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Abstract 

Automatic Multi-Label Image 
Classification Model for 

Construction Site Images 
 

YeSeul Kim 

Department of Architecture 

The Graduate School 

Seoul National University 
 

Activity recognition in construction performs as the prerequisite step in the 

process for various tasks and thus is critical for successful project management. 

In the last several years, the computer vision community has blossomed, taking 

advantage of the exploding amount of construction images and deploying the 

visual analytics technology for cumbersome construction tasks. However, the 

current annotation practice itself, which is a critical preliminary step for prompt 

image retrieval and image understanding, is remained as both time-consuming 

and labor-intensive. Because previous attempts to make the process more 

efficient were inappropriate to handle dynamic nature of construction images and 

showed limited performance in classifying construction activities, this research 
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aims to develop a model which is not only robust to a wide range of appearances 

but also multi-composition of construction activity images. The proposed model 

adopts a deep convolutional neural network model to learn high dimensional 

feature with less human-engineering and annotate multi-labels of semantic 

information in the images. The result showed that our model was capable of 

distinguishing different trades of activities at different stages of the activity. The 

average accuracy of 83% and maximum accuracy of 91% holds promise in an 

actual implementation of automated activity recognition for construction 

operations. Ultimately, it demonstrated a potential method to provide automated 

and reliable procedure to monitor construction activity. 
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Chapter 1. Introduction 

1.1. Research Background 

In the context of the construction industry, a significant amount of image 

data is produced throughout the entire life cycle of the construction project. In 

particular, the advent and development of digital photographing equipment such 

as cameras and unmanned aerial vehicles have helped construction project 

practitioners readily acquire visual records of construction sites daily (K. K. Han 

& Golparvar-Fard, 2017). Thus, an ever-increasing amount of construction 

activities are captured in the forms of still images, time-lapse images, and videos 

(Hamledari, McCabe, & Davari, 2017). As a result, construction activities are 

now easily and periodically documented at a low cost.  

As such visual data explicitly captures the exact state of construction job-

site, they contain various essential project-related information including 1) the 

type of equipment and worker trades of on-going operations, 2) the number of 

equipment or workers, and 3) the states of construction activities (Zhu, Ren, & 

Chen, 2017). Based on the information retrieved from visual content of 

construction images, researchers have demonstrated an opportunity to alleviate 

construction project practitioners from such cumbersome tasks such as progress 

tracking and control (Golparvar-Fard, Peña-Mora, Arboleda, & Lee, 2009; Omar, 
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Mahdjoubi, & Kheder, 2018), productivity analysis and improvement (J. Kim, 

Chi, & Seo, 2018; Yang, Park, Vela, & Golparvar-Fard, 2015), surveillance of 

construction operation for safety and quality control (Ding et al., 2018; Dung & 

Anh, 2019; S. Han & Lee, 2013), resource management (Jog, Brilakis, & 

Angelides, 2011), supporting contractual claim documents (Kangari, 1995) and 

better communication among stakeholders (Golparvar-Fard et al., 2009; Teizer, 

2009), and education and training (Azar, 2017).  

Despite their availability and effectiveness, visual resources are, however, 

not used to their full potential. Instead, most of the visual data are likely to be 

unutilized soon because image search and information retrieval are challenging 

due to unorganized and scattered images in the system. Current information 

retrieval systems are mostly built on keyword-based content representation and 

query processing techniques (Lv & El-Gohary, 2016). Thus, it is very difficult 

for practitioners to search and identify the target image of interest through the 

large collections of project images unless an image is archived with adequate 

categorical descriptions or keywords annotated to the image. In other words, 

organizing construction images into operational-level categories that are 

meaningful to the project team is extremely useful and essential for proper and 

prompt image information retrieval.  

Yet, the current annotation process heavily relies on manual observation and 

analysis (Brilakis & Soibelman, 2005). Taking consideration of the exploding 
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amounts of images that are regularly generated in the construction projects, even 

a seemingly trivial task of manual annotation can pose a burden on the project 

practitioners. Due to the time-consuming and labor-intensive process to analyze 

and label each image, the majority of valuable resources are instead remained 

unutilized, leaving room for better exploitation of visual resources.  

In this regard, several image annotation tools and methods were proposed to 

support automating the annotation process. Unfortunately, those approaches 

remained as time-consuming and tedious tasks. Some degree of users’ actions is 

still required to manually analyze the visual context of the image and provide 

proper annotations (Soltani, Zhu, & Hammad, 2016). 

 

Figure 1-1. Overview of Keyword-based Digital Image Database System 

Another approach to tackle this issue is to use image processing techniques, 

namely image classification, to facilitate annotation. Image classification refers 

to the task of identifying the target entity and assigning into one of the predefined 

semantic categories and is usually the preliminary step for understanding images 

Keyword 
query / search

Keyword-based 
classification

Keyword 
annotation
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and assigning adequate annotations automatically. In this dissertation, a visual 

analytics approach is proposed to support automatic annotation process for 

construction image classification. This paper can help construction project 

practitioners fully utilize project image data for various laborious project 

management tasks by proposing an efficient way to manage a large volume of 

onsite project image data.  
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1.2. Research Objective and Scope 

To accommodate the shortcomings of the current image classification 

process, the goal of this dissertation is to validate the performance of the current 

state-of-the-art computer vision technology, deep convolutional neural network, 

to automatically classify construction activities into semantic categories.  

To achieve this goal, the following objectives are proposed: 

(1) To validate the feasibility of an end-to-end deep convolutional neural 

network model for construction image classification, making the 

annotation procedure more efficient and minimizing human intervention 

(2) To develop the multi-label classification model to produce associated 

multiple class labels for a single input image 

(3) To optimize an image classification model that is robust for both high 

intra-variability and generic characteristics across the appearance of 

different image classes 

The proposed model is optimized for all activity classes and performs solely 

based on the input image without any external information. The scope of this 

study is thoroughly selected for a set of six work trades from architectural and 

structural activities: concrete, steel, masonry, tile, drywall, and curtainwall. They 

are reasonable representations of the dynamic nature of construction activities 

which possess intra-variability of wide-ranging appearances as well as common 
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features across different trades.  

This study also assumes that the scope of image annotation is provided for 

activity trade keywords at WBS Level 1 and 2. The detailed descriptions of each 

category are as followed.  

  

Figure 1-2. Overview of Classification Keyword Categories 

It deals with higher operational level activity description and material types 

only, and any further elaboration of construction activities and entities such as 

pose of worker are not considered in this study. 

