1,965 research outputs found

    Accurator: Nichesourcing for Cultural Heritage

    Full text link
    With more and more cultural heritage data being published online, their usefulness in this open context depends on the quality and diversity of descriptive metadata for collection objects. In many cases, existing metadata is not adequate for a variety of retrieval and research tasks and more specific annotations are necessary. However, eliciting such annotations is a challenge since it often requires domain-specific knowledge. Where crowdsourcing can be successfully used for eliciting simple annotations, identifying people with the required expertise might prove troublesome for tasks requiring more complex or domain-specific knowledge. Nichesourcing addresses this problem, by tapping into the expert knowledge available in niche communities. This paper presents Accurator, a methodology for conducting nichesourcing campaigns for cultural heritage institutions, by addressing communities, organizing events and tailoring a web-based annotation tool to a domain of choice. The contribution of this paper is threefold: 1) a nichesourcing methodology, 2) an annotation tool for experts and 3) validation of the methodology and tool in three case studies. The three domains of the case studies are birds on art, bible prints and fashion images. We compare the quality and quantity of obtained annotations in the three case studies, showing that the nichesourcing methodology in combination with the image annotation tool can be used to collect high quality annotations in a variety of domains and annotation tasks. A user evaluation indicates the tool is suited and usable for domain specific annotation tasks

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization

    Full text link
    We study unsupervised multi-document summarization evaluation metrics, which require neither human-written reference summaries nor human annotations (e.g. preferences, ratings, etc.). We propose SUPERT, which rates the quality of a summary by measuring its semantic similarity with a pseudo reference summary, i.e. selected salient sentences from the source documents, using contextualized embeddings and soft token alignment techniques. Compared to the state-of-the-art unsupervised evaluation metrics, SUPERT correlates better with human ratings by 18-39%. Furthermore, we use SUPERT as rewards to guide a neural-based reinforcement learning summarizer, yielding favorable performance compared to the state-of-the-art unsupervised summarizers. All source code is available at https://github.com/yg211/acl20-ref-free-eval.Comment: ACL 202

