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Abstract

Automatic Multi-Label Image
Classification Model for
Construction Site Images

YeSeul Kim
Department of Architecture
The Graduate School

Seoul National University

Activity recognition in construction performs as the prerequisite step in the
process for various tasks and thus is critical for successful project management.
In the last several years, the computer vision community has blossomed, taking
advantage of the exploding amount of construction images and deploying the
visual analytics technology for cumbersome construction tasks. However, the
current annotation practice itself, which is a critical preliminary step for prompt
image retrieval and image understanding, is remained as both time-consuming
and labor-intensive. Because previous attempts to make the process more
efficient were inappropriate to handle dynamic nature of construction images and

showed limited performance in classifying construction activities, this research



aims to develop a model which is not only robust to a wide range of appearances
but also multi-composition of construction activity images. The proposed model
adopts a deep convolutional neural network model to learn high dimensional
feature with less human-engineering and annotate multi-labels of semantic
information in the images. The result showed that our model was capable of
distinguishing different trades of activities at different stages of the activity. The
average accuracy of 83% and maximum accuracy of 91% holds promise in an
actual implementation of automated activity recognition for construction
operations. Ultimately, it demonstrated a potential method to provide automated

and reliable procedure to monitor construction activity.
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Chapter 1. Introduction

1.1. Research Background

In the context of the construction industry, a significant amount of image
data is produced throughout the entire life cycle of the construction project. In
particular, the advent and development of digital photographing equipment such
as cameras and unmanned aerial vehicles have helped construction project
practitioners readily acquire visual records of construction sites daily (K. K. Han
& Golparvar-Fard, 2017). Thus, an ever-increasing amount of construction
activities are captured in the forms of still images, time-lapse images, and videos
(Hamledari, McCabe, & Davari, 2017). As a result, construction activities are

now easily and periodically documented at a low cost.

As such visual data explicitly captures the exact state of construction job-
site, they contain various essential project-related information including 1) the
type of equipment and worker trades of on-going operations, 2) the number of
equipment or workers, and 3) the states of construction activities (Zhu, Ren, &
Chen, 2017). Based on the information retrieved from visual content of
construction images, researchers have demonstrated an opportunity to alleviate
construction project practitioners from such cumbersome tasks such as progress

tracking and control (Golparvar-Fard, Pefia-Mora, Arboleda, & Lee, 2009; Omar,



Mahdjoubi, & Kheder, 2018), productivity analysis and improvement (J. Kim,
Chi, & Seo, 2018; Yang, Park, Vela, & Golparvar-Fard, 2015), surveillance of
construction operation for safety and quality control (Ding et al., 2018; Dung &
Anh, 2019; S. Han & Lee, 2013), resource management (Jog, Brilakis, &
Angelides, 2011), supporting contractual claim documents (Kangari, 1995) and
better communication among stakeholders (Golparvar-Fard et al., 2009; Teizer,

2009), and education and training (Azar, 2017).

Despite their availability and effectiveness, visual resources are, however,
not used to their full potential. Instead, most of the visual data are likely to be
unutilized soon because image search and information retrieval are challenging
due to unorganized and scattered images in the system. Current information
retrieval systems are mostly built on keyword-based content representation and
query processing techniques (Lv & El-Gohary, 2016). Thus, it is very difficult
for practitioners to search and identify the target image of interest through the
large collections of project images unless an image is archived with adequate
categorical descriptions or keywords annotated to the image. In other words,
organizing construction images into operational-level categories that are
meaningful to the project team is extremely useful and essential for proper and

prompt image information retrieval.

Yet, the current annotation process heavily relies on manual observation and

analysis (Brilakis & Soibelman, 2005). Taking consideration of the exploding



amounts of images that are regularly generated in the construction projects, even
a seemingly trivial task of manual annotation can pose a burden on the project
practitioners. Due to the time-consuming and labor-intensive process to analyze
and label each image, the majority of valuable resources are instead remained

unutilized, leaving room for better exploitation of visual resources.

In this regard, several image annotation tools and methods were proposed to
support automating the annotation process. Unfortunately, those approaches
remained as time-consuming and tedious tasks. Some degree of users’ actions is
still required to manually analyze the visual context of the image and provide

proper annotations (Soltani, Zhu, & Hammad, 2016).

& -3

peas

Keyword Keyword-based Keyword
.................................

annotation " classification query / search

Figure 1-1. Overview of Keyword-based Digital Image Database System
Another approach to tackle this issue is to use image processing techniques,
namely image classification, to facilitate annotation. Image classification refers
to the task of identifying the target entity and assigning into one of the predefined

semantic categories and is usually the preliminary step for understanding images
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and assigning adequate annotations automatically. In this dissertation, a visual
analytics approach is proposed to support automatic annotation process for
construction image classification. This paper can help construction project
practitioners fully utilize project image data for various laborious project
management tasks by proposing an efficient way to manage a large volume of

onsite project image data.



1.2. Research Objective and Scope

To accommodate the shortcomings of the current image classification
process, the goal of this dissertation is to validate the performance of the current
state-of-the-art computer vision technology, deep convolutional neural network,

to automatically classify construction activities into semantic categories.

