715 research outputs found

    Progress on Optical Fiber Biochemical Sensors Based on Graphene

    Get PDF
    Graphene, a novel form of the hexagonal honeycomb two-dimensional carbon-based structural material with a zero-band gap and ultra-high specific surface area, has unique optoelectronic capabilities, promising a suitable basis for its application in the field of optical fiber sensing. Graphene optical fiber sensing has also been a hotspot in cross-research in biology, materials, medicine, and micro-nano devices in recent years, owing to prospective benefits, such as high sensitivity, small size, and strong anti-electromagnetic interference capability and so on. Here, the progress of optical fiber biochemical sensors based on graphene is reviewed. The fabrication of graphene materials and the sensing mechanism of the graphene-based optical fiber sensor are described. The typical research works of graphene-based optical fiber biochemical sensor, such as long-period fiber grating, Bragg fiber grating, no-core fiber and photonic crystal fiber are introduced, respectively. Finally, prospects for graphene-based optical fiber biochemical sensing technology will also be covered, which will provide an important reference for the development of graphene-based optical fiber biochemical sensors

    Nano-structure-based optical sensors fabrication and validation to gas sensing applications

    Get PDF
    We present three different nano-resonant structures (nanoposts, nanoholes etc.) fabricated on either bulk substrate or micron size tip of optical fiber and one graphene oxide coated glass substrate for gas detection in visible or mid-infrared region of electromagnetic spectrum. Nanostructures provide an efficient way to control and manipulate light at nanoscale paving the way for the development of reliable, sensitive, selective and miniaturized gas sensing technologies. Moreover, the inherent light guiding property of optical fiber over long distances, their microscopic cross-section, their efficient integration capabilities with gas absorption coatings and mechanical flexibility make them suitable for remote sensing applications. The three nanostructure-based gas sensing techniques are based on the detection of surface plasmon resonance (SPR) wavelength shifts, guided mode resonance (GMR) wavelength shifts, and Rayleigh anomaly (RA) mode intensity variations. The SPR and GMR based sensors operate in the visible region of light spectrum. Later, we also integrate a heater with the GMR-based fiber-tip sensor to realize a reusable gas sensor having tunable sensor recovery time. The RA-based sensor is realized by solvent-casting of chalcogenide glass to work as mid-infrared optical resonator. Further, we utilize the dynamic variations in infrared values of graphene oxide in response to gas to realize a gas sensor. First, we present a high-sensitivity gas sensor based on plasmonic crystal incorporating a thin layer of graphene oxide. The presented plasmonic crystal is formed by an array of polymeric nanoposts with gold disks at the top and perforated nanoholes in a gold thin film at the bottom. The thin coating of graphene oxide assembled on the top surface of mushroom plasmonic nanostructures works as the gas absorbent material for the sensor. The optical response of the plasmonic nanostructure is altered due to different concentrations of gas absorbed in the graphene oxide coating. By coating the surface of multiple identical plasmonic crystals with different thicknesses of graphene oxide layer, the effective refractive index of the graphene oxide layer on each plasmonic crystal will be differently modulated when responding to a specific gas. This allows identifying various gas species using the principal component analysis-based pattern recognition algorithm. The present plasmonic nanostructure offers a promising approach to detect various volatile organic compounds. Second, we report a simple yet efficient method of transferring nanopatterns to optical fiber tip. We have also demonstrated a TiO2 coated GMR structure which is sensitive to changes in surrounding refractive index and provides shifts in its resonant wavelength. The GMR sensor at the fiber tip is also demonstrated to work as a gas sensor by coating it with a thin layer of graphene oxide. This simplified and rapid nanostructuring at fiber tip can contribute to remote sensing applications through the insertion of the nanopatterned fiber tips into aqueous and gaseous analytes in regions otherwise inaccessible. Third, we present the first heater integrated nanostructured optical fiber of 200 ïÿým diameter to realize a high-sensitivity and reusable fiber-optic gas sensor. In our GMR-enabled fiber-optic gas sensor, resonance shifts upon the adsorption of the analytes on the graphene oxide (GO) coated sensor surface. For repeated use of this sensor, a regeneration of the sensor surface is required by a complete desorption of the analyte molecules from the GO layer. In our presented design, this has been achieved by the integration of a controllable heater at the fiber tip. Fourth, we present a straightforward analysis based on the maximum and minimum envelopes of the reflection spectra to dynamically investigate the changes in complex refractive index of graphene oxide in response to gases. The performance of graphene oxide -based gas sensors is strongly influenced by the variations in optical properties of graphene oxide when exposed to gas. The presented method does not require any complex dispersion model as compared to ellipsometry. Accordingly, the technique we employ can be leveraged to reliably evaluate the optical performance of any graphene oxide-based gas sensors in a simpler manner, when compared to ellipsometry. Furthermore, the accuracy of the derived values of complex refractive index of the graphene oxide layer has been confirmed by comparing with literature. Finally, we report the development of a first of a kind planar resonant structure that enhances the mid-IR absorption by the analyte adsorbed on its surface, enabling highly sensitive and selective label-free detection of gas and/or biomarkers. Chalcogenide glasses (As2S3) are promising for infrared photonics owing to their transparency in visible to far infrared, where various biomolecules and gases have their characteristic absorption lines, arising from rotational-vibrational transitions. Here we present the proposed design of a nanoscale tunable planar mid-IR optical resonator, realized by solvent-casting of As2S3. Our technique of preparing nanostructure having resonance at mid-IR enables the realization of mid-IR bio as well as gas sensors

