
Probabilistic Models over Ordered Partitions with Applications in
Document Ranking and Collaborative Filtering

Tran The Truyen∗ † Dinh Q. Phung∗ ‡ Svetha Venkatesh∗ §

Abstract
Ranking is an important task for handling a large amount of
content. Ideally, training data for supervised ranking would
include a complete rank of documents (or other objects such
as images or videos) for a particular query. However, this
is only possible for small sets of documents. In practice,
one often resorts to document rating, in that a subset of
documents is assigned with a small number indicating the
degree of relevance. This poses a general problem of
modelling and learning rank data with ties. In this paper,
we propose a probabilistic generative model, that models
the process as permutations over partitions. This results in
super-exponential combinatorial state space with unknown
numbers of partitions and unknown ordering among them.
We approach the problem from the discrete choice theory,
where subsets are chosen in a stagewise manner, reducing the
state space per each stage significantly. Further, we show that
with suitable parameterisation, we can still learn the models
in linear time. We evaluate the proposed models on two
application areas: (i) document ranking with the data from
the recently held Yahoo! challenge, and (ii) collaborative
filtering with movie data. The results demonstrate that the
models are competitive against well-known rivals.

1 Introduction.
Ranking is an important data mining task for handling a
large amount of content, e.g. we want to sort thousands
of documents in the decreasing order of importance with
respect to some criteria and select the top 10. In this paper,
we are interested in the recent problem of learning to rank
(e.g. see [17]), where we want to estimate a ranker that
receives a set of objects and a query as the input and returns
an ordered list.

This can be formulated as a supervised learning prob-
lem. Ideally, training data for supervised ranking would in-
clude a complete rank of objects for a particular query, but
this is only possible for small sets of objects. In larger sets, it

∗Department of Computing, Curtin University GPO Box U1987, Perth,
Western Australia 6845, Australia.

†t.tran2@curtin.edu.au
‡d.phung@curtin.edu.au
§s.venkatesh@curtin.edu.au

is more natural to rate an object from a rating scale, and the
result is that many objects may have the same rating. Such
phenomenon is common in large sets such as movies, books
or web-pages wherein many objects may have tied ratings.

This paper focuses on the modelling and learning rank
objects (e.g. documents) with ties. Previous work often in-
volves paired comparisons (e.g. see [7][11][24]), ignoring
simultaneous interactions among objects. We take an alter-
native approach by modelling objects with the same tie as
a partition, translating the problem into ranking or ordering
these partitions. This problem transformation results in a
combinatorial problem which involves simultaneous set par-
titioning and subset ordering. For a given number of parti-
tions, the order amongst them is a permutation of the parti-
tions being considered, wherein each partition has objects of
the same rank. A generative view of the problem can then be
as follows: Choose the first partition with elements of rank
1, then choose the next partition from the remaining objects
with elements ranked 2 and so on. The number of partitions
then does not have to be specified in advance, and can be
treated as a random variable. The joint distribution for each
ordered partition can then be composed using a variant of
the Plackett-Luce model [19][23], substituting object poten-
tials by the partition potential. We propose two choices for
these potential functions: First, we consider the potential of
each partition to be the normalised sum of individual object
potentials in that partition, leading to a simple normalisation
factor in the estimation of the joint distribution. Second, we
propose a MCMC based parameter estimation for the gen-
eral choice of potential functions. We specify this model as
the Probabilistic Model over Ordered Partitions.

Demonstrating its application to the learning to rank
problem, we use the dataset from the recently held Yahoo!
challenge [30]. We show that our results both in terms of pre-
dictive performance and training time are competitive with
other well-known methods such as RankNet [2], Ranking
SVM [15] and ListMLE [29]. With the choice of our pro-
posed simple potential function, we get the added advantage
of lower computational cost as it is linear in the query size
compared to quadratic complexity for the pairwise methods.
Another application is in collaborative filtering, where we
use the MovieLens data and evaluate our algorithms against

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195647864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the CoFiRANK algorithm [28].
Our main contributions are the construction of a prob-

abilistic model over ordered partitions and associated infer-
ence and learning techniques. We believe that our work is
the first to address the problem of learning to rank with ties
in its most generic form. The complexity of this problem
is super-exponential with respect to number of objects (N)
because both the number of partitions and their order are
unknown - it grows exponentially as N!/(2(ln2)N+1) [22,
pp. 396–397]. Our contribution is to overcome this compu-
tational complexity through the choice of suitable potential
functions, yielding learning algorithms with linear complex-
ity, thus making the algorithm deployable in real settings.
The novelty lies in the rigorous examination of probabilis-
tic models over ordered partitions, extending earlier work in
discrete choice theory [9][19][23]. The significance of the
model is its potential for use in many applications. One ex-
ample is the problem of learning to rank with ties which is
studied in this paper. Further, the model opens new potential
applications for example, novel types of clustering, in which
the clusters are automatically ordered.

2 Background.
In this section, we review some background in rank mod-
elling and learning to rank which are related to our work.

Rank models. Probabilistic models of permutation in
general and of rank in particular have been widely analysed
in statistical sciences (e.g. [21] for a comprehensive survey).
Since the number of all possible permutations over N objects
is N!, multinomial models are only computationally feasible
for small N (e.g. N ≤ 10). One approach to avoid this state
space explosion is to deal directly with the data space, i.e.
based on the distance between two ranks. The assumption
is that there exists a modal ranking over all objects, and
what we observe are ranks randomly distributed around the
mode. The most well-known model is perhaps the Mallows
[20], where the probability of a rank decreases exponentially
with the distance from the mode. Depending on the distance
measures, the model may differ; and the popular distance
measures include those by Kendall and Spearman. The
problem with this approach is that it is hard to handle the
cases with multiple modes, with ties and with incomplete
ranking.

Another line of reasoning is largely associated with the
discrete choice theory (e.g. see [19]), which assumes that
each object has an intrinsic worth which is the basis for the
ordering between them. For example, Bradley and Terry [1]
assumed that the probability of object preference is propor-
tional to its worth, resulting in the logistic style distribu-
tion for pairwise comparison. Subsequently, Luce [19] and
Plackett [23] extended this model to multiple objects. More
precisely, for a set of N objects denoted by {x1,x2, ...,xN}
the probability of ordering x1 � x2 � ...� xN is defined as

P(x1 � x2 � ...� xN) =
N

∏
i=1

φ(xi)
∑

N
j=i φ(x j)

where xi � x j denotes the preference of object xi over x j,
and φ(xi) ∈ R+ is the worth of the object xi. The idea
is that, we proceed to select objects in a stagewise man-
ner: Choose the first object among N objects with prob-
ability of φ(x1)/∑

N
j=1 φ(x j), then choose the second ob-

ject among the remaining N − 1 objects with probability
of φ(x2)/∑

N
j=2 φ(x j) and so on until all objects are cho-

sen. It can be verified that the distribution is proper, that
is P(x1 � x2 � ...� xN) > 0 and the probabilities of all pos-
sible orderings will sum to one. This paper will follow this
approach as it is easily interpretable and flexible to incorpo-
rate ties and incomplete ranks.

