10,873 research outputs found

    Too Hot to Handle: An Evaluation of the Effect of Thermal Visual Representation on User Grasping Interaction in Virtual Reality

    Get PDF
    Influence of interaction fidelity and rendering quality on perceived user experience have been largely explored in Virtual Reality (VR). However, differences in interaction choices triggered by these rendering cues have not yet been explored. We present a study analysing the effect of thermal visual cues and contextual information on 50 participants' approach to grasp and move a virtual mug. This study comprises 3 different temperature cues (baseline empty, hot and cold) and 4 contextual representations; all embedded in a VR scenario. We evaluate 2 different hand representations (abstract and human) to assess grasp metrics. Results show temperature cues influenced grasp location, with the mug handle being predominantly grasped with a smaller grasp aperture for the hot condition, while the body and top were preferred for baseline and cold conditions

    An Instrumented Glove for Restoring Sensorimotor Function of the Hand through Augmented Sensory Feedback

    Get PDF
    The loss of sensitivity of the upper limb due to neurological injuries severely limits the ability to manipulate objects, hindering personal independence. Non-invasive augmented sensory feedback techniques are used to promote neural plasticity hence to restore the grasping function. This work presents a wearable device for restoring sensorimotor hand functions based on Discrete Event-driven Sensory Control policy. It consists of an instrumented glove that, relying on piezoelectric sensors, delivers short-lasting vibrotactile stimuli synchronously with the relevant mechanical events (i.e., contact and release) of the manipulation. We first performed a feasibility study on healthy participants (20) that showed overall good performances of the device, with touch-event detection accuracy of 96.2% and a response delay of 22 ms. Later, we pilot tested it on two participants with limited sensorimotor functions. When using the device, they improved their hand motor coordination while performing tests for hand motor coordination assessment (i.e., pick and place test, pick and lift test). In particular, they exhibited more coordinated temporal correlations between grip force and load force profiles and enhanced performances when transferring objects, quantitatively proving the effectiveness of the device

    Pseudo-Haptics for Rigid Tool/Soft Object Interaction Feedback in Virtual Environments

    Get PDF
    This paper proposes a novel pseudo-haptics soft object stiffness simulation technique which is a marked improvement to currently used simulation methods and an effective low-cost alternative to expensive 3-DOF haptic devices. Soft object stiffness simulation is achieved by maneuvering an indenter avatar over the surface of a virtual soft object by means of an input device, such as a mouse, a joystick, or a touch-sensitive tablet. The alterations to the indenter avatar behavior produced by the proposed technique create for the user the illusion of interaction with a hard inclusion embedded in the soft object. The proposed pseudo-haptics technique is validated with a series of experiments conducted by employing three types of 2-DOF force-sensitive haptic surfaces, including a touchpad, a tablet with an S-pen input, and a tablet with a bare finger input. It is found that both the sensitivity and the positive predictive value of hard inclusion detection can be significantly improved by 33.3% and 13.9% respectively by employing tablet computers. Using tablet computers could produce results comparable to direct hand touch in detecting hard inclusions in a soft object. The experimental results presented here confirm the potential of the proposed technique for conveying haptic information in rigid tool / soft object interaction in virtual environments

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Grasping, Communicating, Understanding: Connecting Reality and Virtuality

    Full text link
    "Several simulation projects in the area of production and logistics indicated that, although we have sophisticated input and output devices for computer supported modeling, physical models still play an important role for cognition and communication. We therefore introduce the concept of a Graspable User Interface that aims at combining two model worlds, the one inside the computer and a corresponding physical one in the outside world. Sensored user hands will couple physical objects of the real world with virtual objects, thus allowing fairly unrestricted manipulation and expression. In this way modeling with real physical objects can create an abstract virtual model. Some applications of this concept are presented. A further perspective for a new action oriented communication and learning with artifacts is envisioned." [author's abstract
    corecore