7 research outputs found

    Lower bounds on the obstacle number of graphs

    Full text link
    Given a graph GG, an {\em obstacle representation} of GG is a set of points in the plane representing the vertices of GG, together with a set of connected obstacles such that two vertices of GG are joined by an edge if and only if the corresponding points can be connected by a segment which avoids all obstacles. The {\em obstacle number} of GG is the minimum number of obstacles in an obstacle representation of GG. It is shown that there are graphs on nn vertices with obstacle number at least Ω(n/logn)\Omega({n}/{\log n})

    On obstacle numbers

    Get PDF
    The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any subsequent improvements to their upper bound will improve our lower bound

    Geometric Graph Theory and Wireless Sensor Networks

    Full text link
    In this work, we apply geometric and combinatorial methods to explore a variety of problems motivated by wireless sensor networks. Imagine sensors capable of communicating along straight lines except through obstacles like buildings or barriers, such that the communication network topology of the sensors is their visibility graph. Using a standard distributed algorithm, the sensors can build common knowledge of their network topology. We first study the following inverse visibility problem: What positions of sensors and obstacles define the computed visibility graph, with fewest obstacles? This is the problem of finding a minimum obstacle representation of a graph. This minimum number is the obstacle number of the graph. Using tools from extremal graph theory and discrete geometry, we obtain for every constant h that the number of n-vertex graphs that admit representations with h obstacles is 2o(n2). We improve this bound to show that graphs requiring Ω(n / log2 n) obstacles exist. We also study restrictions to convex obstacles, and to obstacles that are line segments. For example, we show that every outerplanar graph admits a representation with five convex obstacles, and that allowing obstacles to intersect sometimes decreases their required number. Finally, we study the corresponding problem for sensors equipped with GPS. Positional information allows sensors to establish common knowledge of their communication network geometry, hence we wish to compute a minimum obstacle representation of a given straight-line graph drawing. We prove that this problem is NP-complete, and provide a O(logOPT)-factor approximation algorithm by showing that the corresponding hypergraph family has bounded Vapnik-Chervonenkis dimension

    Graphs with large obstacle numbers

    No full text
    Motivated by questions in computer vision and sensor networks, Alpert et al. [3] introduced the following definitions. Given a graph G, an obstacle representation of G is a set of points in the plane representing the vertices of G, together with a set of connected obstacles such that two vertices of G are joined by an edge if an only if the corresponding points can be connected by a segment which avoids all obstacles. The obstacle number of G is the minimum number of obstacles in an obstacle representation of G. It was shown in [3] that there exist graphs of n vertices with obstacle number at least Ω ( √ logn). We use extremal graph theoretic tools to show that (1) there exist graphs of n vertices with obstacle number at least Ω(n/log 2 n), and (2) the total number of graphs on n vertices with bounded obstacle number is at most 2 o(n2). Better results are proved if we are allowed to use only convex obstacles or polygonal obstacles with a small number of sides
    corecore