Finally, for completeness, we mention in passing the
third approach, which treats a permutation as a symmet-
ric group and applying spectral decomposition techniques
[8][13]. Their applicability to large-scale practical problems
such as learning to rank and collaborative filtering is still un-
known at this time of writing.

Learning to rank. Learning-to-rank is an active topic
where the basic idea is that we can learn ranking functions
which capture the relevance of an object (e.g. document
or image) with respect to a query. The setting and goal
are inherently different from traditional ranking in statistics.
Often, the pool of all possible objects in a typical data
management system is very large, and often changes over
time. Thus, it is not possible to enumerate objects in rank
models. Instead, each object-query pair is associated with
a feature vector, which describes how relevant the object is
with respect to the query. As a result, the distribution over
objects is query-specific, and these distributions share the
same parameter set. As discussed in [17], machine learning
methods extended to ranking can be divided into:

Pointwise approach which includes methods such as
ordinal regression [5][6]. Each query-document pair is
assigned an ordinal label, e.g. from the set {0,1,2, ...,M}.
This simplifies the problem as we do not need to worry about
the exponential number of permutations. The complexity is
therefore linear in the number of query-document pairs. The
drawback is that the ordering relation between documents is
not explicitly modelled.

Pairwise approach which spans preference to binary
classification [2][10][15] methods, where the goal is to learn
a classifier that can separate two documents (per query). This
casts the ranking problem into a standard binary classifica-
tion framework, wherein many algorithms are readily avail-
able, for example, SVM [15], neural network and logistic re-
gression [2], and boosting [10]. The complexity is quadratic
in number of documents per query and linear in number of
queries. Again, this approach ignores the simultaneous in-
teraction among objects within the same query.

Figure 1: Complete ordering (left) versus subset ordering
(right). For the subset ordering, the bounding boxes repre-
sents the subsets of elements of the same rank. Subset sizes
are 4,3,1,2, respectively.

Listwise approach which models the distribution of
permutations [3][27][29]. The ultimate goal is to model
a full distribution of all permutations, and the prediction
phase outputs the most probable permutation. This approach
appears to be most natural for the ranking problem. In
fact, the methods suggested in [3][29] are applications of the
Plackett-Luce model.

3 Modelling Sets with Ordered Partitions.
3.1 Problem Description. Let X = {x1,x2, . . . ,xN} be a
collection of N objects. In a complete ranking setting,
each object xi is further assigned with a ranking index
πi, resulting in the ranked list of {xπ1 ,xπ2 , . . . ,xπN} where
π = (π1, . . . ,πN) is a permutation over {1,2, . . . ,N}. For
example, X might be a set of documents that are related
to a query, and π1 is the index to the first document, π2 is
the index to second document and so on. Ideally π should
contain ordering information for all documents in the set;
however, this task is not always possible for any non-trivial
size N due to the labor cost involved1. Instead, in many
situations, during training a document is rated2 to indicate
the its degree of relevance for the query. This creates a
scenario where more than one document will be assigned to
the same rating – a situation known as ‘ties’ in learning-to-
rank. When we enumerate over each object xi and putting
those with the same rating together, the set of N objects X can
now be viewed as being divided into K partitions with each
partition is assigned with a number to indicate the its unique
rank k ∈ {1,2, ..,K}. The ranks are obtained by sorting
ratings associated with each partition in the decreasing order.
Our essential contribution in this section is a probabilistic
model over this set of partitions, learning its parameter from
data, and performing inference.

Consider a more generic setting in which we know that
objects will be rated against an ordinal value from 1 to K but
do not know individual ratings. This means that we have to

1We are aware that clickthrough data can help to obtain a complete
ordering, but the data may be noisy.

2We caution the confusion between ‘rating’ and ‘ranking’ here. Ranking
is the process of sorting a set of objects in an increasing or decreasing
order, whereas in ‘rating’ each object is given with a value indicating its
preference.

consider all possible ways to split the set X into exactly K
partitions, and then each time, rank those partitions from 1
to K wherein the kth partition contains all objects rated with
the same value k. This is the first rough description of state
space for our model. Formally, for a given K and the order
among the partitions σ , we write the set X = {x1, . . . ,xN} as
a union of K partitions

X =∪K
j=1 Xσ j(3.1)

where σ = (σ1, . . . ,σK) is a permutation over {1,2, ..,K}
and each partition Xk is a non-empty subset3 of objects with
the same rating k. These partitions are pairwise disjoint and
having cardinality4 range from 1 to N. It is easy to see that
when K = N, each Xk is a singleton, σ is now a complete
permutation over {1, . . . ,N} and the problem reduces exactly
to the complete ranking setting mentioned earlier. To get an
idea of the state space, it is not hard to see that there are∣∣∣∣ N

K

∣∣∣∣K! ways to partition and order X where
∣∣∣∣ N

K

∣∣∣∣ is the

number of possible ways to divide a set of N objects into
K partitions, otherwise known as Stirling numbers of second
kind [26, p. 105]. If we consider all the possible values of K,
the size of our state space is

N

∑
k=1

∣∣∣∣ N
k

∣∣∣∣k! = Fubini(N) =
∞

∑
j=1

jN

2 j+1(3.2)

which is also known in combinatorics as the Fubini’s num-
ber [22, pp. 396–397]. This is a super-exponential growth
number. For instance, Fubini(1) = 1, Fubini(3) = 13,
Fubini(5) = 541 and Fubini(10) = 102,247,563. Its asymp-
totic behaviour can also be shown [22, pp. 396–397] to
approach N!/(2(ln2)N+1) as N → ∞ where we note that
ln(2) < 1, and thus it grows much faster than N!. Clearly,
for unknown K this presents a very challenging problem to
inference and learning. In this paper, we shall present an effi-
cient parameterisation and a generic MCMC-based approach
to tackle this state-space explosion in supervised learning
settings.

3.2 Probabilistic Model over Ordered Partitions. Re-
turn to our problem, our task is now to model a distribution
over the ordered partitioning of set X into K partitions and
the ordering σ = (σ1, . . . ,σK) among K partitions given in
Eq (3.1):

p(X) = p(Xσ1 , . . . ,XσK)(3.3)

3Strictly speaking, a partition can be an empty set but we deliberately
left out this case, because empty sets do not contribute to the probability
mass of the model, and it does not match the real-world intuition of object’s
worth.

