82 research outputs found

    Grasp Analysis Tools for Synergistic Underactuated Robotic Hands

    Get PDF
    Despite being a classical topic in robotics, the research on dexterous robotic hands still stirs a lively research activity. The current interest is especially attracted by underactuated robotic hands where a high number of degrees of freedom (DoFs), and a relatively low number of degrees of actuation co-exist. The correlation between the DoFs obtained through a wise distribution of actuators is aimed at simplifying the control with a minimal loss of dexterity. In this sense, the application of bio-inspired principles is bringing research toward a more conscious design. This work proposes new, general approaches for the analysis of grasps with synergistic underactuated robotic hands.After a review of the quasi-static equations describing the system, where contact preload is also considered, two different approaches to the analysis are presented. The first one is based on a systematic combination of the equations. The independent and the dependent variables are defined, and cause-effect relationships between them are found. In addition, remarkable properties of the grasp, as the subspace of controllable internal force and the grasp compliance, are worked out in symbolic form. Then, some relevant kinds of tasks, such as pure squeeze, spurious squeeze and kinematic grasp displacements, are defined, in terms of nullity or non-nullity of proper variables. The second method of analysis shows how to discover the feasibility of the pre-defined tasks, operating a systematic decomposition of the solution space of the system. As a result, the inputs to be given to the hand, in order to achieve the desired system displacements, are found. The study of the feasible variations is carried out arriving at the discovery of all the combinations of nullity and/or non-nullity variables which are allowed by the equations describing the system. Numerical results are presented both for precision and power grasps, finding forces and displacements that the hand can impose on the object, and showing which properties are preserved after the introduction of a synergistic underactuation mechanism

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand

    Get PDF
    In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extensio

    Advanced grasping with the Pisa/IIT softHand

    Get PDF
    This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively

    Modeling and Simulation of Robotic Grasping in Simulink Through Simscape Multibody

    Get PDF
    Grasping and dexterous manipulation remain fundamental challenges in robotics, above all when performed with multifingered robotic hands. Having simulation tools to design and test grasp and manipulation control strategies is paramount to get functional robotic manipulation systems. In this paper, we present a framework for modeling and simulating grasps in the Simulink environment, by connecting SynGrasp, a well established MATLAB toolbox for grasp simulation and analysis, and Simscape Multibody, a Simulink Library allowing the simulation of physical systems. The proposed approach can be used to simulate the grasp dynamics in Simscape, and then analyse the obtained grasps in SynGrasp. The devised functions and blocks can be easily customized to simulate different hands and objects

    On Grasp Quality Measures: Grasp Robustness and Contact Force Distribution in Underactuated and Compliant Robotic Hands

    Get PDF
    The availability of grasp quality measures is fundamental for grasp planning and control, and also to drive designers in the definition and optimization of robotic hands. This work investigates on grasp robustness and quality indexes that can be applied to power grasps with underactuated and compliant hands. When dealing with such types of hands, there is the need of an evaluation method that takes into account the forces that can be actually controlled by the hand, depending on its actuation system. In this paper, we study the potential contact robustness and the potential grasp robustness (PCR, PGR) indexes. They both consider main grasp properties: contact points, friction coefficient, etc., but also hand degrees of freedom and consequently, the directions of controllable contact forces. The PCR comes directly from the classical grasp theory and can be easily evaluated, but often leads to too conservative solutions, particularly when the grasp has many contacts. The PGR is more complex and computationally heavier, but gives a more realistic, even if still conservative, estimation of the overall grasp robustness, also in power grasps. We evaluated the indexes for various simulated grasps, performed with underactuated and compliant hands, and we analyzed their variations with respect to the main grasp parameters

    Preliminary results toward a naturally controlled multi-synergistic prosthetic hand

    Get PDF
    Robotic hands embedding human motor control principles in their mechanical design are getting increasing interest thanks to their simplicity and robustness, combined with good performance. Another key aspect of these hands is that humans can use them very effectively thanks to the similarity of their behavior with real hands. Nevertheless, controlling more than one degree of actuation remains a challenging task. In this paper, we take advantage of these characteristics in a multi-synergistic prosthesis. We propose an integrated setup composed of Pisa/IIT SoftHand 2 and a control strategy which simultaneously and proportionally maps the human hand movements to the robotic hand. The control technique is based on a combination of non-negative matrix factorization and linear regression algorithms. It also features a real-time continuous posture compensation of the electromyographic signals based on an IMU. The algorithm is tested on five healthy subjects through an experiment in a virtual environment. In a separate experiment, the efficacy of the posture compensation strategy is evaluated on five healthy subjects and, finally, the whole setup is successfully tested in performing realistic daily life activities
    corecore