11,068 research outputs found

    Exogenous Leukemia Inhibitory Factor Stimulates Oligodendrocyte Progenitor Cell Proliferation and Enhances Hippocampal Remyelination

    Get PDF
    New CNS neurons and glia are generated throughout adulthood from endogenous neural stem and progenitor cells. These progenitors can respond to injury, but their ability to proliferate, migrate, differentiate, and survive is usually insufficient to replace lost cells and restore normal function. Potentiating the progenitor response with exogenous factors is an attractive strategy for the treatment of nervous system injuries and neurodegenerative and demyelinating disorders. Previously, we reported that delivery of leukemia inhibitory factor (LIF) to the CNS stimulates the self-renewal of neural stem cells and the proliferation of parenchymal glial progenitors. Here we identify these parenchymal glia as oligodendrocyte (OL) progenitor cells (OPCs) and show that LIF delivery stimulates their proliferation through the activation of gp130 receptor signaling within these cells. Importantly, this effect of LIF on OPC proliferation can be harnessed to enhance the generation of OLs that express myelin proteins and reform nodes of Ranvier in the context of chronic demyelination in the adult mouse hippocampus. Our findings, considered together with the known beneficial effects of LIF on OL and neuron survival, suggest that LIF has both reparative and protective activities that make it a promising potential therapy for CNS demyelinating disorders and injuries

    Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus

    Get PDF
    The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified ?neurological disease? and ?CNS development related functions? to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.Fil: Hussain, Tabish. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Kil, Hyunsuk. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Hattiangady, Bharathi. Texas A&M Health Science Center College of Medicine; Estados UnidosFil: Lee, Jaeho. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Kodali, Maheedhar. Texas A&M Health Science Center College of Medicine; Estados UnidosFil: Shuai, Bing. Texas A&M Health Science Center College of Medicine; Estados UnidosFil: Attaluri, Sahithi. Texas A&M Health Science Center College of Medicine; Estados UnidosFil: Takata, Yoko. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Shen, Jianjun. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados UnidosFil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Shetty, Ashok K.. Texas A&M Health Science Center College of Medicine; Estados UnidosFil: Aldaz, Claudio Marcelo. University of Texas Health Science Center at Houston. University of Texas Md Anderson Cancer Center; Estados Unido
    • …
    corecore