4More precisely, when the number of partitions K is given, the cardinal-
ity ranges from 1 to N−K +1 since partitions are non-empty

A two-stage view has been given thus far: first X is parti-
tioned in any arbitrary way so long as it creates K partitions
and then these partitions are ranked, result in a ranking index
vector σ . This description is generic and one can proceed in
different ways to further characterise Eq (3.3). We present
here a generative, multistage view to this same problem so
that it lends naturally to the specification of the distribution
in Eq (3.4): First, we construct a subset X1 from X by col-
lecting all objects which have the largest ratings. If there
are more elements in the the remainder set {X \X1} to be
selected, we construct a subset X2 from {X \X1} whose ele-
ments have the second largest ratings. This process continues
until there is no more object to be selected.5 An advantage of
this view is that the resulting total number of partitions Kσ is
automatically generated, no need to be specified in advance
and can be treated as a random variable. If our data truly
contains K partitions then Kσ should be equal to K. Using
the chain rule, we write the joint distribution over Kσ ranked
partitions as

p(X1, . . . ,XKσ
) = p(X1)

Kσ

∏
k=2

p(Xk | X1, . . . ,Xk−1)

= p1 (X1)
Kσ

∏
k=2

pk (Xk | X1:k−1)(3.4)

where we have used X1:k−1 = {X1, . . . ,Xk−1} for brevity.

3.3 Parameterisation, Learning and Inference. It re-
mains to specify the local distribution P(Xk | X1:k−1). Let
us first consider what choices we have after the first (k−1)
partitions have been selected. It is clear that we can se-
lect any objects from the remainder set {X \X1:k−1} for
our next partition kth. If we denote this remainder set by
Rk = {X \X1:k−1} and Nk = |Rk| is the number of remaining
objects, then our next partition Xk is a subset of Rk; further-
more, there is precisely

(
2Nk −1

)
such non-empty subsets.

Using the notation 2Rk to denote the power set of the set Rk,
i.e, 2Rk contains all possible non-empty subsets6 of R, we
are ready to specify each local conditional distribution in Eq
(3.4) as:

(3.5) pk (Xk | X1:k−1) =
Φk (Xk)
Σ

S∈2Rk
Φk(S)

5This process resembles the generative process of Plackett-Luce discrete
choice model [19][23], except we apply on partitions rather than single
element. It clear from here that Plackett-Luce model is a special case of
ours wherein each partition Xk reduces to a singleton.

6The usual understanding would also contain the empty set, but we
exclude it in this paper.

where Φk (S) > 0 is an order-invariant7 set function defined
over a set or partition S, and the summation in the denomi-
nator clearly makes the definition in Eq (3.5) a proper distri-
bution. The set function Φk (·) can also be interpreted as the
potential function in standard probabilistic graphical models
literature.

Although the state space 2Rk for this local conditional
distribution is significantly smaller than the space of all
possible ordered partitions of N objects, it is still exponential
as we have shown earlier to be 2Nk − 1. In general, directly
computing the normalising term is still not possible, let alone
learning the model parameters. In what follows, we will
study an efficient special case which has (sub)-quadratic
complexity in learning, and a general case with MCMC
approximation. We further term our Probabilistic Model
over Ordered Partition as PMOP.

3.3.1 Full-Decomposition PMOP. Under a full-
decomposition setting, we assume the following local addi-
tive decomposition at each kth step:

(3.6) Φk(Xk) =
1
|Xk| ∑

x∈Xk

φk(x)

where φ(x) is some positive function8 of object x.
The normalising term |Xk| is to ensure that the probabil-

ity is not monotonically increasing with number of objects
in the partition. Given this form, the local normalisation fac-
tor represented in the denominator of Eq (3.5) can now ef-
ficiently represented as the sum of all weighted sums of ob-
jects. Since each object x in the remainder set Rk participates
in the same additive manner towards the construction of the
denominator in Eq (3.5), it must admit the following form9:

(3.7) ∑
S∈2Rk

Φk(S) = ∑
S∈2Rk

1
|S| ∑x∈S

φk (x) = C× ∑
x∈Rk

φk(x)

where C is some constant and its exact value is not essential
under a maximum likelihood parameter learning treatment
(readers are referred to Appendix A for the computation of
C). To see this, substitute Eq (3.6) and (3.7) into Eq (3.5):

7i.e., the function value does not depend on the order of elements within
the partition.

8This is application specific, but in practice, it often has the well-known
exponential form.

9To illustrate this intuition, suppose the remainder set is Rk = {a,b},
hence its power set, excluding /0, contains 3 subsets {a} ,{b} ,{a,b}. Under
the full-decomposition assumption, the denominator in Eq (3.5) becomes
φ (ra)+φ (rb)+ 1

2 {φ (ra)+φ (rb)}= (1+ 1
2)∑x∈{a,b} φ (rx). The constant

term is C = 3
2 in this case.

log p(Xk | X1:k−1) = log
Φk (Xk)
Σ

S∈2Rk
Φk(S)

(3.8)

= log
1

C |Xk|
∑x∈Xk

φk(x)

∑x∈Rk
φk(x)

= log
∑x∈Xk

φk(x)

∑x∈Rk
φk(x)

− logC |Xk|

Since logC |Xk| is a constant w.r.t the parameters used to
parameterise the potential functions φk(·), it does not affect
the gradient of the log-likelihood. It is also clear that
maximising the likelihood given in Eq (3.4) is equivalent to
maximising each local log-likelihood function given in Eq
(3.8) for each k. Discarding the constant term in Eq (3.8),
we re-write it in this simpler form:

log p(Xk | X1:k−1) = log ∑
x∈Xk

gk (x | X1:k−1)(3.9)

where gk (x | X1:k−1) =
φk(x)

∑x∈Rk
φk(x)

Depend on the specific form chosen for φk(x), maximising
log-likelihood in the form of Eq (3.9) can be carried on
in most cases. Gradient-based learning this type of model
is generally takes N2 time complexity . However, using
the dynamic programming technique, we show that if the
function φk (x) does not depend on its position k, then the
gradient-based learning complexity can be reduced to linear
in N.

To see how, dropping the explicit dependency of the
subscript k in the definition of φk (·), we maintain an aux-
iliary array ak = ∑x∈Rk

φ (x) where aKσ
= ∑x∈XKσ

φ (x) and
ak = ak+1 + ∑x∈Xk

φ (x) for k < Kσ . Clearly a1:Kσ
can be

computed in N time in a backward fashion. Thus, gk (·) in Eq
(3.9) can also be computed linearly via the relation gk (x) =
φ (x)/ak. This also implies that the total log-likelihood can
also computed linearly in N.

Furthermore, the gradient of log-likelihood function
can also be computed linearly in N. Given the likelihood
function in Eq (3.4), using Eq (3.9), the log-likelihood
function and its gradient, without explicit mention of the
parameters, can be shown to be10

L = log p(X1, . . . ,XKσ
)(3.10)

=
K

∑
k=1

log ∑
x∈Xk

gk (x | X1:k−1)

=
K

∑
k=1

log ∑
x∈Xk

φ(x)
ak

10To be more precise, for k = 1 we define X1:0 to be /0.

