact-
ing periodic solutions and chaotic attractors as described in many previous works, e.g. [Peterka
1974a, Nordmark 2002, Budd & Dux 1994].

5.2.1 Non-hyperbolic grazing solution with multiplier λ = 1

For the parameter values d = 0.6, w = 4.519798, A = 0.938042, r = 1 there exists a periodic
orbit with one non-grazing impact and one grazing as shown in Figure 20. If the system is lin-
earised around a periodic point of the limit cycle, ignoring the grazing impact, it is characterised
by one multiplier λ = 1. The second non-trivial multiplier is positive and close to zero. The
period of the orbit is 8π.

One point on the orbit is (x1, x2, x3) = (−1, 0.315637, 2.787732). In a parameter diagram
where w and A are varied, (Figure 21) we find that several one-parameter curves meet at the
two-parameter point. There is a curve ’a’–’b’ of grazing periodic orbits, and a curve ’c’ of saddle-
node bifurcations. For this system, there is a stable periodic orbit similar to the two-parameter
orbit in the region between curves ‘b’ and ‘c’, and at ‘b’ it undergoes a grazing bifurcation leading
to a chaotic attractor similar to the two-parameter orbit (Fig. 20) in a small region above curve
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Figure 21: Parameter diagram around the codimension-two point(asterisk). A curve of grazing
periodic orbits with a multiplier λ > 1 is denoted by ‘a’, and with a multiplier λ < 1 by ‘b’. A
curve of non-hyperbolic orbits with a multiplier λ = 1 characterised by no low velocity impacts
is denoted by ‘c’.

‘b’. Further increases of the parameter A make the attractor disappear in a boundary crisis.
The curve where this happens is not included in the diagram. Below ‘c’ and below and above
‘a’ there is no attractor close to the two-parameter orbit.

5.2.2 Non-hyperbolic grazing solution with multiplier λ = −1

For the parameter values d = −0.3, w = 3.729986, A = 0.257040, r = 0.15 there exists a
periodic orbit with one non-grazing impact and one grazing, as shown in Figure 22. If the
system is linearised around the periodic point of the limit cycle, ignoring the grazing impact, it
is characterised by one multiplier λ = −1. The other non-trivial multiplier is negative and its
value is around −0.47. One point on the orbit is (x1, x2, x3) = (−1, 0.170869, 5.186351), and the
period of the orbit is 6π.

In a parameter diagram where w and A are varied, (Figure 23) we find that several one-
parameter curves meet at the two-parameter point. There is a curve ’a’–’b’ of grazing period 6π
orbits, a curve ’c’ of supercritical period-doubling bifurcations, and a curve ’d’ of grazing period
12π orbits. For this system, there is a stable periodic orbit similar to the two-parameter orbit
(Fig. 22) in the region below curves ‘a’ and ‘c’. At ‘c’ there is a supercritical period-doubling
bifurcation, branching off a stable orbit of twice the period. At ‘d’ this orbit becomes grazing.
The stability characteristics of this orbit changes quite rapidly along the curve ‘d’. Near the
two-parameter point one multiplier must be close to one, but at the right edge of the diagram,
the multipliers are already complex. Similar changes take place on curve ‘a’. In this system, the
grazing bifurcation at ‘d’ does not continuously create an attractor.

6 Type III: Simultaneous occurrence of two grazings

In this section we consider codimension-two C-bifurcations characterised by two nonsmooth
transitions occurring simultaneously at two different points in the phase space along the or-
bit. Any pair of sliding bifurcations, grazing-bifurcations or corner-collisions occurring at two
spatially separated points along the orbit leads to this class of codimension-two C-bifurcation.

