14,724 research outputs found

    Efficient inference in the transverse field Ising model

    Full text link
    In this paper we introduce an approximate method to solve the quantum cavity equations for transverse field Ising models. The method relies on a projective approximation of the exact cavity distributions of imaginary time trajectories (paths). A key feature, novel in the context of similar algorithms, is the explicit separation of the classical and quantum parts of the distributions. Numerical simulations show accurate results in comparison with the sampled solution of the cavity equations, the exact diagonalization of the Hamiltonian (when possible) and other approximate inference methods in the literature. The computational complexity of this new algorithm scales linearly with the connectivity of the underlying lattice, enabling the study of highly connected networks, as the ones often encountered in quantum machine learning problems

    Technical Dimensions of Programming Systems

    Get PDF
    Programming requires much more than just writing code in a programming language. It is usually done in the context of a stateful environment, by interacting with a system through a graphical user interface. Yet, this wide space of possibilities lacks a common structure for navigation. Work on programming systems fails to form a coherent body of research, making it hard to improve on past work and advance the state of the art. In computer science, much has been said and done to allow comparison of programming languages, yet no similar theory exists for programming systems; we believe that programming systems deserve a theory too. We present a framework of technical dimensions which capture the underlying characteristics of programming systems and provide a means for conceptualizing and comparing them. We identify technical dimensions by examining past influential programming systems and reviewing their design principles, technical capabilities, and styles of user interaction. Technical dimensions capture characteristics that may be studied, compared and advanced independently. This makes it possible to talk about programming systems in a way that can be shared and constructively debated rather than relying solely on personal impressions. Our framework is derived using a qualitative analysis of past programming systems. We outline two concrete ways of using our framework. First, we show how it can analyze a recently developed novel programming system. Then, we use it to identify an interesting unexplored point in the design space of programming systems. Much research effort focuses on building programming systems that are easier to use, accessible to non-experts, moldable and/or powerful, but such efforts are disconnected. They are informal, guided by the personal vision of their authors and thus are only evaluable and comparable on the basis of individual experience using them. By providing foundations for more systematic research, we can help programming systems researchers to stand, at last, on the shoulders of giants

    Likelihood Asymptotics in Nonregular Settings: A Review with Emphasis on the Likelihood Ratio

    Full text link
    This paper reviews the most common situations where one or more regularity conditions which underlie classical likelihood-based parametric inference fail. We identify three main classes of problems: boundary problems, indeterminate parameter problems -- which include non-identifiable parameters and singular information matrices -- and change-point problems. The review focuses on the large-sample properties of the likelihood ratio statistic. We emphasize analytical solutions and acknowledge software implementations where available. We furthermore give summary insight about the possible tools to derivate the key results. Other approaches to hypothesis testing and connections to estimation are listed in the annotated bibliography of the Supplementary Material

    Circadian variations in aortic stiffness, sympathetic vasoconstriction, and post-ischemic vasodilation in adults with and without type 2 diabetes.

    Get PDF
    The current literature reveals a lack of information on the circadian variations of some important cardiovascular risk factors related to the work of the heart or the capacity to provide blood and oxygen to various tissues. These factors include aortic stiffness, peripheral vasoconstrictor responsiveness, and post-ischemic vasodilation capacity. Furthermore, it is not clear whether the impact of an external stressor capable of activating the sympathetic nervous system could have greater repercussions on the cardiovascular system in the morning than in the evening. Given the higher incidence of acute cardiovascular events in the morning than in the evening, the studies undertaken in this thesis aim to investigate the circadian variations of these factors that are linked to cardiovascular risk, both at rest and during acute activation of the sympathetic nervous system. Type 2 diabetes (T2DM) is a condition that induces deleterious changes in cardiovascular function, impacting cardiovascular mortality and morbidity. Thus, the impact of diabetes will be evaluated. As a secondary purpose, considering the sex differences in the incidence and prognosis of cardiovascular disease, the effect of sex will be evaluated. Aortic stiffness proved not to be increased in the morning compared to the evening at specific times when the cardiovascular risk is significantly different, both at rest and during sympathetic activation. However, while healthy older women show similar aortic stiffness values compared to their male counterparts during acute stress, older women with T2DM reported greater aortic stiffness compared to men with T2DM. The post-ischemic forearm vasodilation is blunted in the morning compared to the evening in healthy elderly and such an attenuated vasodilation capacity impairs blood flow supply towards the ischemic area. The presence of T2DM does not affect vasodilation capacity and reactive hyperemia, but induces circadian variations in arterial pressure. The peripheral vasoconstriction triggered by a standardized sympathetic stressor is similar between morning and evening, regardless of the presence of T2DM and reduced baseline vascular conductance values in the morning. However, the peripheral vasoconstriction responsiveness is blunted in individuals with T2DM than in healthy ones as sympathetic activation induces vasodilation on the contralateral forearm in individuals with T2DM and vasoconstriction in healthy age-matched subjects. This finding highlights a neurovascular response to an external stressor altered by T2DM. Taken together, our findings suggest that the baseline state of constriction of the peripheral vascular tissue is greater in the morning than in the evening, but this fact is not due to greater sympathetic vasoconstriction responsiveness in the morning. Higher morning vasoconstriction at baseline however affects the capacity of a vascular tissue to dilate and, in turn, to supply blood to an ischemic tissue. Similar sympathetic vasoconstriction responsiveness between morning and evening is a likely factor explaining similar or lower values of central artery stiffness in the morning than in the evening, not only at rest but also during sympathetic excitation. Paradoxically, adults with T2DM report an increase in sympathetic-mediated dilatation capacity on the vascular tissue, which might be a defense mechanism that allows to reduce the central pressor response during sympathetic excitation