∂L = ∑
k

∂ log ∑
x∈Xk

φ (x)−∑
k

∂ logak(3.11)

= ∑
k

∑x∈Xk
∂φ (x)

∑x∈Xk
φ (x)

−∑
k

1
ak

∑
x∈Rk

∂φ (x)

It is clear that the first summation over k in the RHS of the
last equation takes exactly N time since ∑

K
k=1 |Xk| = N. For

the second summation over k, it is more involved because
both k and Rk can possibly range from 1 to N, so direct
computation will cost at most N(N− 1)/2 time. Similar to
the case of ak, we now maintain an 2-D auxiliary array11

bk = ∑x∈Rk
∂φ(x), where bKσ

= ∑x∈XKσ
∂φ (x) and bk =

bk+1 + ∑x∈Xk
∂φ (x) for k < Kσ . Thus, b1:Kσ

, and therefore
the gradient ∂L , can be computed in NF time in a backward
fashion, where F is the number of parameters.

3.3.2 General State PMOP and MCMC Inference. In
the general case without any assumption on the form of
the potential function Φk (·) using only Eq (3.5) and (3.4),
the log-likelihood function and its gradient, again without
explicit mention of the model parameter, are:

L = log p(X1)+
Kσ

∑
k=2

log pk (Xk | X1:k−1)(3.12)

∂L =
Kσ

∑
k=1

∂ logΦk (Xk)(3.13)

−
Kσ

∑
k=1

{
∑

S∈2Rk

pk (S | X1:k−1)∂ logΦk (S)

}

Clearly, both the distribution pk (Xk | X1:k−1) and the ex-
pectation ∑S∈2Rk pk (S | X1:k−1)∂ logΦk (S) are generally in-
tractable to evaluate. In this paper, we make use of MCMC
methods to approximate pk (Xk | X1:k−1). There are two nat-
ural choices: the Gibbs sampling and Metropolis-Hastings
sampling. For Gibbs sampling we note that this problem
can be viewed as sampling from a random field with bi-
nary variables. Each object is attached with binary vari-
able whose states are either ‘selected’ or ‘not selected’ at kth
stage. Thus, there will be 2Nk − 1 joint states in the random
field, where we recall that Nk is the total number of remain-
ing objects after (k−1)-th stage. The pseudo code for Gibbs
and Metropolis-Hastings routines performed at kth stage is
illustrated in Figure (2).

Finally, we note that in practical implementation of
learning, we follow the proposal in [12] wherein for each
local distribution at kth round we run the MCMC for only a
few steps starting from the observed subset Xk. This tech-
nique is known to produce a biased estimate, but empirical
evidences have so far indicated that the bias is small and the

11This is 2-D because we also need to index the parameters as well as the
subsets.

Gibbs sampling Metropolis-Hastings sampling

1. Randomly choose an initial subset Xk.

2. Repeat until stopping criteria met:

• For each remaining object x at stage k,
randomly select the object with the
probability

Φk(X+x
k)

Φk(X+x
k)+Φk(X−x

k)

where Φk(X+x
k) is the potential of the

currently selected subset Xk if x is included
and Φk(X−x

k) is when x is not.

1. Randomly choose an initial subset Xk

2. Repeat until stopping criteria met:

• Randomly choose number of objects m,
subject to 1≤ m≤ Nk.

• Randomly choose m distinct objects from
remaining set Rk = {X \X1:k−1} to construct
a new partition denoted by S.

• Set Xk← S with the probability of

min
{

1,
Φk(S)
Φk(Xk)

}
.

Figure 2: MCMC sampling approaches for PMOP in general case.

estimate is effective. Importantly, it is very fast compared to
full sampling.

4 Applications with PMOP
4.1 Document Ranking. We now present a specific appli-
cation of PMOP for the problem of document ranking. The
ultimate goal after training is that, for each query the system
needs to return a list of related objects and their ranking.12

Slightly different from the standard rank setting in statistics,
the objects in learning-to-rank problem are often not indexed
(e.g. the identity of the object is not captured in any parame-
ter). Instead, we will assume that for each query-object pair
(q,x) we can extract a feature vector xq. Model distribution
specified in this way is thus query-specific. As a result, we
are not interested in finding the single mode for the rank dis-
tribution over all queries13, but in finding the rank mode for
each query.

At the ranking phase, suppose for an unseen query q a
list of Xq =

{
xq

1, . . . ,x
q
Nq

}
objects related to q is given14. The

task is then to rank these objects in decreasing order of rel-
evance w.r.t q. Enumerating over all possible rankings take
an order of Nq! time. Instead we would like to establish a
scoring function f (xq,w) ∈ R for the query q and each ob-
ject x returned where w is now introduced as the parameter.
Sorting can then be carried out much more efficiently in the
complexity order of Nq logNq instead of Nq!. The function

12We note a confusion that may arise here is that, although during training
each training query q is supplied with a list of related objects and their
ratings, during the ranking phase the system still needs to return a ranking
over the list of related objects for an unseen query.

13This would lead to something like the static rank over all possible
objects in the database - like those in Google’s PageRank

14In document querying, for example, the list may consist of all docu-
ments which contain one or more query words

specification can be a simple linear combination of features
or more complicated form, such as a multilayer neural net-
work.

In the practice of learning-to-rank, the dimensionality of
feature vector xq often remains the same across all queries,
and since it is observed, we use PMOP described before
to specify conditional model specific to q over the set of
returned objects Xq as follows.

p(Xq|w) = p(Xq
1 ,Xq

2 , ...,Xq
Kσ
| w)(4.14)

= P(Xq
1 | w)

Kσ

∏
k=2

p(Xq
k | X

q
1:k−1,w)

We can see that Eq (4.14) has exactly the same form of
Eq (3.4) specified for PMOP, but applied instead on the
query-specific set of objects Xq and additional parameter
w. During training, each query-object pair is labelled by
a relevance score, which is typically an integer from the
set {0, ..,M} where 0 means the object is irrelevant w.r.t
the query q, and M means the object is highly relevant15.
The value of M is typically much smaller than Nq, thus,
the issue of ties, described at the beginning of this section,
occur frequently. In a nutshell, for each training query q
and its rated associated list of objects a PMOP is created.
The important parameterisation to note here is that the
parameter w is shared across all queries; and thus, enabling
ranking for unseen queries in the future.

Using the scoring function f (x,w) we specify the indi-
vidual potential function φ (·) in the exponential form:

φk (x,w) = exp{ f (x,w)}

15Note that generally K ≤ M + 1 because there may be gaps in rating
scales for a specific query.

The local potential function defined over for partition
Φk
(
Xq

k

)
can now be explicitly constructed under full-

decomposition (Subsection 3.3.1) and general case (Subsec-
tion 3.3.2) as respectively follows.

Full-decomposition. The partition potential is simply the
mean of local potentials

Φk
(
Xq

k

)
=

1
|Xq

k |
∑

x∈Xq
k

exp{ f (x,w)}(4.15)

General case. While we have an entire freedom to define
any form of partition potentials to meet our needs (e.g.
including prior knowledge of partition sizes or the clustering
properties), for this paper, we will use a simple version:

(4.16) Φk
(
Xq

k

)
= exp

 1
|Xq

k |
∑

x∈Xq
k

f (x,w)

Basically, this can be considered as a geometric mean

of local potentials, as opposed to the arithmetic mean in the
full-decomposition case.

