44,373 research outputs found

    ESRO: Experience Assisted Service Reliability against Outages

    Full text link
    Modern cloud services are prone to failures due to their complex architecture, making diagnosis a critical process. Site Reliability Engineers (SREs) spend hours leveraging multiple sources of data, including the alerts, error logs, and domain expertise through past experiences to locate the root cause(s). These experiences are documented as natural language text in outage reports for previous outages. However, utilizing the raw yet rich semi-structured information in the reports systematically is time-consuming. Structured information, on the other hand, such as alerts that are often used during fault diagnosis, is voluminous and requires expert knowledge to discern. Several strategies have been proposed to use each source of data separately for root cause analysis. In this work, we build a diagnostic service called ESRO that recommends root causes and remediation for failures by utilizing structured as well as semi-structured sources of data systematically. ESRO constructs a causal graph using alerts and a knowledge graph using outage reports, and merges them in a novel way to form a unified graph during training. A retrieval-based mechanism is then used to search the unified graph and rank the likely root causes and remediation techniques based on the alerts fired during an outage at inference time. Not only the individual alerts, but their respective importance in predicting an outage group is taken into account during recommendation. We evaluated our model on several cloud service outages of a large SaaS enterprise over the course of ~2 years, and obtained an average improvement of 27% in rouge scores after comparing the likely root causes against the ground truth over state-of-the-art baselines. We further establish the effectiveness of ESRO through qualitative analysis on multiple real outage examples.Comment: Accepted to 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023

    Answering Complex Questions Using Open Information Extraction

    Full text link
    While there has been substantial progress in factoid question-answering (QA), answering complex questions remains challenging, typically requiring both a large body of knowledge and inference techniques. Open Information Extraction (Open IE) provides a way to generate semi-structured knowledge for QA, but to date such knowledge has only been used to answer simple questions with retrieval-based methods. We overcome this limitation by presenting a method for reasoning with Open IE knowledge, allowing more complex questions to be handled. Using a recently proposed support graph optimization framework for QA, we develop a new inference model for Open IE, in particular one that can work effectively with multiple short facts, noise, and the relational structure of tuples. Our model significantly outperforms a state-of-the-art structured solver on complex questions of varying difficulty, while also removing the reliance on manually curated knowledge.Comment: Accepted as short paper at ACL 201

    Structural Regularities in Text-based Entity Vector Spaces

    Get PDF
    Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity: experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.Comment: ICTIR2017. Proceedings of the 3rd ACM International Conference on the Theory of Information Retrieval. 201

    Investigation into Indexing XML Data Techniques

    Get PDF
    The rapid development of XML technology improves the WWW, since the XML data has many advantages and has become a common technology for transferring data cross the internet. Therefore, the objective of this research is to investigate and study the XML indexing techniques in terms of their structures. The main goal of this investigation is to identify the main limitations of these techniques and any other open issues. Furthermore, this research considers most common XML indexing techniques and performs a comparison between them. Subsequently, this work makes an argument to find out these limitations. To conclude, the main problem of all the XML indexing techniques is the trade-off between the size and the efficiency of the indexes. So, all the indexes become large in order to perform well, and none of them is suitable for all users’ requirements. However, each one of these techniques has some advantages in somehow

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim
    • …
    corecore