To achieve this goal, the following objectives are proposed:

(1) To validate the feasibility of an end-to-end deep convolutional neural
network model for construction image classification, making the
annotation procedure more efficient and minimizing human intervention

(2) To develop the multi-label classification model to produce associated
multiple class labels for a single input image

(3) To optimize an image classification model that is robust for both high
intra-variability and generic characteristics across the appearance of

different image classes

The proposed model is optimized for all activity classes and performs solely
based on the input image without any external information. The scope of this
study is thoroughly selected for a set of six work trades from architectural and
structural activities: concrete, steel, masonry, tile, drywall, and curtainwall. They
are reasonable representations of the dynamic nature of construction activities

which possess intra-variability of wide-ranging appearances as well as common



features across different trades.

This study also assumes that the scope of image annotation is provided for
activity trade keywords at WBS Level 1 and 2. The detailed descriptions of each

category are as followed.

WBS 1 WBS 2

1) Concrete 1-1) Rebar work
1-2) Concrete Pour
1-3) Formwork

2-1) Red Brick

2) Masonry work
2-2) Concrete Block

3) Drywall work 3-1) Framing and insulation
3-2) Board installation

4) Tile work

5) Steel work
6) Curtainwall

Figure 1-2. Overview of Classification Keyword Categories
It deals with higher operational level activity description and material types
only, and any further elaboration of construction activities and entities such as

pose of worker are not considered in this study.



1.3. Research Outline

This dissertation consists of five chapters. The brief content of the following

chapters is described as follows:

Section 2 examines the overview of the use of image data and the
applications of computer vision algorithms in the construction domain. In
particular, it describes the challenges related to construction image classification
task. Then it introduces the previous applications of computer vision algorithms
in the construction domain and investigates relevant issues of traditional
algorithms in the context of construction activity classification. Finally, other
researches using deep Convolutional Neural Network model for construction

image classification were examined.

Section 3 explains the proposed architecture of image classification model
and describes the framework for the proposed research, consisting of (1)
customized image dataset preparation, (2) image classification model

architecture selection, and (3) model training and validation in detail.

Section 4 further elaborates and evaluates the results of the experiments.

Section 5 summarizes the research finding, expected research contribution,

and research limitation, and finally proposes future works.
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Chapter 2. Preliminary Study

In the construction domain, most of the visual resources are unutilized due
to the lack of efficient annotation methods, leaving room for better exploitation
of visual data. In this chapter, previous annotation approaches as well as
traditional computer vision algorithms applied in the construction domain are
examined. Then, the limitations of these previous computer vision algorithms for
construction activity classification tasks are scrutinized. After highlighting the
need for improving model capacity to more robustly recognize high dimensional
visual representations, the last part of this chapter describes the preceding
applications of convolutional neural networks in the construction domain. By
addressing the shortcomings of the CNN models, this research proposes a multi-

label CNN model for construction activity classification.



2.1. Challenges of Construction Image Classification Task

Over the past decade, there have been an increasing number of researches
that attempt to use visual analytics techniques in the construction domain as a
result of two major forces: the prevalent construction image data generated in a
cost-efficient way as well as the continuous development of computer vision
algorithms. Nevertheless, early researches suffered from several challenges
associated with construction images. Images taken from actual construction sites
possess both intrinsic and extrinsic factors that preclude the high-performance

rate which is easily observed in other benchmark datasets.

Inherently, construction images express high intra-class variability because
a single construction activity class can have a wide range of variances in the
appearance across different projects and even within a single project. Under the
same work trade, the material texture and size can vary much from one to another
because every construction project is unique. And more importantly, one activity
can be presented in diverse configurations of construction entities as depicted in
Figure 1. Each image will have different composite and interaction among
workers, materials, equipment, and tools (Khosrowpour, Niebles, & Golparvar-
Fard, 2014). Therefore, if the feature extractor is optimized at a particular project
or a condition, the algorithms will not perform consistently in other projects

which have different appearances (H. Kim, Kim, Hong, & Byun, 2018).
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Figure 2-1. Examples of high intra-variability of masonry work with wide-
ranging appearances and configuration

At the same time, algorithms are also required to deal with relatively low
inter-class variability among different construction activities. Similar visual
features can be shared among different activity classes. For instance, if the work
processes are related or materials are similar in two work trades, such as concrete
block wall and tile wall installation, the images captured from those trades will
look very similar. Thus, the computer vision algorithms are required to learn
distinct enough features for each trade while generalized enough to learn high

intra-class variability simultaneously.

Figure 2-2. Examples of low inter-class variability among tile, plaster, and
masonry works

Another unique challenge related to construction image classification task

is the highly dynamic external factors associated with the construction

11



environment. Each project is surrounded by a unique yet continuously changing
environment, which is subject to changes to lighting, viewpoints, and
backgrounds. Under these dynamic conditions, images display construction
entities that are often randomly cropped objects, partially self-occluded or
occluded by other objects. As pointed by most of the previous researches,
occlusion is still a major challenge for visual analytic task (Yang, Shi, & Wu,

2016).