WBS 1                                                             WBS 2

1) Concrete

2) Masonry work

3) Drywall work

4) Tile work
5) Steel work
6) Curtainwall

1-1) Rebar work
1-2) Concrete Pour
1-3) Formwork

2-1) Red Brick
2-2) Concrete Block

3-1) Framing and insulation
3-2) Board installation
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1.3. Research Outline 

This dissertation consists of five chapters. The brief content of the following 

chapters is described as follows:  

Section 2 examines the overview of the use of image data and the 

applications of computer vision algorithms in the construction domain. In 

particular, it describes the challenges related to construction image classification 

task. Then it introduces the previous applications of computer vision algorithms 

in the construction domain and investigates relevant issues of traditional 

algorithms in the context of construction activity classification. Finally, other 

researches using deep Convolutional Neural Network model for construction 

image classification were examined.  

Section 3 explains the proposed architecture of image classification model 

and describes the framework for the proposed research, consisting of (1) 

customized image dataset preparation, (2) image classification model 

architecture selection, and (3) model training and validation in detail.  

Section 4 further elaborates and evaluates the results of the experiments.  

Section 5 summarizes the research finding, expected research contribution, 

and research limitation, and finally proposes future works. 
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Figure 1-3. Overview of the Research 
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Chapter 2. Preliminary Study 

In the construction domain, most of the visual resources are unutilized due 

to the lack of efficient annotation methods, leaving room for better exploitation 

of visual data. In this chapter, previous annotation approaches as well as 

traditional computer vision algorithms applied in the construction domain are 

examined. Then, the limitations of these previous computer vision algorithms for 

construction activity classification tasks are scrutinized. After highlighting the 

need for improving model capacity to more robustly recognize high dimensional 

visual representations, the last part of this chapter describes the preceding 

applications of convolutional neural networks in the construction domain. By 

addressing the shortcomings of the CNN models, this research proposes a multi-

label CNN model for construction activity classification.   
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2.1. Challenges of Construction Image Classification Task 

Over the past decade, there have been an increasing number of researches 

that attempt to use visual analytics techniques in the construction domain as a 

result of two major forces: the prevalent construction image data generated in a 

cost-efficient way as well as the continuous development of computer vision 

algorithms. Nevertheless, early researches suffered from several challenges 

associated with construction images. Images taken from actual construction sites 

possess both intrinsic and extrinsic factors that preclude the high-performance 

rate which is easily observed in other benchmark datasets.  

Inherently, construction images express high intra-class variability because 

a single construction activity class can have a wide range of variances in the 

appearance across different projects and even within a single project. Under the 

same work trade, the material texture and size can vary much from one to another 

because every construction project is unique. And more importantly, one activity 

can be presented in diverse configurations of construction entities as depicted in 

Figure 1. Each image will have different composite and interaction among 

workers, materials, equipment, and tools (Khosrowpour, Niebles, & Golparvar-

Fard, 2014). Therefore, if the feature extractor is optimized at a particular project 

or a condition, the algorithms will not perform consistently in other projects 

which have different appearances (H. Kim, Kim, Hong, & Byun, 2018). 
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Figure 2-1. Examples of high intra-variability of masonry work with wide-
ranging appearances and configuration 

At the same time, algorithms are also required to deal with relatively low 

inter-class variability among different construction activities. Similar visual 

features can be shared among different activity classes. For instance, if the work 

processes are related or materials are similar in two work trades, such as concrete 

block wall and tile wall installation, the images captured from those trades will 

look very similar. Thus, the computer vision algorithms are required to learn 

distinct enough features for each trade while generalized enough to learn high 

intra-class variability simultaneously. 

 

Figure 2-2. Examples of low inter-class variability among tile, plaster, and 
masonry works 

Another unique challenge related to construction image classification task 

is the highly dynamic external factors associated with the construction 
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environment. Each project is surrounded by a unique yet continuously changing 

environment, which is subject to changes to lighting, viewpoints, and 

backgrounds. Under these dynamic conditions, images display construction 

entities that are often randomly cropped objects, partially self-occluded or 

occluded by other objects. As pointed by most of the previous researches, 

occlusion is still a major challenge for visual analytic task (Yang, Shi, & Wu, 

2016).  

As a result of construction images’ intrinsic and extrinsic issues, it is very 

challenging to exploit generalized feature representations to classify vastly 

dynamic construction activities images for all projects. In Section 2.2., the 

limitations of early vision-based methods for construction activity classification 

task are scrutinized. 
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2.2. Applications of Traditional Vision-based Algorithms in 

Construction Domain 

Over the past decade, machine-learning techniques have blossomed. Several 

pieces of research in the construction domain leveraged on computer vision-

based algorithms in support of construction entity recognition – namely, 

construction workers, equipment and/or building components. Early vision 

algorithms were based on human-designed feature representations like shape, 

color, texture, gradient, and motion characteristics. They manually generate 

optimal feature descriptors based on the set of input data and learn the underlying 

pattern of the object appearance (Gong & Caldas, 2011; Zhu et al., 2017). Feature 

representations are then passed onto classifiers for classification and evaluated 

for the accuracy of the method.  

 

Figure 2-3. Illustration of Traditional Vision-Based Algorithms Process 

The common algorithms are Harris detector (Harris & Stephens, 1988), 

scale-invariant feature transform (SIFT) (Lowe, 2004), histogram of oriented 

gradients (HOG) (N. Dalal & Triggs, 2005), histogram of oriented optical flow 

yClassifierx

! "	 	$)

Feature 
selection

Feature 
extraction
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(HOF) (Navneet Dalal, Triggs, & Schmid, 2006), and deformable part-based 

model (DPM) (Felzenszwalb, Girshick, & McAllester, 2010).  

In the construction domain, several researchers have facilitated on the 

aforementioned computer vision-based algorithms for construction entity 

recognition task. For example, Gong et al. (2011) proposed classification module 

to classify worker and heavy equipment from video using Harris detector as the 

feature detector, local histograms as the feature representation, Bag-of-Words as 

the feature model, and Bayesian network models as the learning mechanism for 

action learning and classification (Gong, Caldas, & Gordon, 2011). Park and 

Brilakis (2012) detected construction workers wearing safety vests based on the 

histograms of color features after background subtraction. (Park & Brilakis, 

2012). Memarzadeh et al. (2013) detected construction equipment and workers 

from construction site images with HOG descriptor and SVM classifier by 

extracting features from the histograms of oriented gradients and colors 

(Memarzadeh, Golparvar-Fard, & Niebles, 2013). Khosrowpour et al. (2014) 

detected and tracked workers' body skeleton from a sequence of image and then 

classified the stage of interior wall activities with a bag-of-worker pose 

(Khosrowpour et al., 2014). Park et al. (2015) also detected workers wearing a 

hardhat using a histogram of oriented gradients (HOG) and geometric 

relationships of the human body (Park, Elsafty, & Zhu, 2015). Hamledari et al. 