    Grasping nothing: a study of minimal ontologies and the sense of music

    Get PDF
    If music were to have a proper sense – one in which it is truly given – one might reasonably place this in sound and aurality. I contend, however, that no such sense exists; rather, the sense of music takes place, and it does so with the impossible. To this end, this thesis – which is a work of philosophy and music – advances an ontology of the impossible (i.e., it thinks the being of what, properly speaking, can have no being) and considers its implications for music, articulating how ontological aporias – of the event, of thinking the absolute, and of sovereignty’s dismemberment – imply senses of music that are anterior to sound. John Cage’s Silent Prayer, a nonwork he never composed, compels a rerethinking of silence on the basis of its contradictory status of existence; Florian Hecker et al.’s Speculative Solution offers a basis for thinking absolute music anew to the precise extent that it is a discourse of meaninglessness; and Manfred Werder’s [yearn] pieces exhibit exemplarily that music’s sense depends on the possibility of its counterfeiting. Inso-much as these accounts produce musical senses that take the place of sound, they are also understood to be performances of these pieces. Here, then, thought is music’s organon and its instrument

    Évaluation de l'impact du changement climatique sur la défoliation de l'épinette noire par la tordeuse des bourgeons de l'épinette

    Get PDF
    Les modèles écologiques actuels prévoient de profonds effets des changements climatiques sur les régimes de perturbations naturelles des forêts. La tordeuse des bourgeons de l'épinette (Choristoneura fumiferana) (TBE) est le principal insecte défoliateur dans l'est de l'Amérique du Nord. Les épidémies de TBE ont un impact majeur sur la structure et la fonction de la forêt boréale canadienne puisque la défoliation entraîne une diminution de la croissance des arbres, une augmentation de la mortalité et une baisse de la productivité forestière. Les épidémies de TBE sont devenues plus sévères au cours du dernier siècle à cause des changements climatiques; cependant, nous savons peu de choses sur la manière dont l'effet intégré du climat et du TBE modifie la croissance des espèces hôtes. Nous évaluons ici comment l’interaction entre le climat et la gravité de l'épidémie affecte la croissance de l'épinette noire (Picea mariana) pendant l'épidémie de TBE qui a eu lieu entre 1968-1988 et 2006-2017. Nous avons compilé des séries dendrochronologiques (2271 arbres), des données de sévérité de l'épidémie (estimée par la défoliation aérienne observée) et des données climatiques pour 164 sites au Québec, Canada. Nous avons utilisé un modèle linéaire à effets mixtes pour déterminer l'impact des paramètres climatiques, de la défoliation cumulative (des cinq années précédentes) et de leur effet couplé sur la croissance en surface terrière. À la gravité maximale de l'épidémie, la croissance en surface terrière de l'épinette noire a été réduite de 14 à 18 % sur les cinq années en raison de l'effet TBE. Cette croissance a été affectée par le climat : des températures minimales estivales précédentes plus élevées et un indice d'humidité climatique estival plus élevé ont réduit la croissance de 11 % et 4 % respectivement. En revanche, l'effet négatif de la défoliation a été atténué de 9% pour une température minimale plus élevée au printemps précédent et de 7% pour une température maximale plus élevée l'été précédent. Cette étude améliore notre compréhension des effets combinés de la TBE et du climat et aide à prévoir les dommages futurs causés par cet insecte dans les peuplements forestiers afin de soutenir la gestion durable des forêts. Nous recommandons également que les projections des écosystèmes dans la forêt boréale incluent plusieurs classes de défoliation de la TBE et plusieurs scénarios climatiques

    Chiral active fluids: Odd viscosity, active turbulence, and directed flows of hydrodynamic microrotors