    Recent advances in plasmonic sensor-based fiber optic probes for biological applications

    Get PDF
    Funding: This research was funded by National Natural Science Foundation of China (NSFC), grant number [61675008]. Acknowledgments: KN wishes to thank The Royal Society Kan Tong Po International Fellowship 2018 for the travel fund to visit Hong Kong Polytechnic University and Shenzhen Science and Technology Innovation Commission (Project GJHZ20180411185015272).Peer reviewedPublisher PD

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    (INVITED)Chemical sensors based on long period fiber gratings: A review

    Get PDF
    Fiber optic devices are being increasingly employed in the fields of chemical and environmental sensing due to their important features, such as high accuracy, small size, chemical inertness, remote operation and multiplexing capabilities. In this work, a thorough review about the design, fabrication and characterization of fiber optic chemical sensors based on long period grating (LPG) technology is reported. The emphasis is placed on transducer designs and features as well as the techniques to enhance the sensitivity. Subsequently, coating materials to be deposited around the grating region, providing a selective response to the target analytes are described in detail. Finally, the different applications are reviewed, mainly related to the monitoring of environmental parameters, volatile organic compounds, hazardous gases, heavy metal ions, corrosion, marine salinity and food quality. The aim of this work is to deliver a comprehensive analysis regarding the state-of-the-art solutions about LPG-based chemical sensors and to summarize the current shortcomings and upcoming research paths

    Optical Fibre Sensors Using Graphene-Based Materials: A Review

    Get PDF
    Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented

    Surface Plasmon Resonance for Biosensing

    Get PDF
    The rise of photonics technologies has driven an extremely fast evolution in biosensing applications. Such rapid progress has created a gap of understanding and insight capability in the general public about advanced sensing systems that have been made progressively available by these new technologies. Thus, there is currently a clear need for moving the meaning of some keywords, such as plasmonic, into the daily vocabulary of a general audience with a reasonable degree of education. The selection of the scientific works reported in this book is carefully balanced between reviews and research papers and has the purpose of presenting a set of applications and case studies sufficiently broad enough to enlighten the reader attention toward the great potential of plasmonic biosensing and the great impact that can be expected in the near future for supporting disease screening and stratification

    2-Dimensional Materials for Performance Enhancement of Surface Plasmon Resonance Biosensor: Review Paper

    Get PDF
    Surface plasmon resonance (SPR)--based biosensors compete and excel among optical biosensors because of exceptional features such as high sensitivity, label-free, and real-time measurement, allowing the observation of molecular binding kinetics. In SPR biosensors and other biosensor techniques, surface functionalization and bioreceptor attachment are effective strategies to improve sensor performance. The application of an appropriate immobilization matrix for the bioreceptor is an essential step in maximizing the absorption of the bioreceptor on the sensor surface, thereby improving a specific target-sensor interaction. Furthermore, the materials should provide excellent optical properties to enhance the response signal. The high surface-to-volume ratio and high optical absorption of 2D materials qualify these requirements, thus promising advancements for SPR biosensors. This article reviews the recent SPR biosensor study with the use of the 2D materials family to improve the sensor performance, including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), perovskite, and boron nitride (BN). The materials properties and enhancement mechanisms of different 2D materials are discussed comprehensively. This review was expected to provide a future perspective and design approach for 2D materials-based SPR biosensors

    Fiber optics based surface plasmon resonance for label-free optical sensing

    Get PDF
    With the advancement in the laser technology and availability of low cost optical fibers, there is an increasing trend towards adoption of optical fibers as sensing element for development of optical sensors probes especially point-of-care sensing for environmental, biomedical and clinical application. Refractive index measurement through surface plasmon resonance has evolved to be, one of the most sensitive transducer for label-free sensing with high sensitivity. Surface plasmon resonance is a surface sensitive optoelectronic phenomenon, where light incident on a plasmonic metal surface at a given angle can excite a surface-bound electromagnetic wave, a surface plasmon. Associated with the surface plasmon is an evanescent field that probes local changes in the refractive index of the ambient medium that are used for monitoring analyte- supramolecular/ bio-molecular ligand interactions. Present review outlines a concise view on theoretical aspects of fiber optics based surface plasmon resonance phenomenon and comprehensive updated review on research and development for progression in the design of fiber optics based SPR sensors
    corecore