The gradient of the log-likelihood function can also be
computed efficiently. For simplicity, assume that the scoring
function has the linear form f (xq,w) = w>xq. For full-
decomposition, it can be shown to be:

∂ log p
(
Xq

k | X
q
1:k−1

)
∂w

= ∑
x∈Xq

k

φk(x,w)x
∑x∈Xq

k
φk(x,w)

− ∑
x∈Rq

k

φk(x,w)x
∑x∈Rq

k
φk(x,w)

For the general case, the gradient of the log-likelihood
function can be shown to be:

∂ log p
(
Xq

k | X
q
1:k−1

)
∂w

= x̄q
k − ∑

Sk∈2Rq
k

p
(
Sk | Xq

1:k−1

)
s̄q

k

where

x̄q
k =

1
|Xq

k |
∑

x∈Xk

xq, s̄q
k =

1
|Sk| ∑

x∈Sk

xq

The quantity p
(
Xq

k | X
q
1:k−1

)
can be interpreted as the proba-

bility that the subset Xq
k is chosen out of all possible subsets

at stage k, and x̄k is the centre of the chosen subset.
The expectation ∑Sk

P(Sk | Xq
1:k−1)s̄k is expensive to

evaluate, since there are 2Nk − 1 possible subsets. Thus,
we resort to MCMC techniques. We follow the suggestion
in [12] to start the Markov chain from the observed subset

Xk and run for a few iterations. The parameter update is
stochastic

w← w+η ∑
k

(
x̄q

k−
1
n

n

∑
l=1

s̄(l)
k

)

where s̄(l)
k is the centre of the subset sampled at iteration l,

and η > 0 is the learning rate, and n is number of samples.
Typically we choose n to be small, e.g. n = 1,2,3.

4.2 Collaborative Filtering. We now present an applica-
tion of our PMOP in collaborative filtering. Recall that in
collaborative filtering, we are given a set of users, each of
whom has expressed preferences over a set of items. The
preferences can be in the form of a (partial) ranked list or
a set of numerical ratings. The goal is to predict the pref-
erences over unseen items for each user. Since the popular
representation of preference is rating, most research in col-
laborative filtering so far has focused on predicting ratings
instead of the more direct goal of predicting the ranked list
of new items. There is, however, a refocus recently - we
are now interested in modelling the ranking directly without
going through the intermediate step of modelling the rating
[18, 25, 28].

Let N be the number of users and M the number of items.
To facilitate the interaction between an user u and an item i,
the local potential function can be chosen as follows

φk (x = i,u) = exp

{
D

∑
d=1

WudHdi

}
where W ∈ RN×D and H ∈ RD×M , typically with D �
min{N,M}. This potential function can then be used for
ranking items with respect to user u.

Different from the case of document ranking, the feature
vector for each item (H1iH2i, ..,HDi) is not given and must
be discovered from the data. Second, the parameters are
user-specific. As a result, the log-likelihood function is no
longer concave in both W and H, although it is still concave
in either W or H. Denote by Lu

k = log p
(
Xu

k | Xu
1:k−1

)
. For

full-decomposition, the gradient of the log-likelihood reads:

∂Lu
k

∂Wud
= ∑

i∈Xu
k

φk(i,u)Hdi

∑ j∈Xu
k

φk(j,u)
− ∑

i∈Ru
k

φk(i,u)Hdi

∑ j∈Ru
k

φk(j,u)

∂Lu
k

∂Hdi
= Wud

[
φk(i,u)

∑ j∈Xu
k

φk(j,u)
− φk(i,u)

∑ j∈Ru
k

φk(j,u)

]
For the general case, the situation is more involved,

depending on the choice of the partition potentials which we
omit here due to space constraints.

5 Discussion.
In our specific choice of the local distribution in Eq (3.5),
we share the same idea with that of Plackett-Luce, in which

the probability of choosing the subset is proportional to the
subset’s worth, which is realised by the subset potential. In
fact, when we limit the subset size to 1, i.e. there are no ties,
the proposed model reduces to the well-known Plackett-Luce
models.

The distribution of the full-decomposition case has an
interesting interpretation. From Eq 3.8 the local partition
distribution can be rewritten as

p(Xk | X1:k−1) =
1

C |Xk| ∑
x∈Xk

φk(x)
∑x′∈Rk

φk(x′)

Since φk(x)/∑x′∈Rk
φk(x′) is the probability of choosing x as

the top object at stage k, p(Xk | X1:k−1) can be interpreted
as the probability of choosing any member in the subset Xk
as the top object, up to a multiplicative constant. Thus, the
full-decomposition offers a simple way to model the inherent
uncertainty in the choices when ties occur.

It is worth mentioning that the factorisation in Eq (3.4)
and the choice of local distribution in Eq (3.5) are not
unique. In fact, the chain-rule can be applied to any sequence
of choices. For example, we can factorise in a backward
manner

p(X1, . . . ,XKσ
) = p1 (XKσ

)
Kσ−1

∏
k=1

pk (Xk | Xk+1:Kσ
)(5.17)

where Xk+1:Kσ
is a shorthand for {Xk+1,Xk+2, ...,XKσ

}. In-
terestingly, we can interpret this reverse process as subset
elimination: First we choose to eliminate the worst subset,
then the second worst, and so on. This line of reasoning has
been discussed in [9] but it is limited to 1-element subsets.
However, if we are free to choose the parameterisation of
pk (Xk | Xk+1:Kσ

) as we have done for pk (Xk | X1:k−1) in Eq
(3.5), there is no guarantee that the forward and backward
factorisation admits the same distribution.

Our model can be placed into the framework of proba-
bilistic graphical models (e.g. see [16]). Recall that in stan-
dard probabilistic graphical models, we have a set of vari-
ables, each of which receives values from a fixed set of states.
Generally, variables and states are orthogonal concepts, and
the state space of a variable do not explicitly depends on the
states of other variables16. In our setting, the objects play the
role of the variables, and their memberships in the subsets
are their states. However, since there are exponentially many
subsets, enumerating the state spaces as in standard graphical
models is not possible. Instead, we can consider the ranks of
the subsets in the list as the states, since the ranks only range
from 1 to N. Different from the standard graphical mod-
els, the variables and the states are not always independent,
e.g. when the subset sizes are limited to 1, then the state as-
signments of variables are mutually exclusive, since for each

16Note that, this is different from saying the states of variables are
independent.

position, there is only one object. Probabilistic graphical
models are generally directed (such as Bayesian networks) or
undirected (such as Markov random fields), and our PMOP
can be thought as a directed model. The undirected setting is
also of great interest, but it is beyond the scope of this paper.