We also include in this type any pair of sliding, grazing, corner-collisions where the system
under consideration features two switching surfaces and the two spatially separated bifurcation
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Figure 22: Grazing orbit with λ = −1
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Figure 23: Parameter diagram around the codimension-two point (asterisk). Curve of grazing
periodic orbits with a multiplier λ > −1 or complex is denoted by ‘a’, and with a multiplier
λ < −1 by ‘b’. Curve denoted by ‘c’corresponds to a branch of limit cycles with λ = −1 and no
low velocity impacts. Curve ‘d’ denotes grazing cycles of the double period.
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Figure 24: Schematic representation of an orbit undergoing corner-collision (point M) and
crossing-sliding (point O) bifurcations
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Figure 25: Time series of (a) the position component of the system (33) (b) the velocity com-
ponent for ω−1 = 7.76990, F = 0.299984.

scenarios occur on these distinct surfaces. Note that we do not place any constraints on whether
surfaces cross transversally or do not cross at all.

As an example consider a limit cycle undergoing a simultaneous occurrence of corner-collision
and crossing-sliding bifurcations. Such an orbit is schematically depicted in Fig. 24. This
orbit can be studied by appropriate composition of mappings built around any periodic point
of the orbit, for instance around point N . The ZDM normal form for codimension-one C-
bifurcations can then be used to appropriately obtain a Poincaré map capturing the dynamics
of the bifurcating cycle.

We shall now give an example of a system where a codimension-two C-bifurcation of the
type considered in the current section was observed.

6.1 Example 5: Combined adding- and grazing-sliding in the linear dry-

friction oscillator

We consider the dry-friction oscillator (33), focusing this time on a codimension-two situation
where adding-sliding and grazing-sliding occur at two distinct points along a limit cycle. Such a
codimension-two bifurcation point has been located at ω−1 = 7.76990, F = 0.299984, with the
grazing-sliding occurring at x = 0.100044137, ẋ = 0. ωt = 0.411547546 and the adding-sliding at
x = 0.700016, ẋ = 0, ωt = π

2
. The period of the bifurcating orbit is equal to T = 2π

ω = 15.53980π.

Time series of an orbit exhibiting the aforementioned adding-sliding and grazing-sliding bi-
furcation scenarios are depicted in Fig. 25. Projection onto the switching manifold Σ depicting
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Figure 26: Two-parameter bifurcation diagram around the codimension-two node. Bγ denotes
a branch of grazing-sliding and Bδ a branch of adding-sliding bifurcations that cross at the
codimension-two point.
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Figure 27: (a) A limit cycle close to the codimension-two point obtained for ω−1 = 7.4 and
F = 0.28 (see asterisk ‘1’ in Fig 26), and (b) zoom into the region where grazing contact occurs

the position component (Fig. 25(a)) allows us to highlight an instant of the adding-sliding taking
place at some point along the orbit. A graph of the velocity component (Fig. 25(b)) captures
the grazing-sliding interaction. Parameter variations of the bifurcation parameters F and ω
will cause the orbit to cross the grazing-sliding and the adding-sliding boundaries in the two-
parameter space. Depending on the character of the ZDM map which captures the dynamics of
the system a limit cycle undergoing a grazing-sliding scenario might be destroyed. Therefore,
generically at a codimension-two point under consideration a branch of adding-sliding bifurc-
ations might terminate at the codimension-two point. However, in our dry-friction oscillator
example such a situation does not occur and a stable orbit exists in all regions around the
codimension-two point. A bifurcation diagram depicting branches of grazing and adding-sliding
which cross at the codimension-two point are presented in Fig. 26. A limit cycle near the
codimension-two point is depicted in Fig. 27(a). Note part of the orbit close to the grazing
contact (Fig. 27(b)). Variation of any of the two bifurcation parameters might lead the orbit to
cross the bifurcation boundaries Bδ or Bγ (which denote the adding-sliding and grazing-sliding
boundaries respectively) and hence acquire additional segments which form a limit cycle. A
limit cycle after crossing Bγ for increasing values of F leads to an orbit depicted in Fig. 28(a),
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Figure 28: (a) A limit cycle close to the codimension-two point obtained for ω−1 = 7.4 and
F = 0.32 (see asterisk ‘2’ in Fig. 26), and (b) zoom into the region where grazing contact occurs.
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Figure 29: (a) A limit cycle for ω−1 = 8.2 and F = 0.34 corresponding to asterisk ‘3’ in Fig. 26
and (b) a limit cycle for ω−1 = 8.4 and F = 0.34 corresponding to asterisk ‘4’ in Fig. 26