    Get PDF
    While the number of publications on rotating active matter has rapidly increased in recent years, studies on purely hydrodynamically interacting rotors on the microscale are still rare, especially from the perspective of particle based hydrodynamic simulations. The work presented here targets to fill this gap. By means of high-performance computer simulations, performed in a highly parallelised fashion on graphics processing units, the dynamics of ensembles of up to 70,000 rotating colloids immersed in an explicit mesoscopic solvent consisting out of up to 30 million fluid particles, are investigated. Some of the results presented in this thesis have been worked out in collaboration with experimentalists, such that the theoretical considerations developed in this thesis are supported by experiments, and vice versa. The studied system, modelled in order to resemble the essential physics of the experimentally realisable system, consists out of rotating magnetic colloidal particles, i.e., (micro-)rotors, rotating in sync to an externally applied magnetic field, where the rotors solely interact via hydrodynamic and steric interactions. Overall, the agreement between simulations and experiments is very good, proving that hydrodynamic interactions play a key role in this and related systems. While already an isolated rotating colloid is driven out of equilibrium, only collections of two or more rotors have experimentally shown to be able to convert the rotational energy input into translational dynamics in an orbital rotating fashion. The rotating colloids inject circular flows into the fluid, such that detailed balance is broken, and it is not a priori known whether equilibrium properties of colloids can be extended to isolated rotating colloids. A joint theoretical and experimental analysis of isolated, pairs, and small groups of hydrodynamically interacting rotors is given in chapter 2. While the translational dynamics of isolated rotors effectively resemble the dynamics of non-rotating colloids, the orbital rotation of pairs of rotors can be described with leading order hydrodynamics and a two-dimensional analogy of Faxén’s law is derived. In chapter 3, a homogeneously distributed ensemble of rotors (bulk) as a realisation of a chiral active fluid is studied and it is explicitly shown computationally and experimentally that it carries odd viscosity. The mutual orbital translation of rotors and an increase of the effective solvent viscosity with rotor density lead to a non-monotonous behaviour of the average translational velocity. Meanwhile, the rotor suspension bears a finite osmotic compressibility resulting from the long-ranged nature of hydrody- namic interactions such that rotational and odd stresses are transmitted through the solvent also at small and intermediate rotor densities. Consequently, density inhomogeneities predicted for chiral active fluids with odd viscosity can be found and allow for an explicit measurement of odd viscosity in simulations and experiments. At intermediate densities, the collective dynamics shows the emergence of multi-scale vortices and chaotic motion which is identified as active turbulence with a self-similar power-law decay in the energy spectrum, showing that the injected energy on the rotor scale is transported to larger scales, similar to the inverse energy cascade of clas- sical two-dimensional turbulence. While either odd viscosity or active turbulence have been reported in chiral active matter previously, the system studied here shows that the emergence of both simultaneously is possible resulting from the osmotic compressibility and hydrodynamic mediation of odd and active stresses. The collective dynamics of colloids rotating out of phase, i.e., where a constant torque instead of a constant angular velocity is applied, is shown to be qualitatively very similar. However, at smaller densities, local density inhomogeneities imply position dependent angular velocities of the rotors resulting from inter-rotor friction. While the friction of a quasi-2D layer of active colloids with the substrate is often not easily modifiable in experiments, the incorporation of substrate friction into the simulation models typically implies a considerable increase in computational effort. In chapter 4, a very efficient way of incorporating the friction with a substrate into a two-dimensional multiparticle collision dynamics solvent is introduced, allowing for an explicit investigation of the influences of substrate on active dynamics. For the rotor fluid, it is explicitly shown that the influence of the substrate friction results in a cutoff of the hydrodynamic interaction length, such that the maximum size of the formed vortices is controlled by the substrate friction, also resulting in a cutoff in the energy spectrum, because energy is taken out of the system at the respective length. These findings are in agreement with the experiments. Since active particles in confinement are known to organise in states of collective dynamics, ensembles of rotationally actuated colloids are studied in circular confinement and in the presence of periodic obstacle lattices in chapters 5 and 6, respectively. The results show that the chaotic active turbulent transport of rotors in suspension can be enhanced and guided resulting from edge flows generated at the boundaries, as has recently been reported for a related chiral active system. The consequent collective rotor dynamics can be regarded as a superposition of active turbulent and imposed flows, leading to on average stationary flows. In contrast to the bulk dynamics, the imposed flows inject additional energy into the system on the long length scales, and the same scaling behaviour of the energy spectrum as in bulk is only obtained if the energy injection scales, due to the mutual generation of rotor translational dynamics throughout the system and the edge flows, are well separated. The combination of edge flow and entropic layering at the boundaries leads to oscillating hydrodynamic stresses and consequently to an oscillating vorticity profile. In the presence of odd viscosity, this consequently leads to non-trivial steady-state density modulations at the boundary, resulting from a balance of osmotic pressure and odd stresses. Relevant for the efficient dispersion and mixing of inert particles on the mesoscale by means of active turbulent mixing powered by rotors, a study of the dynamics of a binary mixture consisting out of rotors and passive particles is presented in chapter 7. Because the rotors are not self-propelled, but the translational dynamics is induced by the surrounding rotors, the passive particles, which do not inject further energy into the system, are transported according to the same mechanism as the rotors. The collective dynamics thus resembles the pure rotor bulk dynamics at the respective density of only rotors. However, since no odd stresses act between the passive particles, only mutual rotor interactions lead to odd stresses leading to the accumulation of rotors in the regions of positive vorticity. This density increase is associated with a pressure increase, which balances the odd stresses acting on the rotors. However, the passive particles are only subject to the accumulation induced pressure increase such that these particles are transported into the areas of low rotor concentration, i.e., the regions of negative vorticity. Under conditions of sustained vortex flow, this results in segregation of both particle types. Since local symmetry breaking can convert injected rotational into translational energy, microswimmers can be constructed out of rotor materials when a suitable breaking of symmetry is kept in the vicinity of a rotor. One hypothetical realisation, i.e., a coupled rotor pair consisting out of two rotors of opposite angular velocity and of fixed distance, termed a birotor, are studied in chapter 8. The birotor pumps the fluid into one direction and consequently translates into the opposite direction, and creates a flow field reminiscent of a source doublet, or sliplet flow field. Fixed in space the birotor might be an interesting realisation of a microfluidic pump. The trans- lational dynamics of a birotor can be mapped onto the active Brownian particle model for single swimmers. However, due to the hydrodynamic interactions among the rotors, the birotor ensemble dynamics do not show the emergence of stable motility induced clustering. The reason for this is the flow created by birotor in small aggregates which effectively pushes further arriving birotors away from small aggregates, which eventually are all dispersed by thermal fluctuations