With respect to tie handling, most previous work focuses
on pairwise models. The basic idea is to assign some
probability mass for the event of ties [7][11][24]. For
instance, denote by xi � x j the preference of xi over x j, and
by xi ≈ x j the tie between the two objects, Rao and Kupper
[24] proposed the following models

P(xi � x j) =
φ(xi)

φ(xi)+θφ(x j)

P(xi ≈ x j) =
(θ 2−1)φ(xi)φ(x j)

[φ(xi)+θφ(x j)] [θφ(xi)+φ(x j)]

where θ ≥ 1 is the parameter to control the contribution of
ties. When θ = 1, the model reduces to the standard Bradley-
Terry model [1] . This method of ties handling is further
studied in [31] in the context of learning to rank. Another
method is introduced in [7], where the probability masses
are defined as

P(xi � x j) =
φ(xi)

φ(xi)+φ(x j)+ν
√

φ(xi)φ(x j)

P(xi ≈ x j) =
ν
√

φ(xi)φ(x j)
φ(xi)+φ(x j)+ν

√
φ(xi)φ(x j)

where ν ≥ 0. The applications of these two tie-handling
models to learning to rank are detailed in Appendix C.

For ties of multiple objects, we can create a group of
objects, and work directly on groups. For example, let Xi
and X j be two sport teams, the pairwise team ordering can
be defined using the Bradley-Terry model as

P(Xi � X j) =
∑x∈Xi φ(x)

∑x∈Xi φ(x)+∑s∈X j φ(s)

The extension of the Plackett-Luce model to multiple groups
has been discussed in [14]. However, we should emphasize
that this setting is not the same as ours, because the parti-
tioning is known in advance, and the groups behave just like
standard super-objects. Our setting, on the other hand, as-
sumes no fixed partitioning, and the membership of the ob-
jects in a group is arbitrary.

Another way to deal with ties is to create an ‘equivalent
permutation set’ (e.g. see [17]) from ties and then train with
the full-rank algorithms. The idea is to minimise the min
loss over the set in a fashion similar to multiple-instance
learning. This is different from our work, however, since
we are focusing on modelling probability of the set out of all
possible set partitionings.

6 Evaluation.
In this section we present evaluation results of our proposed
PMOP on two tasks: document ranking on Web data and
collaborative filtering on movie data.

Two performance metrics are reported: the Normalised
Discounted Cumulative Gain at position T (NDCG@T), and
the Expected Reciprocal Rank (ERR) [4]. NDCG@T metric
is defined as

NDCG@T = 1
κ(T)

T

∑
i=1

2ri −1
log2(1+ i)

where ri is the relevance judgment of the document at
position i, κ(T) is a normalisation constant to make sure that
the gain is 1 if the rank is correct. The ERR is defined as

ERR = ∑
i

1
i
V (ri)

i−1

∏
j=1

(1−V (r j)) where V (r) =
2r−1

16
.

6.1 Document Ranking. The data is from Yahoo! learn-
ing to rank challenge [30]. This is a subset of the real dataset
used to train Yahoo! search engines, and is currently one of
the largest datasets available for research17. The data con-
tains the groundtruth labels of 473,134 documents returned
from 19,944 queries. The label is the relevance judgment
from 0 (irrelevant) to 4 (perfectly relevant). Features for each
document-query pairs are also supplied by Yahoo!, and there
are 519 unique features. We first normalised the features
across the whole training set to have mean 0 and standard
deviation 1.

We split the data into two sets: the training set contains
roughly 90% queries, and the test set is the remaining 10%.
For comparison, we implement several well-known methods,
including RankNet [2], Ranking SVM [15] and ListMLE
[29]. The RankNet and Ranking SVM are pairwise methods,
and they differ on the choice of loss functions, i.e. logistic
loss for the RankNet and hinge loss for the Ranking SVM18.
Similarly, choosing quadratic loss gives us a rank regression
method, which we will call Rank Regress (see Appendix B
for more details). From rank modelling point of view, the
RankNet is essentially the Bradley-Terry model [1] applied
to learning to rank. Likewise, the ListMLE is essentially the
Plackett-Luce model, which has been argued to be one of the
best performing methods [17].

We also implement two variants of the Bradley-Terry
model with ties handling, one by Rao-Kupper [24] (denoted

17This is much larger than the commonly used LETOR 3.0 and 4.0
datasets. In the preparation of this manuscript, we learnt that Microsoft
had released two large sets of comparable size with that of Yahoo! but due
to time constraint, we do not report the results here.

18Strictly speaking, RankNet makes use of neural networks as the scoring
function, but the overall loss is still logistic, and for simplicity, we use
simple perceptron.

ERR NDCG@1 NDCG@5
Rank Regress 0.4882 0.683 0.6672

RankNet 0.4919 0.6903 0.6698
Ranking SVM 0.4868 0.6797 0.6662

ListMLE 0.4955 0.6993 0.6705
PairTies-D 0.4941 0.6944 0.6725

PairTies-RK 0.4946 0.6970 0.6716
PMOP-FD 0.5038 0.7137 0.6762

PMOP-Gibbs 0.5037 0.7105 0.6792
PMOP-MH 0.5045 0.7139 0.6790

Table 1: Performance measured in ERR and NDCG@T.
PairTies-D and PairTies-RK are the Davidson method and
Rao-Kupper method for ties handling, respectively. PMOP-
FD is the PMOP with full-decomposition, and PMOP-
Gibbs/MH is the PMOP with Gibbs/Metropolis-Hasting
sampling (see Section 4.1 for a description).

by PairTies-RK; this also appears to be implemented in
[31] under the functional gradient setting) and another by
Davidson [7] (denoted by PairTies-D; and this is the first
time the Davidson method is applied to learning to rank).
See Appendix C for implementation details.

There are three methods resulted from our framework
(see description in Section 4.1). The first is the PMOP
with full-decomposition (denoted by PMOP-FD), the second
is with Gibbs sampling (denoted by PMOP-Gibbs), and
the third is with Metropolis-Hastings sampling (denoted by
PMOP-MH).

For those pairwise methods without ties handling, we
simply ignore the tied document pairs. For the ListMLE,
we simply sort the documents within a query by relevance
scores, and those with ties are ordered according to the sort-
ing algorithm. All methods, except for PMOP-Gibbs/MH,
are trained using the Limited Memory Newton Method
known as L-BFGS. The L-BFGS is stopped if the relative
improvement over the loss is less than 10−5 or after 100 iter-
ations. As the PMOP-Gibbs/MH are stochastic, we run the
MCMC for a few steps per query, then update the parame-
ter using the Stochastic Gradient Ascent. The learning rate
is fixed to 0.1, and the learning is stopped after 1,000 itera-
tions.

The results are reported in Table 1. It can be seen that
modelling ties are beneficial, as PairTies-D and PairTies-RK
perform better than the RankNet (without ties handling), and
our PMOP variants improve over ListMLE, despite of the
simplicity in the potential function choices in Equations 4.15
and 4.16. The PMOP-MH wins over the best performing
baseline, ListMLE, by 1.82% according to the ERR metric.
In our view, this is a significant improvement given the scope
of the dataset. We note that the difference in the top 20 in the

Pairwise models PMOP/ListMLE
max{O(N2),O(NF)} O(NF)

Table 2: Learning complexity of models, where F is the
number of unique features. For pairwise models, see Ap-
pendix B for the details.

leaderboard19 of the Yahoo! challenge is just 1.56%.
As for training time, the PMOP-FD is numerically the

fastest method. Theoretically, it has the linear complexity
similar to ListMLE. All other pairwise methods are quadratic
in query size, and thus numerically slower. The PMOP-
Gibbs/MH is also linear in the query size, by a constant
factor that is determined by the number of iterations. See
Table 2 for a summary.