with a zoom into the region where the grazing contact occurs shown in Fig. 28(b). To com-
plete our description in Fig. 29 we show two orbits to the right of the curve Bδ that is after
the adding-sliding bifurcations take place. Additional “non-sliding” segments, which form small
“lobes” in the phase plots of the limit cycles, are clearly visible.

7 Conclusion

In the paper we have presented a first attempt to introduce a framework for a classification of
local grazing bifurcations of limit cycles of codimension-two. We have established three broad
types of such nonsmooth transitions, where in each case we think of a codimension-one scenario
and make it degenerate. This can be done by either: (Type I) making the one of the vector fields
at the grazing point be degenerate, (Type II) making the reinjection map along the limit cycle
be degenerate, or (Type III) allowing two independent grazing events happen to the same limit
cycle. For each type of bifurcation, we have attempted to motivate what this might mean in an
application by investigating at least one case in more detail, by providing a commentary on what
one should expect to see, backed up by analytical results together with numerical simulations
and bifurcation diagrams.

Nonsmooth systems in one of the three classes outlined in Sec. 1, are becoming more and
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more important in applications, see for example the reviews [di Bernardo et al. 2004, Brogliato
1999, Zhusubaliyev & Mosekilde 2003]. As with smooth bifurcations, one of the reasons for
studying codimension-two C-bifurcations is that they act as organising centres for bifurcations
in PWS systems. Obviously, knowledge of the structure of bifurcation curves in parameter space
is of practical importance for scientists and engineers who investigate the dynamic behaviour
of systems. Therefore we hope that the current work will serve as an initial step towards more
in-depth parameter studies of nonsmooth systems arising in applications.

Again, judging from experience with smooth bifurcations, another vital ingredient necessary
to carry apply the above theory to applications is a robust numerical framework for analysing
both regular and C-bifurcations in piecewise smooth systems. Software such as Auto [Doedel,
et al. 1997] and Content [Kuznetsov & Levitin 1995-1997], when used in standard mode
will in general fail at grazing points. Instead one needs to build up a suite of routines that
are specifically designed to compute through discontinuity sets, to accurately detect points of
intersections with them, and to detect and follow parameter values at which grazings occur.
Several such approaches are currently being developed, and have been used to produce the
numerical pictures in this paper [Piiroinen & Kuznetsov 2005]. In specific applications where
the systems concerned are piecewise linear, one can compute system orbits explicitly and the
computation of periodic orbits is reduced to the solution of transcendental equations for the
unknown times at which discontinuity sets are hit. For example, in [di Bernardo et al. 2001b] just
such an approach was used to compute orbits of example 2, in Sec.4.2.3. The general technique,
however, has a much longer history [Peterka 1974a, Feigin 1970] and includes recent studies in
power electronics [Zhusubaliyev & Mosekilde 2003], where in depth two-parameter diagrams have
been computed. A more general idea is to partition the computation of a limit cycle that crosses
say N smooth regions Gi and slides along M discontinuity boundaries Σij into N + M separate
smooth problems with matching boundary conditions. Then one can use any smooth two-point
boundary-value solver to compute the resulting boundary-value problem. This is the philosophy
behind slidecont [Dercole & Kuznetsov 2002 [to appear in ACM TOMS]] that was used to
perform the computations in example 3 (Sec. 5.1). This approach leads to accurate computation
of orbits, but can be hard to implement in practice, particularly when many switches occur.
Another method is to use shooting-type methods which solve boundary-value problems via
Newton’s method applied to the Poincaré map. At each discontinuity set encountered by an
orbit, discontinuity mappings can be constructed in order to find the tangent direction for nearby
orbits. For the first steps in this direction see [Adolfsson, et al. 2001, Dankowicz & Piiroinen 2002]
and also the software produced by SICONOS [http://www.enm.bris.ac.uk/staff/ptp/SICONOS
WP4/ 2005, Piiroinen 2005], which also implements complementarity solvers (see e.g. [Brogliato,
et al. 2002]) that can deal with discontinuous systems directly. Many problems in the numerical
analysis of nonsmooth systems remain to be solved.