(2017) detected four partition components of indoor partition works with each 
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extracted visual feature and SVM and then infer the state of under-construction 

activities (Hamledari et al., 2017).  

Table 2-1. Previous classification methods in the construction field 

Article Feature 
Entity of Interest Condition 

ppl bldg eqmt int ext 

Gong et al. 
(2011)  

Harris detector; local 
histograms and Bag-of-
Words  

  o  o 

Park and 
Brilakis (2012)  

Histograms of color 
features  o   o o 

Memarzadeh et 
al. (2013)  

Histograms of oriented 
gradients and color 
features and SVM 

o  o  o 

Khosrowpour et 
al. (2014)  

Bag-of-worker poses of 
spatio-temporal features o   o  

Park et al. 
(2015)  

Histogram of oriented 
gradients  o   o  

Hamledari et al. 
(2017)  

Extracted visual feature 
and SVM  

 o  o  

  

In most of these studies, features were thoroughly selected based on the 

target problems and conditions because a particular feature is more appropriate 

for certain types of applications. Although they demonstrated acceptable 

performance rate for a specific task, these algorithms embody limited 

effectiveness for more generic tasks like identifying varied construction 

activities. Because these algorithms only learn low-level features instead of high 

dimensional features, they will not consistently perform on activity classification 
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due to the wide range of appearances and configuration of construction images. 

To address these challenges of traditional human-engineered algorithms, 

researches have incorporated considerable domain knowledge and meticulous 

engineering to better define the problem. Nevertheless, it still does not show 

consistent performance when the designated visual cues are jeopardized. For 

feature extractors in which color plays the key role, the performance level is 

largely hampered by the presence of color of entities in the image, such as 

workers’ clothes and backgrounds. If workers were not wearing fluorescent 

safety vests, wearing hardhat color that was not shown during training, or 

background color was similar to that of workers’ clothes, the model accuracy can 

be undermined. Similarly, for orientation-feature extractors, the performance 

level is affected by the site's topography and spatial conflicts. The worker 

detection algorithms usually assume that the background is static and workers 

are at a certain posture like standing or walking. Thus, the image classification 

model will have an acceptable result only if the worker's full body is clearly 

presented.  

In short, traditional approaches learn independent classifiers for each 

category and optimize for the specific classification task, and they do not show 

consistent performance for construction activity classification. Due to the 

limitation of the existing human-engineering methods whose performance is 

constrained to a particular task, early studies suffered from the low performance 
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in other tasks as increasing accuracy in one task may decrease the accuracy in 

other tasks (Zhu et al., 2017). Thus, it is necessary to employ more than one 

simple rule that learns low-level features to tackle construction image 

classification problem. In other words, the proposed classification model needs 

to acquire a predominant capacity to distinguish features in a high dimensional 

space of construction images. In the following section, a deep convolutional 

neural network model, which is well-known for its superior capacity for image 

classification, was introduced to cope with intrinsic and extrinsic issues of 

construction site images. 
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2.3. Convolutional Neural Network-based Image Classification 

in Construction Domain 

Deep Neural Network models for image classification have been rapidly 

developed to the level of human recognition capability over the past years. 

Among deep neural network models, since the introduction of Le-Net in 1998 

(Lecun, Bottou, Bengio, & Haffner, 1998), Convolution Neural Network (CNN) 

model has continuously proven its exceeding capacity for image classification to 

the level of human recognition capability (He, Zhang, Ren, & Sun, 2015; 

Krizhevsky, Sutskever, & Hinton, 2012, 2017; Simonyan & Zisserman, 2014; 

Szegedy et al., 2014; Zeiler & Fergus, 2013). Unlike the traditional human-

designed feature algorithms, CNN models do not require explicit feature 

engineering.  

 

 

Figure 2-4. Illustration of the Deep CNN-Based Algorithms Process 

Instead, it automatically learns the relationship between the underlying 
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representational features and high-level image semantics by conducting 

convolution operations on all pixels of the input image with learnable filters. 

After the convolutional operation, a feature map is produced for each operation 

and then activated by a nonlinear function. It helps with preserving spatial 

information as well as effectively discovering hidden visual features within high-

dimensional datasets. A model can achieve even higher representation capacity 

by stacking the convolutional layers (Simonyan & Zisserman, 2014; Zeiler & 

Fergus, 2013).  

As the most dominant model for visual recognition tasks, CNN models have 

been applied to automate various applications in the construction domain, as well. 

Ding et al. (2018) proposed a CNN-based model for safety control to detect 

unsafe behaviors of construction workers (Ding et al., 2018) and to detect the 

presence of personal safety protection like harness (Fang, Ding, Luo, & Love, 

2018). Other researches also proposed CNN-based detection models for quality 

assessment such as automatic visual assessment for concrete defect detection 

(Beckman, Polyzois, & Cha, 2019; Cha, Choi, & Büyüköztürk, 2017; Dung & 

Anh, 2019) and fastener defect detection (Chen, Liu, Wang, Núñez, & Han, 

2018). In terms of activity monitoring task, Son et al. (2019) used a state-of-the-

art CNN model, Res-Net, for construction worker detection exposed to various 

poses (Son, Choi, Seong, & Kim, 2019) and Luo et al. (2018) monitored 

construction activities for steel reinforcement work by proposing an improved 
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CNN model that integrates RGB, optical flow and gray stream (Luo et al., 2018). 

Azar et al. (2017) also applied a convolutional neural network to the extracted 

keyframes of video data to automatically monitor heavy-equipments (Azar, 

2017). These researches adopting CNN models demonstrated that they achieved 

improved performance rates for the given tasks compared to the early hand-

crafted feature engineering methods.  

However, only single label image classification model has been extensively 

studies over the past decades. There have not been enough researches in 

construction domain to detect more than one entity type or to extend the scope 

of classification to various trades of construction activities in the image. One 

reasonable explanation for the gap is that the CNN model suffers from its 

inability to handle multi-composition and multi-interaction of a single activity. 

CNN architectures handle each input image as one instance and encode an image 

as a dense one-dimensional vector through the final fully-connected (FC) layer.  

Images taken from the construction sites are, however, likely to capture 

multiple activities, and they are required to be described by more than one 

semantic label. Thereby multi-label classification problem for construction 

image dataset is more useful yet challenging than the single label classification 

task. Thus, this study proposes to adopt multi-label image classification to get 

more semantic categorical labels for construction images.   