    On Monte Carlo methods for the Dirichlet process mixture model, and the selection of its precision parameter prior

    Get PDF
    Two issues commonly faced by users of Dirichlet process mixture models are: 1) how to appropriately select a hyperprior for its precision parameter alpha, and 2) the typically slow mixing of the MCMC chain produced by conditional Gibbs samplers based on its stick-breaking representation, as opposed to marginal collapsed Gibbs samplers based on the Polya urn, which have smaller integrated autocorrelation times. In this thesis, we analyse the most common approaches to hyperprior selection for alpha, we identify their limitations, and we propose a new methodology to overcome them. To address slow mixing, we revisit three label-switching Metropolis moves from the literature (Hastie et al., 2015; Papaspiliopoulos and Roberts, 2008), improve them, and introduce a fourth move. Secondly, we revisit two i.i.d. sequential importance samplers which operate in the collapsed space (Liu, 1996; S. N. MacEachern et al., 1999), and we develop a new sequential importance sampler for the stick-breaking parameters of Dirichlet process mixtures, which operates in the stick-breaking space and which has minimal integrated autocorrelation time. Thirdly, we introduce the i.i.d. transcoding algorithm which, conditional to a partition of the data, can infer back which specific stick in the stick-breaking construction each observation originated from. We use it as a building block to develop the transcoding sampler, which removes the need for label-switching Metropolis moves in the conditional stick-breaking sampler, as it uses the better performing marginal sampler (or any other sampler) to drive the MCMC chain, and augments its exchangeable partition posterior with conditional i.i.d. stick-breaking parameter inferences after the fact, thereby inheriting its shorter autocorrelation times

    Path integrals and stochastic calculus

    Full text link
    Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations -- such as performing a change of the integration path -- one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.Comment: 96 pages, 4 figures. New title, expanded introduction and additional references. Version accepted in Advandes in Physic

    PreFair: Privately Generating Justifiably Fair Synthetic Data

    Full text link
    When a database is protected by Differential Privacy (DP), its usability is limited in scope. In this scenario, generating a synthetic version of the data that mimics the properties of the private data allows users to perform any operation on the synthetic data, while maintaining the privacy of the original data. Therefore, multiple works have been devoted to devising systems for DP synthetic data generation. However, such systems may preserve or even magnify properties of the data that make it unfair, endering the synthetic data unfit for use. In this work, we present PreFair, a system that allows for DP fair synthetic data generation. PreFair extends the state-of-the-art DP data generation mechanisms by incorporating a causal fairness criterion that ensures fair synthetic data. We adapt the notion of justifiable fairness to fit the synthetic data generation scenario. We further study the problem of generating DP fair synthetic data, showing its intractability and designing algorithms that are optimal under certain assumptions. We also provide an extensive experimental evaluation, showing that PreFair generates synthetic data that is significantly fairer than the data generated by leading DP data generation mechanisms, while remaining faithful to the private data.Comment: 15 pages, 11 figure
    • …
    corecore