As a result of construction images’ intrinsic and extrinsic issues, it is very
challenging to exploit generalized feature representations to classify vastly
dynamic construction activities images for all projects. In Section 2.2., the
limitations of early vision-based methods for construction activity classification

task are scrutinized.

12



2.2. Applications of Traditional Vision-based Algorithms in

Construction Domain

Over the past decade, machine-learning techniques have blossomed. Several
pieces of research in the construction domain leveraged on computer vision-
based algorithms in support of construction entity recognition — namely,
construction workers, equipment and/or building components. Early vision
algorithms were based on human-designed feature representations like shape,
color, texture, gradient, and motion characteristics. They manually generate
optimal feature descriptors based on the set of input data and learn the underlying
pattern of the object appearance (Gong & Caldas, 2011; Zhu et al., 2017). Feature
representations are then passed onto classifiers for classification and evaluated

for the accuracy of the method.

f(x]0)
X Feature‘ Featu-re _J'> Classifier y
extraction || selection

Figure 2-3. Illustration of Traditional Vision-Based Algorithms Process
The common algorithms are Harris detector (Harris & Stephens, 1988),
scale-invariant feature transform (SIFT) (Lowe, 2004), histogram of oriented

gradients (HOG) (N. Dalal & Triggs, 2005), histogram of oriented optical flow
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(HOF) (Navneet Dalal, Triggs, & Schmid, 2006), and deformable part-based

model (DPM) (Felzenszwalb, Girshick, & McAllester, 2010).

In the construction domain, several researchers have facilitated on the
aforementioned computer vision-based algorithms for construction entity
recognition task. For example, Gong et al. (2011) proposed classification module
to classify worker and heavy equipment from video using Harris detector as the
feature detector, local histograms as the feature representation, Bag-of-Words as
the feature model, and Bayesian network models as the learning mechanism for
action learning and classification (Gong, Caldas, & Gordon, 2011). Park and
Brilakis (2012) detected construction workers wearing safety vests based on the
histograms of color features after background subtraction. (Park & Brilakis,
2012). Memarzadeh et al. (2013) detected construction equipment and workers
from construction site images with HOG descriptor and SVM classifier by
extracting features from the histograms of oriented gradients and colors
(Memarzadeh, Golparvar-Fard, & Niebles, 2013). Khosrowpour et al. (2014)
detected and tracked workers' body skeleton from a sequence of image and then
classified the stage of interior wall activities with a bag-of-worker pose
(Khosrowpour et al., 2014). Park et al. (2015) also detected workers wearing a
hardhat using a histogram of oriented gradients (HOG) and geometric
relationships of the human body (Park, Elsafty, & Zhu, 2015). Hamledari et al.

(2017) detected four partition components of indoor partition works with each

14



extracted visual feature and SVM and then infer the state of under-construction

activities (Hamledari et al., 2017).

Table 2-1. Previous classification methods in the construction field

Article

Gong et al.
(2011)

Park and
Brilakis (2012)

Memarzadeh et
al. (2013)

Khosrowpour et
al. (2014)

Park et al.
(2015)

Hamledari et al.
(2017)

Feature

Harris detector; local
histograms and Bag-of-
Words

Histograms of color
features

Histograms of oriented
gradients and color
features and SVM

Bag-of-worker poses of
spatio-temporal features

Histogram of oriented
gradients

Extracted visual feature
and SVM

Entity of Interest

ppl

bldg

eqmt

Condition

int

ext

In most of these studies, features were thoroughly selected based on the

target problems and conditions because a particular feature is more appropriate

for certain types of applications. Although they demonstrated acceptable

performance rate for a specific task, these algorithms embody limited

effectiveness for more generic tasks like identifying varied construction

activities. Because these algorithms only learn low-level features instead of high

dimensional features, they will not consistently perform on activity classification

15



due to the wide range of appearances and configuration of construction images.

To address these challenges of traditional human-engineered algorithms,
researches have incorporated considerable domain knowledge and meticulous
engineering to better define the problem. Nevertheless, it still does not show
consistent performance when the designated visual cues are jeopardized. For
feature extractors in which color plays the key role, the performance level is
largely hampered by the presence of color of entities in the image, such as
workers’ clothes and backgrounds. If workers were not wearing fluorescent
safety vests, wearing hardhat color that was not shown during training, or
background color was similar to that of workers’ clothes, the model accuracy can
be undermined. Similarly, for orientation-feature extractors, the performance
level is affected by the site's topography and spatial conflicts. The worker
detection algorithms usually assume that the background is static and workers
are at a certain posture like standing or walking. Thus, the image classification
model will have an acceptable result only if the worker's full body is clearly

presented.

In short, traditional approaches learn independent classifiers for each
category and optimize for the specific classification task, and they do not show
consistent performance for construction activity classification. Due to the
limitation of the existing human-engineering methods whose performance is

constrained to a particular task, early studies suffered from the low performance

16



in other tasks as increasing accuracy in one task may decrease the accuracy in
other tasks (Zhu et al., 2017). Thus, it is necessary to employ more than one
simple rule that learns low-level features to tackle construction image
classification problem. In other words, the proposed classification model needs
to acquire a predominant capacity to distinguish features in a high dimensional
space of construction images. In the following section, a deep convolutional
neural network model, which is well-known for its superior capacity for image
classification, was introduced to cope with intrinsic and extrinsic issues of

construction site images.