A few words might be pertinent on the dynamics that are implied by the presence of the
codimension-two points that we have studied. We have, quite deliberately, kept away from a fo-
cus on chaotic dynamics in this paper. Clearly there will be chaotic dynamics in a neighbourhood
of many of the bifurcations we have described. Perhaps the nature of the chaos known to be cre-
ated in codimension-one grazing bifurcations (e.g. [Kowalczyk 2005, Banerjee, et al. 1998]) will
be greatly transformed by the presence of the codimension-two point. We already mentioned, in
Sec. 4.2 the case of a DC-DC converter where the very nature of the observed chaotic dynamics
over a wide range of parameter values is organised by a nearby codimension-two corner-collision
bifurcation [di Bernardo et al. 2001b]. Other codimension-two bifurcations might cause a side-
switching in the direction of bifurcation of the simplest periodic orbit; see for example the recent
work of Zhao and Dankowicz [Dankowicz & Zhao 2004, Zhao & Dankowicz 2004] who find just
such an event in a class A system. Other codimension-two bifurcations may cause the transition
from a regular bifurcation to a catastrophe, where there is no local attractor. Such would be the
case in any region of parameter space where the limit cycle is forced to pass through a region
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of repelling sliding motion. At the other extreme, some codimension-two C-bifurcations have
almost no influence on the observed dynamics. For instance, in example 1 (Sec. 4.1.3) there is a
single periodic attractor in the entire neighbourhood of the codimension-two point. The various
codimension-one bifurcation curves that emerge from the codimension-two point just cause the
limit cycle to change its topology with respect to the discontinuity set, but such topological
changes do not necessarily imply topological changes in phase portrait view in the large.

It must be stressed that our current work is not aimed at giving a complete theory for
codimension-two C-bifurcations of limit cycles. It should rather serve as a guideline for the de-
velopment of such a consistent theory. Clearly, taking even just the restricted class of scenarios
we have covered, there remains much to be done, and open problems have been highlighted in
the course of the preceding discussion It is worthwhile to note, though, that there are many other
possible kinds of codimension-two C-bifurcations. For example, there is a growing literature on
piecewise smooth systems that have equilibria precisely on the boundary between two smooth
regions and for which nonsmooth analogues of Hopf bifurcations can be proved [Giannakopoulos
& Pliete 2001, Kuznetsov et al. 2002]. To embed such systems smoothly into class A or B
above, one would need to add a second parameter to move the equilibrium off the boundary,
thus creating a codimension-two event. There are also examples of codimension-one bifurcations
of invariant tori, e.g.[Dankowicz, et al. 2002]. In particular, in the work of Zhushubalyev and
Mosekilde [Zhusubaliyev & Mosekilde 2003], an intricate two-parameter bifurcation diagram is
drawn in a neighbourhood of Neimark-Sacker bifurcations that creates a torus, in a particu-
lar system derived from power electronics. Here there are numerous codimension-two points
when resonance points on the torus interact with the discontinuity boundary. Neither have
we considered any global bifurcations. Clearly grazing limit cycles can become homoclinic, or
homoclinic orbits can become degenerate by grazing, or by the equilibrium approaching a dis-
continuity set, or boundary equilibria can have stable and unstable manifolds which connect to
them in finite time [Kuznetsov et al. 2002]. Stable and unstable manifolds of limit cycles can
also form sudden transverse intersection through interaction with a boundary. The possibilities
seem almost endless. If nothing else, we hope this paper serves to stimulate more work into a
fascinating, wide open, area of dynamical systems research that is clearly vital from the point
of view of applications.
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