30,102 research outputs found

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    GRAIL – Grid Access and Instrumentation Tool

    Get PDF
    Since the release of Globus Toolkit 4 Web services enrich the world of Grid Computing. They provide methods to develop modular Grid applications which can be parallelized easily. The access to Web services is mostly solved by complex command line tools which need a good deal of knowledge of the underlaying Grid technologies. GRAIL is intended to fill the gap between existing Grid access methods and both the developer who wants to utilize the Grid for own developments and the user who wants to access the Grid without much additional knowledge. It simplifies the access and the testing of Web services for the Globus Grid middleware. GRAIL provides an easy to use graphical user interface for executing Web services and enables the user to construct complex relationships between services to realize parallel execution. The underlying framework allows an easy integration of any Web service or other arbitrary task without much additional effort for the developer. Existing technologies, shipped with the Globus Toolkit, are seamlessly integrated into GRAIL

    ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization

    Full text link
    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, ROOT offers packages for complex data modeling and fitting, as well as multivariate classification based on machine learning techniques. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way

    Deploying a middleware architecture for next generation mobile systems

    Get PDF
    Although 2G systems quite adequately cater for voice communications, today demand is for high-speed access to data centric applications and multimedia. Future networks have been designed to provide higher rates for data transmission, but this will be complemented by higher speed access to services via hotspots using secondary wireless interfaces such as Bluetooth or WLAN. With a wide range of applications that may be developed, a growing number of short range wireless interfaces that may be deployed, and with mobile terminals of different capabilities, a means to integrate all these variables in order to facilitate provision of services is desirable. This paper describes an architecture involving the use of middleware that makes software development independent of the specific wireless platfor

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure
    • 

    corecore