17



2.3. Convolutional Neural Network-based Image Classification

in Construction Domain

Deep Neural Network models for image classification have been rapidly
developed to the level of human recognition capability over the past years.
Among deep neural network models, since the introduction of Le-Net in 1998
(Lecun, Bottou, Bengio, & Haffner, 1998), Convolution Neural Network (CNN)
model has continuously proven its exceeding capacity for image classification to
the level of human recognition capability (He, Zhang, Ren, & Sun, 2015;
Krizhevsky, Sutskever, & Hinton, 2012, 2017; Simonyan & Zisserman, 2014;
Szegedy et al., 2014; Zeiler & Fergus, 2013). Unlike the traditional human-
designed feature algorithms, CNN models do not require explicit feature

engineering.

f(x]0)
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Figure 2-4. Illustration of the Deep CNN-Based Algorithms Process

Instead, it automatically learns the relationship between the underlying
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representational features and high-level image semantics by conducting
convolution operations on all pixels of the input image with learnable filters.
After the convolutional operation, a feature map is produced for each operation
and then activated by a nonlinear function. It helps with preserving spatial
information as well as effectively discovering hidden visual features within high-
dimensional datasets. A model can achieve even higher representation capacity
by stacking the convolutional layers (Simonyan & Zisserman, 2014; Zeiler &

Fergus, 2013).

As the most dominant model for visual recognition tasks, CNN models have
been applied to automate various applications in the construction domain, as well.
Ding et al. (2018) proposed a CNN-based model for safety control to detect
unsafe behaviors of construction workers (Ding et al., 2018) and to detect the
presence of personal safety protection like harness (Fang, Ding, Luo, & Love,
2018). Other researches also proposed CNN-based detection models for quality
assessment such as automatic visual assessment for concrete defect detection
(Beckman, Polyzois, & Cha, 2019; Cha, Choi, & Biiyiikoztiirk, 2017; Dung &
Anh, 2019) and fastener defect detection (Chen, Liu, Wang, Nufiez, & Han,
2018). In terms of activity monitoring task, Son et al. (2019) used a state-of-the-
art CNN model, Res-Net, for construction worker detection exposed to various
poses (Son, Choi, Seong, & Kim, 2019) and Luo et al. (2018) monitored

construction activities for steel reinforcement work by proposing an improved

19



CNN model that integrates RGB, optical flow and gray stream (Luo et al., 2018).
Azar et al. (2017) also applied a convolutional neural network to the extracted
keyframes of video data to automatically monitor heavy-equipments (Azar,
2017). These researches adopting CNN models demonstrated that they achieved
improved performance rates for the given tasks compared to the early hand-

crafted feature engineering methods.

However, only single label image classification model has been extensively
studies over the past decades. There have not been enough researches in
construction domain to detect more than one entity type or to extend the scope
of classification to various trades of construction activities in the image. One
reasonable explanation for the gap is that the CNN model suffers from its
inability to handle multi-composition and multi-interaction of a single activity.
CNN architectures handle each input image as one instance and encode an image

as a dense one-dimensional vector through the final fully-connected (FC) layer.

Images taken from the construction sites are, however, likely to capture
multiple activities, and they are required to be described by more than one
semantic label. Thereby multi-label classification problem for construction
image dataset is more useful yet challenging than the single label classification
task. Thus, this study proposes to adopt multi-label image classification to get

more semantic categorical labels for construction images.
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2.4. Summary

Due to the complex nature of construction activities, the previous vision-
based approaches which learn low-level features failed to comprehensively
understand construction image data. Thus, deep convolutional neural network
models gained attention as an alternative computer vision algorithm in
classifying construction site images. However, the preceding researches using
CNN models focused on single-label classification, calling for a need for more
practical model to be implemented in the actual site. In addressing the gap, a
multi-label CNN model that can deal with classification tasks of the complex

construction image dataset is proposed in the following section.
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Chapter 3. Development of Construction Image

Classification Model

This dissertation aims to examine the feasibility of a CNN model for a multi-
label image classification task for construction image dataset. As CNN
algorithms are continuously developed, the models are better trained with deeper
networks and better generalized with generalization methods. With appropriate
methods, theoretically, CNN models are capable of representing more than one
type of features, and the model can learn a multi-label representation of the image
content (Nguyen, Yosinski, & Clune, 2016). In this study, an multi-label image
classification model is proposed to classify an input image of structural and
architectural activities without any additional sub-model. In this chapter, the
model framework of data preparation, model selection, and model validation will

be elaborated in detail.
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3.1. Customized Construction Image Dataset Preparation

3.1.1. Construction Activity Classification System

The proposed classification model aims to classify a construction image into
the corresponding activity categories. In this study, the construction activity class
label was determined according to a typical Work Breakdown Structure (WBS).
WBS is a hierarchical structure which scopes and defines work activity as a
manageable unit for planning estimating scheduling, and monitoring of activities,
where Level 1 refers to upper-division like work trade and Level 2 refers to sub-
division like work activities. MasterFormat is one of the international standards
that is widely used to establish WBS for building trades and methods (Li & Lu,
2017). In this study, the dataset was composed of thirteen structural and
architectural activity classes of WBS — six categories at WBS Level 1 and seven

categories at Level 2, based on MasterFormat.