 

21 

 

2.4. Summary 

Due to the complex nature of construction activities, the previous vision-

based approaches which learn low-level features failed to comprehensively 

understand construction image data. Thus, deep convolutional neural network 

models gained attention as an alternative computer vision algorithm in 

classifying construction site images. However, the preceding researches using 

CNN models focused on single-label classification, calling for a need for more 

practical model to be implemented in the actual site. In addressing the gap, a 

multi-label CNN model that can deal with classification tasks of the complex 

construction image dataset is proposed in the following section.  
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Chapter 3. Development of Construction Image 

Classification Model 

This dissertation aims to examine the feasibility of a CNN model for a multi-

label image classification task for construction image dataset. As CNN 

algorithms are continuously developed, the models are better trained with deeper 

networks and better generalized with generalization methods. With appropriate 

methods, theoretically, CNN models are capable of representing more than one 

type of features, and the model can learn a multi-label representation of the image 

content (Nguyen, Yosinski, & Clune, 2016). In this study, an multi-label image 

classification model is proposed to classify an input image of structural and 

architectural activities without any additional sub-model. In this chapter, the 

model framework of data preparation, model selection, and model validation will 

be elaborated in detail.  
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3.1. Customized Construction Image Dataset Preparation 

3.1.1.  Construction Activity Classification System  

The proposed classification model aims to classify a construction image into 

the corresponding activity categories. In this study, the construction activity class 

label was determined according to a typical Work Breakdown Structure (WBS). 

WBS is a hierarchical structure which scopes and defines work activity as a 

manageable unit for planning estimating scheduling, and monitoring of activities, 

where Level 1 refers to upper-division like work trade and Level 2 refers to sub-

division like work activities. MasterFormat is one of the international standards 

that is widely used to establish WBS for building trades and methods (Li & Lu, 

2017). In this study, the dataset was composed of thirteen structural and 

architectural activity classes of WBS – six categories at WBS Level 1 and seven 

categories at Level 2, based on MasterFormat.  

 

Figure 3-1. Example of Construction Activity Classification System 

03. Concrete 03100 Concrete Forms and Accessories

Division

03200 Concrete Reinforcement

03900 Concrete Restoration and Cleaning

Sub-Division

… 03210 Reinforcing Steel

Description

03220 Welded Wire Fabric…

03250 Post-Tensioning

MasterFormat

WBS Lv. 1 WBS Lv. 2 WBS Lv. 3
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For each class, this research maintained a similar number of images – 

approximately 500 per class for WBS Level 1 and Level 2. 

3.1.2.  Dataset Collection 

Under a supervised image classification task, a model classifies images 

based on a set of labeled data of predefined classes. Because the performance of 

deep neural network model is highly dependent on the dataset, a customized 

dataset has carefully collected in six construction activity trades– concrete, steel, 

masonry, tile, drywall, and curtainwall. To assure as close to the actual 

construction project conditions as possible, this set of trades which exhibits a 

wide range of visual contents was chosen to properly demonstrate the inherently 

complex nature of construction images. Each image also contains a random 

composite of a worker, equipment and materials to demonstrate high intra-

variability of each trade.  

The main data sources are private construction project documents as well as 

open-source images search engine. For project-based data, images were acquired 

from project documents including, but not limited to, daily report, 

weekly/monthly progress report, meeting minutes, etc. For open-source data, 

both video clips and images were crawled from Google image, Flicker, Youtube, 

and other search engines. Keywords which used to search construction images 

are descriptions of construction activity such as structural steel lifting, steel 

erection, steel installation, etc. All crawled data were manually validated for its 
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appropriateness and any images which were not taken from an actual 

construction job site were excluded. The final completed dataset is a fair 

representation of construction activities of the wide range of variety in 

appearance worldwide. 

Table 3-1. Dataset Composition 

No. 
WBS Level 1 

No. 
WBS Level 2 

Activity Category No. of 
data Activity Category No. of 

data 
 

Concrete 3947 
1-1 Formwork 135 

1 1-2 Rebar 280 
 1-3 Concrete Pouring 210 

2 Steel 3320    
3 Curtainwall 3012    

4 Masonry 3062 4-1 
4-2 

Red Brick 
Concrete Block  

5 Tile 3248    

6 Drywall 3185 6-1 
6-2 

Framing and insulation 
Board installation  

Total No. of data : 23,714 Total No. of data : 625 
 

Finally, the dataset was split into training and validation sets randomly 

before model training. The training set was used to train the model, while the 

validation set was then used to tune model parameters. To evaluate the 

performance of the model, a new set of test set was prepared for all ten class. 

3.1.3.  Data Pre-Processing 

After collecting a sufficient amount of image dataset, the dataset was pre-

processed prior to model training. Since the dataset was collected from different 

sources, all multimedia data (MP4) were converted into an image format – JPG, 
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JPEG, PNG - to make the dataset into the same format. Then, they were resized 

into the same 256*256 size with an identical color channel, RGB.  

Because the performance of deep neural network models is highly related to 

the amount of dataset, data augmentation techniques were implemented in order 

to secure a suitable number of training data. The existing dataset was transformed 

by adding noise and applying affine transformations such as translation, zoom, 

flips, shear, mirror, color perturbation, and random crops.  

Lastly, each image was assigned with correct labels according to the 

predefined activity class categories.  
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3.2. Construction Image Classification Model Framework 

In this dissertation, the proposed model was based on the use of a graphics 

processing unit (GPU) mode and CUDA 10.0 and was developed in the Linux 

Operating System (Ubuntu). 

3.2.1. Multi-label Image Classification Model 

Real-world images are often associated with multiple labels than a single 

label. Especially, construction images are more likely to have more than one 

activity or attribute within a single image because construction activities are co-

occurring simultaneously in its highly dynamic environment. Thus, multi-label 

classification can be more practical in the context of construction image 

classification. Therefore, in this study, a multi-label classification model is 

proposed to capture rich semantic information of construction images, such as 

the state of activity, the types of materials, and their interactions. 

Similar to single label classification, multi-label image classification task 

also learns independent classifier for each category. Unlike single label 

classification, however, each image can belong to more than one class in the 

multi-label image classification task. The output of each class is not affected by 

other output values, and the overall classification result is determined by ranking 

or thresholding values. In this study, multi-label classification problem is 

transformed into multiple single-label classification problems, and converts the 
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result to a multi-label representation.  

3.2.2. Base CNN Model Selection 

The proposed model aims to examine the feasibility of the convolutional 

neural network model for classifying a set of distinguished activities of a wide 

range of various object configurations and appearances. From the modeling 

perspective, the framework attempts to train the algorithm to learn the multi-

faceted representation of a single activity without any other external context 

information. Leveraging the state-of-the-art deep learning models, a supervised 

Convolutional Neural Network was implemented to classify the predefined set 

of activities presented in various circumstances. In order to select the most 

suitable CNN model for construction activity recognition, the currently available 

CNN models, namely AlexNet, VGGNet, ResNet, and Inception were all 

examined for their expected performance for a single-label classification task.  