6.2 Collaborative Filtering. In this experiment, we study
how the handling of ties improves the fitness of the Plackett-
Luce model. We use the MovieLens data20, which has
100,000 ratings assigned by 943 users to a set of 1682
movies. The ratings are integer in the 5-star scale. In this
setting, the user plays the role of the query, and the movies
the role of documents. For exact evaluation of likelihood,
we use the full-decomposition setting. For each user, we
randomly select 10, 20 and 50 movies for training, and the
rest for testing. To ensure that there are at least 10 test movies
for each user, we remove those users with less than 20, 30
and 60 ratings, respectively. Once the training is completed,
the training data is thrown away, and we measure the results
on the test data only. For the Plackett-Luce model, we first
sort the ratings by each user in the training data, and then
reorder them according to a sort algorithm.

For comparison we run the CoFiRANK-NDCG algorithm
of [28] on the data with the code provided by the authors21.
For all algorithms, we set the feature dimensionality to
5. The matrices W and H are initialised randomly in the
range [0,0.5]. The experimental results are reported in
Table 3. Note that we do not impose any regularisation
on the Plackett-Luce and our PMOP since the goal is to
estimate the likelihood of the test data. It can be seen that
the handling of ties invariably improve over the Plackett-
Luce model which incorrectly assumes complete ranks in the
data. The predictive performance over test data completes
well with the CoFiRANK-NDCG, which is perhaps the best-
known algorithm in this class of problems.

19Our result on a more deliberate design of features (which is not the
primary concern of this paper) was submitted to the Yahoo! challenge and
obtained a position in the top 4% over 1055 teams, given that our main
purpose was to propose a new theoretical and useful model.

20http://grouplens.org/node/73
21The code is available at: http://www.cofirank.org/downloads. We

implement a simple wrapper to compute the ERR and NDCG scores (at
various positions), which are not available in the code.

PL PMOP-FD CoFiRANK

LL -430.042 -159.534 -
N=10 ERR 0.683 0.718 0.721

NDCG@1 0.556 0.604 0.627
NDCG@5 0.583 0.617 0.593
LL -463.212 -179.918 -

N=20 ERR 0.714 0.753 0.715
NDCG@1 0.594 0.660 0.598
NDCG@5 0.602 0.648 0.608
LL -505.365 -202.991 -

N=50 ERR 0.739 0.764 0.703
NDCG@1 0.633 0.670 0.576
NDCG@5 0.630 0.655 0.591

Table 3: Results on movie ranking, where LL=log-likelihood
of the test data.

7 Conclusions.
Addressing the general problem of ranking with ties, we
have proposed a generative probabilistic model, with suitable
parameterisation to address the problem complexity. We
present efficient algorithms for learning and inference. We
evaluate the proposed models on two problems: the first
is document ranking with the data from the recently held
Yahoo! challenge and the second is collaborative filtering
with the well-studied MovieLens dataset. Our experimental
results demonstrate that the models are competitive against
well-known rivals designed specifically for the problems.

There are several promising directions to further this
work, including the introduction of Bayesian modelling,
extending to latent aspects of the rank data, evaluating on
a variety of approximate inference and learning methods.

References

[1] R.A. Bradley and M.E. Terry, Rank analysis of incomplete
block designs, Biometrika, 39 (1952), pp. 324–345.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton, and G. Hullender, Learning to rank using gradient
descent, In Proc. of ICML, (2005).

[3] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li, Learning
to rank: from pairwise approach to listwise approach, In
Proceedings of the 24th international conference on Machine
learning, (2007).

[4] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, Expected
reciprocal rank for graded relevance, In Proceeding of the
18th ACM conference on Information and knowledge man-
agement, (2009) pp. 621–630.

[5] W. Chu and Z. Ghahramani, Gaussian processes for ordinal
regression, Journal of Machine Learning Research, 6 (2006).

[6] D. Cossock and T. Zhang, Statistical analysis of Bayes opti-
mal subset ranking, IEEE Transactions on Information The-
ory, 54 (2008) pp. 5140–5154.

[7] R.R. Davidson, On extending the Bradley-Terry model to
accommodate ties in paired comparison experiments, Journal
of the American Statistical Association, 65 (1970) pp. 317–
328.

[8] P. Diaconis, A generalization of spectral analysis with ap-
plication to ranked data, The Annals of Statistics, (1989)
pp. 949–979.

[9] M.A. Fligner and J.S. Verducci, Multistage ranking models,
Journal of the American Statistical Association, 83 (1988)
pp. 892–901.

[10] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer, An efficient
boosting algorithm for combining preferences, Journal of
Machine Learning Research, 4 (2004), pp. 933–969.

[11] W.A. Glenn and H.A. David, Ties in paired-comparison
experiments using a modified Thurstone-Mosteller model,
Biometrics, 16 (1960) pp. 86–109.

[12] G.E. Hinton, Training products of experts by minimiz-
ing contrastive divergence, Neural Computation, 14 (2002)
pp. 1771–1800.

[13] J. Huang, C. Guestrin, and L. Guibas, Fourier theoretic
probabilistic inference over permutations, The Journal of
Machine Learning Research, 10 (2009) pp. 997–1070.

[14] T.K. Huang, R.C. Weng, and C.J. Lin, Generalized Bradley-
Terry models and multi-class probability estimates, The Jour-
nal of Machine Learning Research, 7 (2006).

[15] T. Joachims, Optimizing search engines using clickthrough
data. In Proc. of SIGKDD, (2002) pp. 133–142.

[16] S.L. Lauritzen, Graphical Models, Oxford Science Publica-
tions, 1996.

[17] T.Y. Liu, Learning to rank for information retrieval, Founda-
tions and Trends in Information Retrieval, 3 (2009) pp. 225–
331.

[18] N.N. Liu, M. Zhao, and Q. Yang, Probabilistic latent prefer-
ence analysis for collaborative filtering, In Proceeding of the
18th ACM conference on Information and knowledge man-
agement (2009), pp. 759–766.

[19] R.D. Luce, Individual choice behavior, Wiley New York,
1959.

[20] C.L. Mallows, Non-null ranking models I, Biometrika, 44
(1957) pp. 114–130.

[21] J.I. Marden, Analyzing and modeling rank data, Chapman &
Hall/CRC, 1995.

[22] M. Muresan, A concrete approach to classical analysis,
Springer Verlag, 2008.

[23] R.L. Plackett, The analysis of permutations, Applied Statis-
tics, (1975) pp. 193–202.