MasterFormat
> »
| 03. Concrete | | 03100 Concrete Forms and Accessories
| 03200 Concrete Reinforcement | | 03210 Reinforcing Steel |

[ 03220 Welded Wire Fabric |

| 03900 Concrete Restoration and Cleaning |

| 03250 Post-Tensioning |

WBSLv.1 | | WBS Ly. 2 WBS Lv. 3

Figure 3-1. Example of Construction Activity Classification System
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For each class, this research maintained a similar number of images —

approximately 500 per class for WBS Level 1 and Level 2.

3.1.2. Dataset Collection

Under a supervised image classification task, a model classifies images
based on a set of labeled data of predefined classes. Because the performance of
deep neural network model is highly dependent on the dataset, a customized
dataset has carefully collected in six construction activity trades— concrete, steel,
masonry, tile, drywall, and curtainwall. To assure as close to the actual
construction project conditions as possible, this set of trades which exhibits a
wide range of visual contents was chosen to properly demonstrate the inherently
complex nature of construction images. Each image also contains a random
composite of a worker, equipment and materials to demonstrate high intra-

variability of each trade.

The main data sources are private construction project documents as well as
open-source images search engine. For project-based data, images were acquired
from project documents including, but not limited to, daily report,
weekly/monthly progress report, meeting minutes, etc. For open-source data,
both video clips and images were crawled from Google image, Flicker, Youtube,
and other search engines. Keywords which used to search construction images
are descriptions of construction activity such as structural steel lifting, steel

erection, steel installation, etc. All crawled data were manually validated for its
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appropriateness and any images which were not taken from an actual
construction job site were excluded. The final completed dataset is a fair
representation of construction activities of the wide range of variety in

appearance worldwide.

Table 3-1. Dataset Composition

WBS Level 1 WBS Level 2
No. . . No. of | No. . . No. of
Activity Category data Activity Category data
1-1 | Formwork 135
1 | Concrete 3947 | 1-2 | Rebar 280
1-3 | Concrete Pouring 210
2 | Steel 3320
3 Curtainwall 3012
4-1 | Red Brick
4 | Masonry 3062 4-2 | Concrete Block
5 | Tile 3248
6-1 | Framing and insulation
6 | Drywall 3185 6-2 | Board installation
Total No. of data : 23,714 | Total No. of data : 625

Finally, the dataset was split into training and validation sets randomly
before model training. The training set was used to train the model, while the
validation set was then used to tune model parameters. To evaluate the

performance of the model, a new set of test set was prepared for all ten class.

3.1.3. Data Pre-Processing

After collecting a sufficient amount of image dataset, the dataset was pre-
processed prior to model training. Since the dataset was collected from different

sources, all multimedia data (MP4) were converted into an image format — JPG,
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JPEG, PNG - to make the dataset into the same format. Then, they were resized

into the same 256*256 size with an identical color channel, RGB.

Because the performance of deep neural network models is highly related to
the amount of dataset, data augmentation techniques were implemented in order
to secure a suitable number of training data. The existing dataset was transformed
by adding noise and applying affine transformations such as translation, zoom,

flips, shear, mirror, color perturbation, and random crops.

Lastly, each image was assigned with correct labels according to the

predefined activity class categories.
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3.2. Construction Image Classification Model Framework

In this dissertation, the proposed model was based on the use of a graphics
processing unit (GPU) mode and CUDA 10.0 and was developed in the Linux

Operating System (Ubuntu).

3.2.1. Multi-label Image Classification Model

Real-world images are often associated with multiple labels than a single
label. Especially, construction images are more likely to have more than one
activity or attribute within a single image because construction activities are co-
occurring simultaneously in its highly dynamic environment. Thus, multi-label
classification can be more practical in the context of construction image
classification. Therefore, in this study, a multi-label classification model is
proposed to capture rich semantic information of construction images, such as

the state of activity, the types of materials, and their interactions.

Similar to single label classification, multi-label image classification task
also learns independent classifier for each category. Unlike single label
classification, however, each image can belong to more than one class in the
multi-label image classification task. The output of each class is not affected by
other output values, and the overall classification result is determined by ranking
or thresholding values. In this study, multi-label classification problem is

transformed into multiple single-label classification problems, and converts the
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result to a multi-label representation.

3.2.2. Base CNN Model Selection

The proposed model aims to examine the feasibility of the convolutional

neural network model for classifying a set of distinguished activities of a wide

range of various object configurations and appearances. From the modeling

perspective, the framework attempts to train the algorithm to learn the multi-

faceted representation of a single activity without any other external context

information. Leveraging the state-of-the-art deep learning models, a supervised

Convolutional Neural Network was implemented to classify the predefined set

of activities presented in various circumstances. In order to select the most

suitable CNN model for construction activity recognition, the currently available

CNN models, namely AlexNet, VGGNet, ResNet, and Inception were all

examined for their expected performance for a single-label classification task.