Table 3-2. Comparison of CNN Models’ Performances 

 

Although most of the CNN models demonstrated acceptable classification 

performance, ResNet was selected for its acceptable performance in both WBS 

1 and 2 dataset, with the overall accuracy of 81.5%. 
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Figure 3-2. Overall Performance of ResNet  

Figure 3-3 shows the metrics that evaluated the performance of the proposed 

model based on average accuracy.  

 

Figure 3-3. Model Result Confusion Matrix 

3.2.3. Proposed ResNet Model Architecture 

In this study, ResNet, or Residual Neural Network, model was selected as 

the basic architecture for its superior performance in the single label 
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classification task. Among other CNN models, ResNet is especially powerful 

dealing with overfitting issue, which is a common problem of deep learning 

models as their network goes deeper. In general, the information passed 

throughout the network often cannot be directly propagated from the deeper 

layers to shallow layers. ResNet architecture, however, handles this degrading 

problem by introducing residual learning with shortcut connection, or identity 

mapping (He et al., 2015). 

																																																		𝑦 = 	𝐹(𝑥, {𝑊*})	+ 𝑥                     (1) 

The identity shortcut is an additional function that allows direct connection 

to the next block; thus, it successfully extracts feature maps via very deep 

residual networks.  

 

Figure 3-4. Illustration of Residual Learning with shortcut connection 

Details of our model architecture were then carefully selected via an 
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extensive experiments and trial and error. The result showed that the model 

performance had positive correlation with the model complexity and negative 

correlation with the number of datasets in general. Due to the limited availability 

of the dataset, the model complexity was determined in relation to the 

characteristics of the dataset.  

Finally, by arranging each block of CNN layers, ResNet 18 architecture 

which is consisted of a series of a convolutional layer, pooling layer followed by 

the activation function, as described in Figure 3-5, was finally chosen for its 

optimal model performance.   

 

Figure 3-5. Illustration of ResNet 18 architecture 
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The overall framework for the proposed model is as followed.  

 

Figure 3-6. Illustration of Model Framework 
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3.3. Model Training and Validation 

3.3.1. Transfer Learning  

In addition to selecting the appropriate model architecture, transfer learning 

technique was implemented because the customized dataset has relatively 

smaller number of images. The performance of deep CNN models is highly 

dependent on the volume of dataset and their superior performance is guaranteed 

when there is abundant amount of data for training. With smaller dataset, 

therefore, transferring can be helpful by employing pre-learned knowledge. It 

usually refers to feature vector extracted from the last convolutional layer of a 

pre-trained model.  

In this study, the proposed model was initialized with the pre-trained model 

weight which was trained on the ImageNet, an open-source large visual dataset 

designed for image processing, and applied fine-tuning strategies on the 

customized dataset. In this way, the model can avoid overfitting issue, which is 

a common issue for deep learning models with a relatively small number of the 

dataset. 

3.3.2.  Loss Computation and Model Optimization  

During model training phase, model loss computation and optimization 

were conducted as followed. In this model, the input image label is represented 

in k-dimensional binary vector, where 𝑦* = 1 if the label is the correct instance 
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and 𝑦* = 0 otherwise. 

																																																𝑌* = (𝑦/, 𝑦0, … , 𝑦2)                     (2) 

As the proposed model is multi label classification problem, each output is 

a valid target label. The output vector is going through sigmoid activation 

function to squash each vector in the range between 0 and 1. This expresses the 

class probability of how much the image belongs to a class with the probability. 

																																																	𝑓(𝑠*) = 	
/

/5	6789
	                      (3) 

 

Figure 3-7. Graph of sigmoid function 

Since this study translated a multi label classification problem into a set of 

single label classification problems, binary cross entropy loss is used to compute 

loss. The Cross-entropy loss is defined as: 

																												𝐿(𝑤) = 	−𝑦= log(𝑦A=) + (1 − 𝑦=) log(1 −	𝑦A=)         (4) 

Each label output was compared with the ground-truth image label. The 
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cross-entropy loss increases when the predicted probability diverges from the 

actual label. During test time, labels above the given threshold can be chosen for 

the correct label.  

Finally, the model was fine-tuned via weight update for optimization. In 

general, there are a number of parameter-updating strategies such as Stochastic 

gradient descent (SGD) combined with the momentum method, AdaDelta, 

AdaGrad, Nesterov. In this study, SGD showed the best validation performance 

by updating parameters using a portion of the sample parameters at one time 

(Wang et al., 2019). In the weight update process, hyperparameters of 

momentum (𝛾 ) and learning rate (𝜂), or the step size of the weight update, are 

also required to decide to update velocity (𝑣F), or the gradient of the loss 

function (∇H	𝐽(𝜃)).  

																																									𝑣F = 	𝛾	𝑣FK/ − 	𝜂	∇H	𝐽(𝜃)                   (5-1) 

																																																			𝜃 = 	𝜃 −	𝑣F                           (5-2) 

The model was trained at the hyperparameters of learning rate 0.001 and 

momentum 0.9 via trial-and-error.  

3.3.3.  Model Performance Indicator 

Evaluating the multi-label prediction performance requires standardized 

measures and metrics. The performance of the proposed classification model was 
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assessed quantitatively for two main performance indicator, precision, and recall. 

The precision and recall rates are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

																																𝑅𝑒𝑐𝑎𝑙𝑙 = 	 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒          (6) 

True Positive refers to the number of correctly classified prediction, in 

which the target entity is correctly detected as the ground-truth class, whereas 

False Positive refers to the number of target entity incorrectly detected as the 

ground-truth class. FN indicates the number non-target entity incorrectly 

detected as the ground-truth class. In other words, TP represents a target activity 

is detected when it actually occurs, FN represents that target activity is not 

detected even when it actually occurs, and FP represents the target activity does 

not occur, but other activities are detected as the target activity. High recall rate 

indicates that the majority of activities were correctly recognized by the 

algorithm. 
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3.4. Summary 

In this chapter, the framework of the proposed model was elaborated in 

details in the following order: 1) the customized dataset preparation, 2) ResNet-

based model selection, and 3) model training and validation. Based on the 

ResNet model, real world images generated from the actual construction job site 

containing multiple labels are tested for classification tasks.  
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Chapter 4. Experiment Results and Discussion 

4.1. Experiment Results 

This study constructed extensive experiments to validate the feasibility of 

the multi-label classification model. Figure 4-1 illustrates some sample images 

of multi-labels in this dataset.  

