5 research outputs found

    The adjacency matroid of a graph

    Full text link
    If GG is a looped graph, then its adjacency matrix represents a binary matroid MA(G)M_{A}(G) on V(G)V(G). MA(G)M_{A}(G) may be obtained from the delta-matroid represented by the adjacency matrix of GG, but MA(G)M_{A}(G) is less sensitive to the structure of GG. Jaeger proved that every binary matroid is MA(G)M_{A}(G) for some GG [Ann. Discrete Math. 17 (1983), 371-376]. The relationship between the matroidal structure of MA(G)M_{A}(G) and the graphical structure of GG has many interesting features. For instance, the matroid minors MA(G)−vM_{A}(G)-v and MA(G)/vM_{A}(G)/v are both of the form MA(G′−v)M_{A}(G^{\prime}-v) where G′G^{\prime} may be obtained from GG using local complementation. In addition, matroidal considerations lead to a principal vertex tripartition, distinct from the principal edge tripartition of Rosenstiehl and Read [Ann. Discrete Math. 3 (1978), 195-226]. Several of these results are given two very different proofs, the first involving linear algebra and the second involving set systems or delta-matroids. Also, the Tutte polynomials of the adjacency matroids of GG and its full subgraphs are closely connected to the interlace polynomial of Arratia, Bollob\'{a}s and Sorkin [Combinatorica 24 (2004), 567-584].Comment: v1: 19 pages, 1 figure. v2: 20 pages, 1 figure. v3:29 pages, no figures. v3 includes an account of the relationship between the adjacency matroid of a graph and the delta-matroid of a graph. v4: 30 pages, 1 figure. v5: 31 pages, 1 figure. v6: 38 pages, 3 figures. v6 includes a discussion of the duality between graphic matroids and adjacency matroids of looped circle graph

    Some Applications of the Weighted Combinatorial Laplacian

    Get PDF
    The weighted combinatorial Laplacian of a graph is a symmetric matrix which is the discrete analogue of the Laplacian operator. In this thesis, we will study a new application of this matrix to matching theory yielding a new characterization of factor-criticality in graphs and matroids. Other applications are from the area of the physical design of very large scale integrated circuits. The placement of the gates includes the minimization of a quadratic form given by a weighted Laplacian. A method based on the dual constrained subgradient method is proposed to solve the simultaneous placement and gate-sizing problem. A crucial step of this method is the projection to the flow space of an associated graph, which can be performed by minimizing a quadratic form given by the unweighted combinatorial Laplacian.Andwendungen der gewichteten kombinatorischen Laplace-Matrix Die gewichtete kombinatorische Laplace-Matrix ist das diskrete Analogon des Laplace-Operators. In dieser Arbeit stellen wir eine neuartige Charakterisierung von Faktor-Kritikalität von Graphen und Matroiden mit Hilfe dieser Matrix vor. Wir untersuchen andere Anwendungen im Bereich des Entwurfs von höchstintegrierten Schaltkreisen. Die Platzierung basiert auf der Minimierung einer quadratischen Form, die durch eine gewichtete kombinatorische Laplace-Matrix gegeben ist. Wir präsentieren einen Algorithmus für das allgemeine simultane Platzierungs- und Gattergrößen-Optimierungsproblem, der auf der dualen Subgradientenmethode basiert. Ein wichtiger Bestandteil dieses Verfahrens ist eine Projektion auf den Flussraum eines assoziierten Graphen, die als die Minimierung einer durch die Laplace-Matrix gegebenen quadratischen Form aufgefasst werden kann
    corecore