Table 3-2. Comparison of CNN Models’ Performances

Alexnet 0995 0.987
Vegnet 0.979 0.975
ResNet 0.964 0.948
Inception 0.944 0.936

1.000
0.998
1.000

0.987

WBS 1

sl ]2 ] [« ] |6 ] Jamlo [ rw]es]

0.998
0.990
0.974
0.928

0.957
0.884
0.824

0.727

0.998 1.000 1.000 0.735
0.981 1.000 0.961 0.715
0.959 1.000 0.941 0.637
0964 1.000 0912 0.696

WBS 2

0.676
0.764
0.617
0.735

0.700  0.791
0.400 0.812
0.250 0.812

0.100 0.916

Although most of the CNN models demonstrated acceptable classification

performance, ResNet was selected for its acceptable performance in both WBS

1 and 2 dataset, with the overall accuracy of 81.5%.
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True Positive

Precision = = 81.5%
rectston True Positive + False Positive ° TP : correctly classified image
» FP : wrongly classified as true
Recall = True Positive = 81.5% FN:wrongly not classified as true

True Positive + False Negative

Figure 3-2. Overall Performance of ResNet

Figure 3-3 shows the metrics that evaluated the performance of the proposed

model based on average accuracy.

Predicted Label

Precision
0.78 0.88 0.84 0.64 0.84 0.90 0.82
Recall

0.77
] 0.84 11 494 18 13 17 10 25
0
©
-
- 0.83 13 14 516 15 11 10 40
-
>
S
- 0.61 37 9 13 157 15 9 17
©
c
=]
o 0.92 9 8 15 12 647 7 9
O

0.91 10 11 13 12 9 522 7

0.83 13 14 27 11 45 8 503

Figure 3-3. Model Result Confusion Matrix

3.2.3. Proposed ResNet Model Architecture

In this study, ResNet, or Residual Neural Network, model was selected as

the basic architecture for its superior performance in the single label
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classification task. Among other CNN models, ResNet is especially powerful
dealing with overfitting issue, which is a common problem of deep learning
models as their network goes deeper. In general, the information passed
throughout the network often cannot be directly propagated from the deeper
layers to shallow layers. ResNet architecture, however, handles this degrading
problem by introducing residual learning with shortcut connection, or identity

mapping (He et al., 2015).

y=Flx,{W} +x (1)

The identity shortcut is an additional function that allows direct connection
to the next block; thus, it successfully extracts feature maps via very deep

residual networks.

conv layer

Residual mapping ®---® F(x) l - Identity mapping

conv layer

y=F(x)+x

Figure 3-4. Illustration of Residual Learning with shortcut connection

Details of our model architecture were then carefully selected via an
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extensive experiments and trial and error. The result showed that the model
performance had positive correlation with the model complexity and negative
correlation with the number of datasets in general. Due to the limited availability
of the dataset, the model complexity was determined in relation to the

characteristics of the dataset.

Finally, by arranging each block of CNN layers, ResNet 18 architecture
which is consisted of a series of a convolutional layer, pooling layer followed by
the activation function, as described in Figure 3-5, was finally chosen for its

optimal model performance.
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Figure 3-5. Illustration of ResNet 18 architecture
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The overall framework for the proposed model is as followed.

Predicted  Ground

Convolutional layers score ~Truth
Input 1 ‘
image . “Io Concrete
s !
1
‘. - 0 Rebar work

Cross-entropy loss
Transfer Learning

IMAGENET

concrete (score = 0.98870)
concrete_pour (score = 0.73111)
rebar (score = 0.15650)
formwork (score = 0.10962)
plaster (score = 0.01152)

paint (score = 0.01131)

tile (score = 0.01129)

steel (score = 0.01126)
curtainwall (score = 0.01124)

%
Input Conv  Pool  Conv Pool FC Output

masonry (score = 0.01124)
drywall (score = 0.01115)

Adapted pretrained weight

Figure 3-6. Illustration of Model Framework
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3.3. Model Training and Validation

3.3.1. Transfer Learning

In addition to selecting the appropriate model architecture, transfer learning
technique was implemented because the customized dataset has relatively
smaller number of images. The performance of deep CNN models is highly
dependent on the volume of dataset and their superior performance is guaranteed
when there is abundant amount of data for training. With smaller dataset,
therefore, transferring can be helpful by employing pre-learned knowledge. It
usually refers to feature vector extracted from the last convolutional layer of a

pre-trained model.

In this study, the proposed model was initialized with the pre-trained model
weight which was trained on the ImageNet, an open-source large visual dataset
designed for image processing, and applied fine-tuning strategies on the
customized dataset. In this way, the model can avoid overfitting issue, which is
a common issue for deep learning models with a relatively small number of the

dataset.

3.3.2. Loss Computation and Model Optimization

During model training phase, model loss computation and optimization
were conducted as followed. In this model, the input image label is represented

in k-dimensional binary vector, where y; =1 if the label is the correct instance
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and y; = 0 otherwise.