  

  

Figure 4-1. Examples of Multi-label construction images:  
1) Steel and concrete works, 2) Masonry and tile works,  

3) Steel and masonry works, and 4) Curtainwall and concrete works 

The initial model correctly identified the given construction activity class 

with the error rate of 21.9% during the validation phase. The error rate is much 

higher than that of the benchmark image classification models – approximately 
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less than 5%. By assessing the results, it was found that most of the misclassified 

error occurred with WBS Level 2 activities, in failing to distinguish images with 

smaller dataset. To resolve this discrepancy, the dataset was reassigned to WBS 

Level 2 categories and some of the image data in the WBS Level 1 categories 

was discarded as follows.    

Table 4-1. Revised Dataset Composition 

No. 
WBS Level 1 

No. 
WBS Level 2 

Activity Category No. of 
data Activity Category No. of 

data 
 

Concrete 549 
1-1 Formwork 180 

1 1-2 Rebar 182 
 1-3 Concrete Pouring 187 

2 Steel 535    
3 Curtainwall 503    

4 Masonry 521 4-1 
4-2 

Red Brick 
Concrete Block 

266 
255 

5 Tile 595    

6 Drywall 516 6-1 
6-2 

Framing and insulation 
Board installation 

259 
257 

Total No. of data : 3,219 Total No. of data : 1,586 
 

Consequently, the experiment result was improved, achieving final test 

accuracy of 91.7% as illustrated in Figure 4-2 and Figure 4-3. Although multi-

label image classification tasks included both WBS Level 1 and 2 categories, the 

result for multi-label image classification showed a superior performance overall.   
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Figure 4-2. Experiment Result: Cross-entropy Loss  

 

Figure 4-3. Experiment Result: Test Accuracy   

With the enhanced model, the model was able to improve construction 

image classification peformance in both single label and multi label 

classification, as depicted in Table 4-2.  
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Table 4-2. Examples of Correct Test Example 

Input Image Activity trade Score 

 

concrete 
steel  
masonry  
formwork  
concrete_pour  
rebar 
red_brick 
conc_block 
curtainwall 
tile 
drywall  
frame_insulation  
gypsum_board  

0.41825 
0.24857 
0.18955 
0.09871 
0.09840 
0.09650 
0.08567 
0.08347 
0.07597 
0.03703 
0.03400 
0.03234 
0.02360 

 

concrete 
concrete_pour  
masonry 
conc_block  
rebar  
tile  
curtainwall  
red_brick  
steel  
formwork  
drywall  
frame_insulation  
gypsum_board 

0.48652 
0.19819 
0.19033 
0.10578 
0.09314 
0.09173 
0.06258 
0.05781 
0.05265 
0.03307 
0.03203 
0.02658 
0.01960 

 

In short, the model was able to successfully classify the given input images 

correctly, in both single label and multi label classification. 
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4.2. Analysis of Experiment Results 

In this section, the experiment result is further discussed. In comparing the 

result of each class, tile work, concrete block of masonry work, red brick of 

masonry work, and drywall work showed higher performance, with the highest 

accuracy of 97.9%. On the other hand, rebar of concrete work, steel work, and 

concrete pour of concrete work showed lower performance with the lowest 

accuracy of 85.0%. Although the overall accuracy of the classification model 

was acceptable, some of the incorrectly classified examples exhibited the 

shortcomings of the proposed model.  

First of all, some of the incorrect results revealed that the proposed model 

suffered from the lack of understanding the hierarchical structure of the 

construction activities. The proposed model structure treats each label 

independently and is incapable of learning the correlations or dependency among 

multiple labels. Therefore, it fails to distinguish different activities possessing 

similar visual features in spite of their distinctive conditions.  

For example, as shown in Table 4-3, the model misunderstood the framing 

work for internal gypsum board installation as structural steel work, even after it 

correctly classified drywall label with the highest probability. If the model 

learned the hierarchical interaction among activities and understood the fact that 

steel structure occurred with drywall was not structural steel work but framing 
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work for drywall, the model could demonstrate higher performance.  

Table 4-3. Examples of Incorrect Test Example 

Input Image Activity trade Score 

 

drywall  
steel 
frame_insulation  
concrete  
tile 
gypsum_board  
masonry 
curtainwall 
conc_block  
concrete_pour  
red_brick  
formwork 
rebar 

0.29861 
0.17720 
0.13960 
0.11028 
0.10594 
0.10197 
0.09238 
0.08544 
0.06334 
0.06040 
0.05751 
0.05093 
0.04689 
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4.3. Summary 

In this chapter, the proposed multi-label image classification model 

performance was assessed and the result showed that multi-label classification 

task performed as reliable as the single label classification task. In the following 

section, the research summary will be elaborated.  
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Chapter 5. Conclusion 

5.1. Research Summary 

This dissertation presented a Convolutional Neural Network model to 

automatically understand the visual content of construction site images and 

assign into relevant categories accordingly. Most of the dataset included actual 

construction site photos which composed random composites of a worker, 

equipment and materials in six different work activities– concrete, steel, masonry, 

tile, drywall, and curtainwall. Due to the inherently complex nature of the 

construction site, the dataset has imposed difficulties that challenged activity 

recognition such as occlusion, randomly cropped images with multi-viewed and 

multi-scaled representations. In order to address the challenges posed to 

construction image classification task, this study conducted a series of 

experiment to select the model architecture. As a result, the experiment result 

showed an accuracy of 91%. Although this result still underperforms compared 

to the current state-of-art computer vision model in other domains, it satisfies the 

minimum acceptable range for image classification and demonstrated a 

reasonable performance for classifying construction activity image dataset with 

a wide range of appearance variance.  
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5.2. Contribution 

The contributions of this paper can be summarized as follows: 

� To the best of my knowledge, this study proposed the first multi-label 

image classification model for construction image dataset.  

� The feasibility of the state-of-the-art deep convolutional neural 

network models for comprehensive construction activity recognition 

was validated as a promising way of automatically classifying 

construction activities 

� The customized dataset can be used as a reference dataset for future 

projects. 

� From a practical standpoint of the construction industry, it can 

provide a more efficient and reliable way to classify and annotate 

construction activities, alleviating cumbersome tasks. 

� It will ultimately allow construction projects to quickly retrieve 

project-related information for various construction management 

tasks, enhancing the usability of visual data. 
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5.3. Limitations and Further Study 

Despite the effort, there are still several challenges to be further addressed in 

this study. First of all, our model structure treats each label independently and 

is incapable of learning the correlations or dependency among multiple labels. 