[24] P.V. Rao and L.L. Kupper, Ties in paired-comparison experi-
ments: A generalization of the Bradley-Terry model, Journal
of the American Statistical Association, (1967) pp. 194–204.

[25] Y. Shi, M. Larson, and A. Hanjalic, List-wise learning to
rank with matrix factorization for collaborative filtering, In
Proceedings of the fourth ACM conference on Recommender
systems, (2010), pp. 269–272.

[26] J.H. van Lint and R.M. Wilson, A course in combinatorics,
Cambridge University Press, 1992.

[27] M.N. Volkovs and R.S. Zemel, BoltzRank: learning to max-
imize expected ranking gain, In Proceedings of the 26th An-
nual International Conference on Machine Learning, (2006)

ACM New York, NY, USA.
[28] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola, CoFiRANK-

maximum margin matrix factorization for collaborative rank-
ing, Advances in neural information processing systems, 20
(2008), pp. 1593–1600.

[29] F. Xia, T.Y. Liu, J. Wang, W. Zhang, and H. Li, Listwise
approach to learning to rank: theory and algorithm, In Proc.
of ICML, (2008) pp. 1192–1199.

[30] Yahoo! Yahoo! learning to rank challenge,
http://learningtorankchallenge.yahoo.com, 2010.

[31] K. Zhou, G.R. Xue, H. Zha, and Y. Yu, Learning to rank with
ties. In Proc. of SIGIR, (2008) pp. 275–282.

A Computing C.
Let us calculate the constant C in Eq (3.7). Let us rewrite the
equation for ease of comprehension

∑
S∈2Rk

1
|S| ∑x∈S

φk (x) = C× ∑
x∈Rk

φk(x)

where 2Rk is the power set with respect to the set Rk, or the
set of all non-empty subsets of Rk. Equivalently

C = ∑
S∈2Rk

1
|S| ∑x∈S

φk (x)
∑x∈Rk

φk(x)

If all objects are the same, then this can be simplified to

C = ∑
S∈2Rk

1
|S| ∑x∈S

1
Nk

=
1

Nk
∑

S∈2Rk

1

=
2Nk −1

Nk

where Nk = |Rk|. In the last equation, we have made use
of the fact that ∑S∈2Rk 1 is the number of all possible non-
empty subsets, or equivalently, the size of the power set,
which is known to be 2Nk − 1. One way to derive this
result is the imagine a collection of Nk variables, each has
two states: ‘selected’ and ‘not selected’, where ‘selected’
means the object belongs to a subset. Since there are 2Nk

such configurations over all states, the number of non-empty
subsets must be 2Nk −1.

For arbitrary objects, let us examine the the probability
that the object x belong to a subset of size m, which is
m
Nk

. Recall from standard combinatorics that the number of

m-element subsets is the binomial coefficient
(

Nk
m

)
, where

1 ≤ m ≤ Nk, and . Thus the number of times an object
appears in any m-subset is

(
Nk
m

)
m
Nk

. Taking into account that
this number is weighted down by m (i.e. |S| in Eq (3.7)), the
the contribution towards C is then

(
Nk
m

)
1

Nk
. Finally, we can

compute the constant C, which is the weighted number of

times an object belongs to any subset of any size, as follows

C =
Nk

∑
m=1

(
Nk

m

)
1

Nk
=

1
Nk

Nk

∑
m=1

(
Nk

m

)
=

2Nk −1
Nk

We have made use of the known identity ∑
Nk
m=1

(
Nk
m

)
=

2Nk −1.

B Pairwise Losses.
Let δi j(w) = φ(xi,w)−φ(x j,w), the pairwise losses are

`(xi� x j;w)=

log(1+ exp{−δi j(w)}) (RankNet)
max{0,1−δi j(w)} (Ranking SVM)
(1−δi j(w))2 (Rank Regress)

C Learning the Paired Ties Models.
This section describes the details of learning the paired ties
models discussed in Section 5.

Rao-Kupper method. Recall that the Rao-Kupper
model defines the following probability masses

P(xi � x j;w) =
φ(xi)

φ(xi)+θφ(x j)

P(xi ≈ x j;w) =
(θ 2−1)φ(xi)φ(x j)

[φ(xi)+θφ(x j)] [θφ(xi)+φ(x j)]

where θ ≥ 1 is the ties factor and w is the model parameter.
Note that φ(.) is also a function of w, which we omit here
for clarity. For ease of unconstrained optimisation, let θ =
1 + eα for α ∈ R. In learning, we want to estimate both α

and w. Let

Pi =
φ(xi)

φ(xi)+(1+ eα)φ(x j)

P∗j =
φ(x j)

φ(xi)+(1+ eα)φ(x j)

P∗i =
φ(xi)

(1+ eα)φ(xi)+φ(x j)

Pj =
φ(x j)

(1+ eα)φ(xi)+φ(x j)

Taking partial derivatives of the log-likelihood gives

∂ logP(xi � x j;w)
∂w

= (1−Pi)
∂ logφ(xi,w)

∂w

−(1+ eα)Pj
∂ logφ(x j,w)

∂w
∂ logP(xi � x j;w)

∂α
= −Pjeα

∂ logP(xi ≈ x j;w)
∂w

= (1−Pi− (1+ eα)P∗i)
∂ logφ(xi,w)

∂w

+ (1−Pj− (1+ eα)P∗j)
∂ logφ(x j,w)

∂w
∂ logP(xi ≈ x j;w)

∂α
=

(
2(1+ eα)

(1+ eα)2−1
−P∗i −P∗j

)
eα

Davidson method. Recall that in the Davidson method
the probability masses are defined as

P(xi � x j;w) =
φ(xi)

φ(xi)+φ(x j)+ν
√

φ(xi)φ(x j)

P(xi ≈ x j;w) =
ν
√

φ(xi)φ(x j)
φ(xi)+φ(x j)+ν

√
φ(xi)φ(x j)

where ν ≥ 0. Again, for simplicity of unconstrained optimi-
sation, let ν = eβ for β ∈ R. Let

Pi =
φ(xi)

φ(xi)+φ(x j)+ eβ
√

φ(xi)φ(x j)

Pj =
φ(x j)

φ(xi)+φ(x j)+ eβ
√

φ(xi)φ(x j)

Pi j =
eβ
√

φ(xi)φ(x j)
φ(xi)+φ(x j)+ eβ

√
φ(xi)φ(x j)

Taking derivatives of the log-likelihood gives

∂ logP(xi � x j;w)
∂w

= (1−Pi−0.5Pi j)
∂ logφ(xi,w)

∂w

−(Pi +0.5Pi j)
∂ logφ(x j,w)

∂w
∂ logP(xi � x j;w)

∂β
= −Pi j

∂ logP(xi ≈ x j;w)
∂w

= (0.5−Pi−0.5Pi j)
∂ logφ(xi,w)

∂w

+(0.5−Pj−0.5Pi j)
∂ logφ(x j,w)

∂w
∂ logP(xi ≈ x j;w)

∂β
= 1−Pi j.