Yi=(}’1'}’2'---:}’k) (2)

As the proposed model is multi label classification problem, each output is
a valid target label. The output vector is going through sigmoid activation
function to squash each vector in the range between 0 and 1. This expresses the

class probability of how much the image belongs to a class with the probability.

1
1+ e~ 5i

f(s)) = 3)

1

Figure 3-7. Graph of sigmoid function

Since this study translated a multi label classification problem into a set of
single label classification problems, binary cross entropy loss is used to compute

loss. The Cross-entropy loss is defined as:

Lw) = —ynlog(@n) + (1 — yn) log(1 — ) 4)

Each label output was compared with the ground-truth image label. The
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cross-entropy loss increases when the predicted probability diverges from the
actual label. During test time, labels above the given threshold can be chosen for

the correct label.

Finally, the model was fine-tuned via weight update for optimization. In
general, there are a number of parameter-updating strategies such as Stochastic
gradient descent (SGD) combined with the momentum method, AdaDelta,
AdaGrad, Nesterov. In this study, SGD showed the best validation performance
by updating parameters using a portion of the sample parameters at one time
(Wang et al., 2019). In the weight update process, hyperparameters of
momentum (Y ) and learning rate (17), or the step size of the weight update, are
also required to decide to update velocity (v;), or the gradient of the loss

function (Vg J(8)).

Ve = Y Vo1 — N Ve J(O) (5-1)

0=0- v, (5-2)

The model was trained at the hyperparameters of learning rate 0.001 and

momentum 0.9 via trial-and-error.

3.3.3. Model Performance Indicator

Evaluating the multi-label prediction performance requires standardized

measures and metrics. The performance of the proposed classification model was
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assessed quantitatively for two main performance indicator, precision, and recall.

The precision and recall rates are defined as follows:

True Positive

Precision = — —
True Positive + False Positive

Recall = True Positive (6)

True Positive+False Negative

True Positive refers to the number of correctly classified prediction, in
which the target entity is correctly detected as the ground-truth class, whereas
False Positive refers to the number of target entity incorrectly detected as the
ground-truth class. FN indicates the number non-target entity incorrectly
detected as the ground-truth class. In other words, TP represents a target activity
is detected when it actually occurs, FN represents that target activity is not
detected even when it actually occurs, and FP represents the target activity does
not occur, but other activities are detected as the target activity. High recall rate
indicates that the majority of activities were correctly recognized by the

algorithm.
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3.4. Summary

In this chapter, the framework of the proposed model was elaborated in
details in the following order: 1) the customized dataset preparation, 2) ResNet-
based model selection, and 3) model training and validation. Based on the
ResNet model, real world images generated from the actual construction job site

containing multiple labels are tested for classification tasks.
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Chapter 4. Experiment Results and Discussion

4.1. Experiment Results

This study constructed extensive experiments to validate the feasibility of

the multi-label classification model. Figure 4-1 illustrates some sample images

of multi-labels in this dataset.
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Figure 4-1. Examples of Multi-label construction images:
1) Steel and concrete works, 2) Masonry and tile works,
3) Steel and masonry works, and 4) Curtainwall and concrete works

The initial model correctly identified the given construction activity class
with the error rate of 21.9% during the validation phase. The error rate is much

higher than that of the benchmark image classification models — approximately
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less than 5%. By assessing the results, it was found that most of the misclassified
error occurred with WBS Level 2 activities, in failing to distinguish images with
smaller dataset. To resolve this discrepancy, the dataset was reassigned to WBS
Level 2 categories and some of the image data in the WBS Level 1 categories

was discarded as follows.

Table 4-1. Revised Dataset Composition

WBS Level 1 WBS Level 2
No. . . No. of | No. . . No. of
Activity Category data Activity Category data
1-1 | Formwork 180
1 | Concrete 549 1-2 | Rebar 182
1-3 | Concrete Pouring 187
2 | Steel 535
3 | Curtainwall 503
4-1 | Red Brick 266
4 | Masonry >21 4-2 | Concrete Block 255
5 | Tile 595
6-1 | Framing and insulation 259
6 | Drywall >16 6-2 | Board installation 257
Total No. of data : 3,219 | Total No. of data : 1,586

Consequently, the experiment result was improved, achieving final test
accuracy of 91.7% as illustrated in Figure 4-2 and Figure 4-3. Although multi-
label image classification tasks included both WBS Level 1 and 2 categories, the

result for multi-label image classification showed a superior performance overall.
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cross_entropy
tag: cross_entropy/cross_entropy

Figure 4-2. Experiment Result: Cross-entropy Loss

accuracy_1
tag: accuracy/accuracy_1

Figure 4-3. Experiment Result: Test Accuracy

With the enhanced model, the model was able to improve construction
image classification peformance in both single label and multi label

classification, as depicted in Table 4-2.
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Table 4-2. Examples of Correct Test Example

Input Image Activity trade Score
concrete 0.41825
steel 0.24857
masonry 0.18955
formwork 0.09871
concrete_pour 0.09840
rebar 0.09650
red_brick 0.08567
conc_block 0.08347
curtainwall 0.07597
tile 0.03703
drywall 0.03400
frame insulation 0.03234
gypsum_board 0.02360
concrete 0.48652
concrete_pour 0.19819
masonry 0.19033
conc_block 0.10578
rebar 0.09314
tile 0.09173
curtainwall 0.06258
red_brick 0.05781
steel 0.05265
formwork 0.03307
drywall 0.03203
frame insulation 0.02658
gypsum_board 0.01960

In short, the model was able to successfully classify the given input images

correctly, in both single label and multi label classification.
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4.2. Analysis of Experiment Results

In this section, the experiment result is further discussed. In comparing the
result of each class, tile work, concrete block of masonry work, red brick of
masonry work, and drywall work showed higher performance, with the highest
accuracy of 97.9%. On the other hand, rebar of concrete work, steel work, and
concrete pour of concrete work showed lower performance with the lowest
accuracy of 85.0%. Although the overall accuracy of the classification model
was acceptable, some of the incorrectly classified examples exhibited the

shortcomings of the proposed model.

First of all, some of the incorrect results revealed that the proposed model
suffered from the lack of understanding the hierarchical structure of the
construction activities. The proposed model structure treats each label
independently and is incapable of learning the correlations or dependency among
multiple labels. Therefore, it fails to distinguish different activities possessing

similar visual features in spite of their distinctive conditions.

For example, as shown in Table 4-3, the model misunderstood the framing
work for internal gypsum board installation as structural steel work, even after it
correctly classified drywall label with the highest probability. If the model
learned the hierarchical interaction among activities and understood the fact that

steel structure occurred with drywall was not structural steel work but framing
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work for drywall, the model could demonstrate higher performance.

Table 4-3. Examples of Incorrect Test Example

Input Image Activity trade Score
drywall 0.29861
steel 0.17720
frame_insulation 0.13960
concrete 0.11028
tile 0.10594
gypsum_board 0.10197
masonry 0.09238
curtainwall 0.08544
conc_block 0.06334
concrete_pour 0.06040
red_brick 0.05751
formwork 0.05093
rebar 0.04689
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4.3. Summary

In this chapter, the proposed multi-label image classification model
performance was assessed and the result showed that multi-label classification
task performed as reliable as the single label classification task. In the following

section, the research summary will be elaborated.
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Chapter 5. Conclusion

5.1. Research Summary

This dissertation presented a Convolutional Neural Network model to
automatically understand the visual content of construction site images and
assign into relevant categories accordingly. Most of the dataset included actual
construction site photos which composed random composites of a worker,
equipment and materials in six different work activities— concrete, steel, masonry,
tile, drywall, and curtainwall. Due to the inherently complex nature of the
construction site, the dataset has imposed difficulties that challenged activity
recognition such as occlusion, randomly cropped images with multi-viewed and
multi-scaled representations. In order to address the challenges posed to
construction image classification task, this study conducted a series of
experiment to select the model architecture. As a result, the experiment result
showed an accuracy of 91%. Although this result still underperforms compared
to the current state-of-art computer vision model in other domains, it satisfies the
minimum acceptable range for image -classification and demonstrated a
reasonable performance for classifying construction activity image dataset with

a wide range of appearance variance.
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5.2. Contribution

The contributions of this paper can be summarized as follows:

To the best of my knowledge, this study proposed the first multi-label
image classification model for construction image dataset.

The feasibility of the state-of-the-art deep convolutional neural
network models for comprehensive construction activity recognition
was validated as a promising way of automatically classifying
construction activities

The customized dataset can be used as a reference dataset for future
projects.

From a practical standpoint of the construction industry, it can
provide a more efficient and reliable way to classify and annotate
construction activities, alleviating cumbersome tasks.

It will ultimately allow construction projects to quickly retrieve
project-related information for various construction management

tasks, enhancing the usability of visual data.
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5.3. Limitations and Further Study

Despite the effort, there are still several challenges to be further addressed in
this study. First of all, our model structure treats each label independently and
is incapable of learning the correlations or dependency among multiple labels.
Some of the incorrect results revealed that the proposed model suffered from
strong label co-occurrence dependencies. To deal with this issue, our model
can learn the hierarchical structure among semantic elements in images based
on the WBS. For future study, this study proposes to leverage the interactions
and correlations among construction entities and activities by learning the
embedded hierarchical structure of construction image dataset.

Another limitation of the proposed model is that it failed to recognize certain
images taken in the early phase because they did not embed with sufficient
features to be correctly classified. For instance, early plastering work are in fact
more like masonry work than plastering work. In order to improve this
drawback, sequential information should be additionally provided at each
stage.

Table 5-1. Examples of Misclassified Early-phased Images

Misclassified as plaster work Misclassified as tile work

Plaster work with no

Tile work with

plastered wall plastering yet
presented (only masonry work
presented)

v s - w k)



In addition, the model can provide more detailed information by analyzing
the visual contents of construction images. In future, it is planned to further
extend the proposed method to more diverse construction entities and attributes

at WBS Level 3.
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A. Test Results
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