12,346 research outputs found

    On the Irresistible Efficiency of Signal Processing Methods in Quantum Computing

    Get PDF
    We show that many well-known signal transforms allow highly efficient realizations on a quantum computer. We explain some elementary quantum circuits and review the construction of the Quantum Fourier Transform. We derive quantum circuits for the Discrete Cosine and Sine Transforms, and for the Discrete Hartley transform. We show that at most O(log^2 N) elementary quantum gates are necessary to implement any of those transforms for input sequences of length N.Comment: 15 pages, LaTeX 2e. Expanded version of quant-ph/0111038. SPECLOG 2000, Tampere, Finlan

    Random quantum channels I: graphical calculus and the Bell state phenomenon

    Full text link
    This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel. As an application, we study variations of random matrix models introduced by Hayden \cite{hayden}, and show that their eigenvalues converge almost surely. In particular we obtain for some models sharp improvements on the value of the largest eigenvalue, and this is shown in a further work to have new applications to minimal output entropy inequalities.Comment: Several typos were correcte

    Probabilistic Models over Ordered Partitions with Application in Learning to Rank

    Get PDF
    This paper addresses the general problem of modelling and learning rank data with ties. We propose a probabilistic generative model, that models the process as permutations over partitions. This results in super-exponential combinatorial state space with unknown numbers of partitions and unknown ordering among them. We approach the problem from the discrete choice theory, where subsets are chosen in a stagewise manner, reducing the state space per each stage significantly. Further, we show that with suitable parameterisation, we can still learn the models in linear time. We evaluate the proposed models on the problem of learning to rank with the data from the recently held Yahoo! challenge, and demonstrate that the models are competitive against well-known rivals.Comment: 19 pages, 2 figure
    corecore