Some of the incorrect results revealed that the proposed model suffered from 

strong label co-occurrence dependencies. To deal with this issue, our model 

can learn the hierarchical structure among semantic elements in images based 

on the WBS. For future study, this study proposes to leverage the interactions 

and correlations among construction entities and activities by learning the 

embedded hierarchical structure of construction image dataset.  

Another limitation of the proposed model is that it failed to recognize certain 

images taken in the early phase because they did not embed with sufficient 

features to be correctly classified. For instance, early plastering work are in fact 

more like masonry work than plastering work. In order to improve this 

drawback, sequential information should be additionally provided at each 

stage.  

Table 5-1. Examples of Misclassified Early-phased Images 

 

Misclassified as plaster work Misclassified as tile work

Tile work with 
plastered wall 
presented

Plaster work with no 
plastering yet 
(only masonry work 
presented)
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In addition, the model can provide more detailed information by analyzing 

the visual contents of construction images. In future, it is planned to further 

extend the proposed method to more diverse construction entities and attributes 

at WBS Level 3.  

. 
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Appendix 

A. Test Results 

 

concrete (score = 0.41825) 
steel (score = 0.24857) 
masonry (score = 0.18955) 
formwork (score = 0.09871) 
concrete_pour (score = 0.09840) 
rebar (score = 0.09650) 
red_brick (score = 0.08567) 
conc_block (score = 0.08347) 
curtainwall (score = 0.07597) 
tile (score = 0.03703) 
drywall (score = 0.03400) 
frame_insulation (score = 0.03234) 
gypsum_board (score = 0.02360) 
 

 

concrete (score = 0.40656) 
steel (score = 0.25776) 
curtainwall (score = 0.19534) 
rebar (score = 0.07826) 
formwork (score = 0.06738) 
concrete_pour (score = 0.04545) 
masonry (score = 0.03349) 
conc_block (score = 0.02379) 
frame_insulation (score = 0.01883) 
red_brick (score = 0.01679) 
drywall (score = 0.01568) 
tile (score = 0.01034) 
gypsum_board (score = 0.00735) 
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drywall (score = 0.40170) 
tile (score = 0.22111) 
gypsum_board (score = 0.20956) 
frame_insulation (score = 0.07460) 
steel (score = 0.06819) 
masonry (score = 0.06654) 
conc_block (score = 0.04752) 
curtainwall (score = 0.04623) 
concrete (score = 0.04292) 
concrete_pour (score = 0.04126) 
red_brick (score = 0.03122) 
formwork (score = 0.01830) 
rebar (score = 0.01663) 

 

masonry (score = 0.44017) 
tile (score = 0.28679) 
conc_block (score = 0.19354) 
drywall (score = 0.16995) 
red_brick (score = 0.15141) 
frame_insulation (score = 0.08943) 
concrete (score = 0.08831) 
gypsum_board (score = 0.08215) 
steel (score = 0.04489) 
rebar (score = 0.04486) 
formwork (score = 0.04368) 
concrete_pour (score = 0.04259) 
curtainwall (score = 0.02856) 

 

tile (score = 0.33733) 
masonry (score = 0.16704) 
drywall (score = 0.11186) 
conc_block (score = 0.07686) 
curtainwall (score = 0.05583) 
red_brick (score = 0.05566) 
gypsum_board (score = 0.05124) 
frame_insulation (score = 0.04537) 
concrete (score = 0.03986) 
steel (score = 0.03503) 
concrete_pour (score = 0.02869) 
rebar (score = 0.01912) 
formwork (score = 0.01467) 
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concrete (score = 0.49792) 
concrete_pour (score = 0.22276) 
masonry (score = 0.21888) 
steel (score = 0.12300) 
curtainwall (score = 0.12252) 
red_brick (score = 0.11350) 
formwork (score = 0.10908) 
conc_block (score = 0.09902) 
drywall (score = 0.09591) 
rebar (score = 0.07315) 
frame_insulation (score = 0.06921) 
gypsum_board (score = 0.04615) 
tile (score = 0.04264) 

 

concrete (score = 0.74265) 
rebar (score = 0.27767) 
concrete_pour (score = 0.10837) 
curtainwall (score = 0.07548) 
steel (score = 0.06284) 
masonry (score = 0.06031) 
formwork (score = 0.04333) 
red_brick (score = 0.03566) 
conc_block (score = 0.03158) 
tile (score = 0.03087) 
drywall (score = 0.02391) 
frame_insulation (score = 0.02175) 
gypsum_board (score = 0.01256) 

 

concrete (score = 0.48652) 
concrete_pour (score = 0.19819) 
masonry (score = 0.19033) 
conc_block (score = 0.10578) 
rebar (score = 0.09314) 
tile (score = 0.09173) 
curtainwall (score = 0.06258) 
red_brick (score = 0.05781) 
steel (score = 0.05265) 
formwork (score = 0.03307) 
drywall (score = 0.03203) 
frame_insulation (score = 0.02658) 
gypsum_board (score = 0.01960) 
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concrete (score = 0.64867) 
formwork (score = 0.13908) 
curtainwall (score = 0.12077) 
concrete_pour (score = 0.11303) 
masonry (score = 0.08766) 
steel (score = 0.06859) 
rebar (score = 0.06656) 
red_brick (score = 0.04554) 
drywall (score = 0.03783) 
conc_block (score = 0.03758) 
frame_insulation (score = 0.03353) 
gypsum_board (score = 0.01452) 
tile (score = 0.01314) 

 

drywall (score = 0.61944) 
gypsum_board (score = 0.29135) 
frame_insulation (score = 0.24611) 
tile (score = 0.18861) 
masonry (score = 0.14780) 
curtainwall (score = 0.10933) 
red_brick (score = 0.09487) 
conc_block (score = 0.08942) 
steel (score = 0.08179) 
concrete (score = 0.07050) 
rebar (score = 0.05674) 
concrete_pour (score = 0.05427) 
formwork (score = 0.05023) 

 

masonry (score = 0.79909) 
red_brick (score = 0.48250) 
conc_block (score = 0.23826) 
concrete (score = 0.14031) 
tile (score = 0.09036) 
steel (score = 0.07966) 
formwork (score = 0.06930) 
concrete_pour (score = 0.05592) 
curtainwall (score = 0.04663) 
rebar (score = 0.04632) 
frame_insulation (score = 0.03271) 
drywall (score = 0.03251) 
gypsum_board (score = 0.02477) 
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tile (score = 0.43469) 
masonry (score = 0.29774) 
red_brick (score = 0.14484) 
concrete (score = 0.11136) 
conc_block (score = 0.09482) 
concrete_pour (score = 0.05056) 
drywall (score = 0.04592) 
curtainwall (score = 0.04362) 
steel (score = 0.04195) 
rebar (score = 0.04118) 
frame_insulation (score = 0.03573) 
formwork (score = 0.03119) 
gypsum_board (score = 0.02812) 