    Automatic Multi-Label Image Classification Model for Construction Site Images

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์ถ•ํ•™๊ณผ,2019. 8. ๋ฐ•๋ฌธ์„œ.์ตœ๊ทผ ์ด๋ฏธ์ง€ ๋ถ„์„ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ๊ฑด์„ค ํ˜„์žฅ์—์„œ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฉด์—์„œ ํ˜„์žฅ์—์„œ ์ˆ˜์ง‘๋œ ์‚ฌ์ง„์„ ํ™œ์šฉํ•˜์—ฌ ๊ฑด์„ค ํ”„๋กœ์ ํŠธ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ดฌ์˜ ์žฅ๋น„์˜ ๋ฐœ์ „๋˜์ž ๊ฑด์„ค ํ˜„์žฅ์—์„œ ์ƒ์‚ฐ๋˜๋Š” ์‚ฌ์ง„์˜ ์ˆ˜๊ฐ€ ๊ธ‰์ฆํ•˜์—ฌ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ์ž ์žฌ์ ์ธ ํ™œ์šฉ๋„๋Š” ๋”์šฑ ๋” ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ ‡๊ฒŒ ์ƒ์‚ฐ๋˜๋Š” ๋งŽ์€ ์–‘์˜ ์‚ฌ์ง„์€ ๋Œ€๋ถ€๋ถ„ ์ œ๋Œ€๋กœ ๋ถ„๋ฅ˜๋˜์ง€ ์•Š์€ ์ƒํƒœ๋กœ ๋ณด๊ด€๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ˜„์žฅ ์‚ฌ์ง„์œผ๋กœ๋ถ€ํ„ฐ ํ•„์š”ํ•œ ํ”„๋กœ์ ํŠธ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ์‹ค์ •์ด๋‹ค. ํ˜„์žฌ ํ˜„์žฅ์—์„œ ์‚ฌ์ง„์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ์‹์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ๊ฐœ๋ณ„ ์‚ฌ์ง„์„ ๊ฒ€ํ† ํ•œ ๋’ค ๋ถ„๋ฅ˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์ด ์š”๊ตฌ๋˜๊ณ , ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ํŠน์ง•์„ ์ง์ ‘์ ์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๊ธฐ์กด์˜ ์ด๋ฏธ์ง€ ๋ถ„์„ ๊ธฐ์ˆ  ์—ญ์‹œ ๋ณต์žกํ•œ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ํŠน์ง•์„ ๋ฒ”์šฉ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ๋ชจ์Šต์ด ๋งค์šฐ ๋‹ค์–‘ํ•˜๊ณ , ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ๊ฒƒ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์—์„œ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(Deep Convolutional Neural Network) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ๊ฐœ๋ณ„ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์— ์ ํ•ฉํ•œ ํ‚ค์›Œ๋“œ๋ฅผ ์ž๋™์œผ๋กœ ํ• ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์€ ๋ชจ๋ธ ๊ตฌ์กฐ๊ฐ€ ๊นŠ์–ด์ง์— ๋”ฐ๋ผ ๋†’์€ ์ฐจ์›์˜ ํ•ญ์ƒ์„ฑ(invariant) ํŠน์ง•๋„ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์ง•์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณต์žกํ•œ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์ ํ•ฉํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ํ† ๋Œ€๋กœ ํ˜„์žฅ์—์„œ ํ•„์š”ํ•œ ์‚ฌ์ง„์„ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๊ฐ ์‚ฌ์ง„์— ์ ํ•ฉํ•œ ํ‚ค์›Œ๋“œ๋ฅผ ์ž๋™์œผ๋กœ ํ• ๋‹นํ•˜๋Š” ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํŠนํžˆ, ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ๋Œ€๋ถ€๋ถ„์ด ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ ˆ์ด๋ธ”๊ณผ ์—ฐ๊ด€์ด ์žˆ๋‹ค๋Š” ์ ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋‹ค์ค‘ ๋ ˆ์ด๋ธ” ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ผ์ฐจ์ ์œผ๋กœ๋Š” ๊ฑด์„ค ์‚ฌ์ง„์—์„œ ํ”„๋กœ์ ํŠธ์™€ ๊ด€๋ จ๋œ ๋‹ค์–‘ํ•œ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜์—ฌ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ํ™œ์šฉ๋„๋ฅผ ๊ฐœ์„ ํ•˜๊ณ , ๋‚˜์•„๊ฐ€ ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํšจ์œจ์ ์ธ ๊ฑด์„ค ๊ด€๋ฆฌ๋ฅผ ๋„๋ชจํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ง„ํ–‰ ์ˆœ์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์šฐ์„  ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ์‹ค์ œ ๊ฑด์„ค ํ˜„์žฅ ๋ฐ ์˜คํ”ˆ์†Œ์Šค ๊ฒ€์ƒ‰์—”์ง„์„ ํ†ตํ•˜์—ฌ ์ด 6๊ฐœ ๊ณต์ข…์˜ ์‚ฌ์ง„์„ ์ˆ˜์ง‘ํ•˜๊ณ , ํ•˜์œ„ ๋ถ„๋ฅ˜ ๋ฒ”์œ„๋ฅผ ํฌํ•จํ•œ ์ด 10๊ฐœ ๋ ˆ์ด๋ธ”์˜ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์„ฑํ•˜์—ฌ ํ•™์Šต์„ ์ง„ํ–‰ํ–ˆ๋‹ค. ๋˜ํ•œ ๊ตฌ์ฒด์ ์ธ ๋ชจ๋ธ ์„ ํƒ์„ ์œ„ํ•ด ๋Œ€ํ‘œ์ ์ธ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๋น„๊ต ๊ฒ€ํ† ํ•˜์—ฌ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ ResNet 18์„ ์ตœ์ข… ๋ชจ๋ธ๋กœ ์„ ํƒํ–ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ํ‰๊ท  91%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉฐ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์„ ์ž๋™์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ๊ทผ ํƒ€ ๋ถ„์•ผ ์ด๋ฏธ์ง€ ๋ถ„์„์—์„œ ์ข‹์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์ธ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•˜์—ฌ ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์„ ์ž๋™์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ–ˆ๋‹ค๋Š” ์ ๊ณผ, ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ๋‹ค์ค‘ ๋ ˆ์ด๋ธ” ๋ถ„๋ฅ˜๋ฅผ ์ ์šฉํ•œ ์ฒซ ์—ฐ๊ตฌ๋ผ๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์‹ค์ œ ํ˜„์žฅ์—์„œ๋Š” ์‚ฌ์ง„์„ ์ž๋™์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋จ์— ๋”ฐ๋ผ ๊ธฐ์กด์— ๋ฒˆ๊ฑฐ๋กœ์šด ์ˆ˜๋™ ์‚ฌ์ง„ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์ค„์ด๊ณ , ๊ฑด์„ค ํ˜„์žฅ ์‚ฌ์ง„์˜ ํ™œ์šฉ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ ๋ ˆ์ด๋ธ” ๊ฐ„์— ์—ฐ๊ด€์„ฑ์ด๋‚˜ ์˜์กด์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ถ”ํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ ์‚ฌ์ง„ ๊ฐ„์˜ ๊ณ„์ธต์  ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ์— ์ถ”๊ฐ€์ ์œผ๋กœ ํ•™์Šต์‹œ์ผœ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ณ , ํ•™์Šต ๋ ˆ์ด๋ธ”๋„ ๋” ๋‚ฎ์€ ๋‹จ๊ณ„์˜ ํ‚ค์›Œ๋“œ๊นŒ์ง€ ํฌํ•จํ•˜์—ฌ ํ˜„์žฅ ์‚ฌ์ง„์œผ๋กœ๋ถ€ํ„ฐ ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋„๋ก ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค.Activity recognition in construction performs as the prerequisite step in the process for various tasks and thus is critical for successful project management. In the last several years, the computer vision community has blossomed, taking advantage of the exploding amount of construction images and deploying the visual analytics technology for cumbersome construction tasks. However, the current annotation practice itself, which is a critical preliminary step for prompt image retrieval and image understanding, is remained as both time-consuming and labor-intensive. Because previous attempts to make the process more efficient were inappropriate to handle dynamic nature of construction images and showed limited performance in classifying construction activities, this research aims to develop a model which is not only robust to a wide range of appearances but also multi-composition of construction activity images. The proposed model adopts a deep convolutional neural network model to learn high dimensional feature with less human-engineering and annotate multi-labels of semantic information in the images. The result showed that our model was capable of distinguishing different trades of activities at different stages of the activity. The average accuracy of 83% and a maximum accuracy of 91% holds promise in an actual implementation of automated activity recognition for construction operations. Ultimately, it demonstrated a potential method to provide automated and reliable procedure to monitor construction activity.Chapter 1. Introduction 1 1.1. Research Background 1 1.2. Research Objectives and Scope 5 1.3. Research Outline 7 Chapter 2. Preliminary Study 9 2.1. Challenges with Construction Activity Image Classification Task 10 2.2. Applications of Traditional Vision-based Algorithms in Construction Domain 13 2.3. Convolutional Neural Network-based Image Classification in Construction Domain 18 2.4. Summary 21 Chapter 3. Development of Construction Image Classification Model 22 3.1. Customized Construction Image Dataset Preparation 23 3.1.1. Construction Activity Classification System 23 3.1.2. Dataset Collection 24 3.1.3. Data Pre-Processing 25 3.2. Construction Image Classification Model Framework 27 3.2.1. Multi-label Image Classification 27 3.2.2. Base CNN Model Selection 28 3.2.3. Proposed ResNet Model Architecture 29 3.3. Model Training and Validation 33 3.3.1. Transfer Learning 33 3.3.2. Loss Computation and Model Optimization 33 3.3.3. Model Performance Indicator 35 3.4. Summary 37 Chapter 4. Experiment Results and Discussion 38 4.1. Experiment Results 38 4.2. Analysis of Experiment Results 42 4.3. Summary 44 Chapter 5. Conclusion 45 5.1. Research Summary 45 5.2. Research Contributions 46 5.3. Limitations and Further Study 47 References 49 Appendix 57 Abstract in Korean 63Maste
    • โ€ฆ
    corecore