 

curtainwall (score = 0.56194) 
steel (score = 0.21573) 
concrete (score = 0.13461) 
drywall (score = 0.08032) 
frame_insulation (score = 0.07896) 
rebar (score = 0.07217) 
concrete_pour (score = 0.06331) 
conc_block (score = 0.05596) 
formwork (score = 0.04681) 
masonry (score = 0.04587) 
tile (score = 0.03744) 
gypsum_board (score = 0.03305) 
red_brick (score = 0.02452) 

 

curtainwall (score = 0.31085) 
concrete (score = 0.12945) 
masonry (score = 0.10183) 
steel (score = 0.07173) 
concrete_pour (score = 0.04663) 
conc_block (score = 0.04363) 
red_brick (score = 0.03372) 
tile (score = 0.02736) 
formwork (score = 0.02424) 
rebar (score = 0.02306) 
drywall (score = 0.02262) 
frame_insulation (score = 0.01783) 
gypsum_board (score = 0.01192) 
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steel (score = 0.66028) 
concrete (score = 0.33782) 
formwork (score = 0.22596) 
curtainwall (score = 0.21089) 
rebar (score = 0.09731) 
concrete_pour (score = 0.08706) 
masonry (score = 0.07868) 
red_brick (score = 0.06937) 
frame_insulation (score = 0.06039) 
conc_block (score = 0.05527) 
drywall (score = 0.04955) 
gypsum_board (score = 0.03149) 
tile (score = 0.02379) 

 

steel (score = 0.42482) 
curtainwall (score = 0.36910) 
concrete (score = 0.24988) 
formwork (score = 0.11609) 
concrete_pour (score = 0.08329) 
masonry (score = 0.05326) 
red_brick (score = 0.04416) 
rebar (score = 0.04257) 
conc_block (score = 0.03251) 
drywall (score = 0.02734) 
frame_insulation (score = 0.02664) 
tile (score = 0.02315) 
gypsum_board (score = 0.02129) 
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국 문 초 록 

건설 현장 이미지 기반  

다중 레이블 분류 자동화 

최근 이미지 분석 기술이 발전함에 따라 건설 현장에서 다양한 

방면에서 현장에서 수집된 사진을 활용하여 건설 프로젝트를 

관리하고자 하는 시도가 이루어지고 있다. 특히 촬영 장비의 

발전되자 건설 현장에서 생산되는 사진의 수가 급증하여 건설 현장 

사진의 잠재적인 활용도는 더욱 더 높아지고 있다. 하지만 이렇게 

생산되는 많은 양의 사진은 대부분 제대로 분류되지 않은 상태로 

보관되고 있기 때문에 현장 사진으로부터 필요한 프로젝트 정보를 

추출하는 것은 매우 어려운 실정이다. 현재 현장에서 사진을 

분류하는 방식은 사용자가 직접 개별 사진을 검토한 뒤 분류하기 

때문에 많은 시간과 노력이 요구되고, 이미지 분류를 위한 특징을 

직접적으로 추출하는 기존의 이미지 분석 기술 역시 복잡한 건설 

현장 사진의 특징을 범용적으로 학습하는 데는 한계가 있다.  

이에 본 연구에서는 건설 현장 사진의 모습이 매우 다양하고, 

동적으로 변하는 것에 대응하기 위해 이미지 분류에서 높은 성능을 



 

64 

 

보이고 합성곱 신경망(Deep Convolutional Neural Network) 

알고리즘을 적용하여 개별 건설 현장 사진에 적합한 키워드를 

자동으로 할당할 수 있는 모델을 개발하고자 한다. 합성곱 신경망 

모델은 모델 구조가 깊어짐에 따라 높은 차원의 항상성(invariant) 

특징도 효과적으로 학습할 수 있는 특징이 있기 때문에 복잡한 건설 

현장 사진 분류 문제에 적합하다.  

따라서 본 연구에서는 합성곱 신경망 모델을 토대로 현장에서 

필요한 사진을 빠르고 정확하게 찾을 수 있도록 각 사진에 적합한 

키워드를 자동으로 할당하는 모델을 개발하였다. 특히, 건설 현장 

사진의 대부분이 하나 이상의 레이블과 연관이 있다는 점에 

기반하여 다중 레이블 분류 모델을 적용하였다. 이를 통해 

일차적으로는 건설 사진에서 프로젝트와 관련된 다양한 정보를 

추출하여 건설 현장 사진의 활용도를 개선하고, 나아가 사진 

데이터를 활용하여 효율적인 건설 관리를 도모하고자 한다. 

본 연구의 진행 순서는 다음과 같다. 우선 모델을 학습시키기 

위해서 실제 건설 현장 및 오픈소스 검색엔진을 통하여 총 6개 

공종의 사진을 수집하고, 하위 분류 범위를 포함한 총 10개 

레이블의 데이터셋을 구성하여 학습을 진행했다. 또한 구체적인 모델 

선택을 위해 대표적인 합성곱 신경망 모델을 비교 검토하여 가장 
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우수한 성능을 보인 ResNet 18을 최종 모델로 선택했다. 실험 결과 

평균 91%의 정확도를 보이며 건설 현장 사진을 자동으로 분류할 수 

있는 가능성을 확인하였다.  

또한 본 연구는 최근 타 분야 이미지 분석에서 좋은 성과를 보인 

합성곱 신경망을 활용하여 건설 현장 사진을 자동으로 분류할 수 

있다는 가능성을 확인했다는 점과, 건설 현장 사진 분류 문제에 다중 

레이블 분류를 적용한 첫 연구라는 점에서 의의가 있다. 실제 

현장에서는 사진을 자동으로 분류할 수 있게 됨에 따라 기존에 

번거로운 수동 사진 분류 작업을 줄이고, 건설 현장 사진의 활용도를 

높일 수 있을 것으로 기대된다.  

하지만 본 연구는 각 레이블 간에 연관성이나 의존성을 고려하지 

않기 때문에 추후 연구에서는 각 사진 간의 계층적 관계를 모델에 

추가적으로 학습시켜 정확도를 높이고, 학습 레이블도 더 낮은 

단계의 키워드까지 포함하여 현장 사진으로부터 보다 다양한 정보를 

얻을 수 있도록 모델을 개선하는 것을 목표로 하고 있다.  

 

키워드: 다중 레이블 이미지 분류, 현장 사진 데이터 관리, 합성곱 

신경망 모델, 딥러닝  
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