14 research outputs found

    Sampling Large Data on Graphs

    Full text link
    We consider the problem of sampling from data defined on the nodes of a weighted graph, where the edge weights capture the data correlation structure. As shown recently, using spectral graph theory one can define a cut-off frequency for the bandlimited graph signals that can be reconstructed from a given set of samples (i.e., graph nodes). In this work, we show how this cut-off frequency can be computed exactly. Using this characterization, we provide efficient algorithms for finding the subset of nodes of a given size with the largest cut-off frequency and for finding the smallest subset of nodes with a given cut-off frequency. In addition, we study the performance of random uniform sampling when compared to the centralized optimal sampling provided by the proposed algorithms.Comment: To be presented at GlobalSIP 201

    Interpolation of Sparse Graph Signals by Sequential Adaptive Thresholds

    Full text link
    This paper considers the problem of interpolating signals defined on graphs. A major presumption considered by many previous approaches to this problem has been lowpass/ band-limitedness of the underlying graph signal. However, inspired by the findings on sparse signal reconstruction, we consider the graph signal to be rather sparse/compressible in the Graph Fourier Transform (GFT) domain and propose the Iterative Method with Adaptive Thresholding for Graph Interpolation (IMATGI) algorithm for sparsity promoting interpolation of the underlying graph signal.We analytically prove convergence of the proposed algorithm. We also demonstrate efficient performance of the proposed IMATGI algorithm in reconstructing randomly generated sparse graph signals. Finally, we consider the widely desirable application of recommendation systems and show by simulations that IMATGI outperforms state-of-the-art algorithms on the benchmark datasets in this application.Comment: 12th International Conference on Sampling Theory and Applications (SAMPTA 2017

    Local Measurement and Reconstruction for Noisy Graph Signals

    Full text link
    The emerging field of signal processing on graph plays a more and more important role in processing signals and information related to networks. Existing works have shown that under certain conditions a smooth graph signal can be uniquely reconstructed from its decimation, i.e., data associated with a subset of vertices. However, in some potential applications (e.g., sensor networks with clustering structure), the obtained data may be a combination of signals associated with several vertices, rather than the decimation. In this paper, we propose a new concept of local measurement, which is a generalization of decimation. Using the local measurements, a local-set-based method named iterative local measurement reconstruction (ILMR) is proposed to reconstruct bandlimited graph signals. It is proved that ILMR can reconstruct the original signal perfectly under certain conditions. The performance of ILMR against noise is theoretically analyzed. The optimal choice of local weights and a greedy algorithm of local set partition are given in the sense of minimizing the expected reconstruction error. Compared with decimation, the proposed local measurement sampling and reconstruction scheme is more robust in noise existing scenarios.Comment: 24 pages, 6 figures, 2 tables, journal manuscrip

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip

    A Distributed Tracking Algorithm for Reconstruction of Graph Signals

    Full text link
    The rapid development of signal processing on graphs provides a new perspective for processing large-scale data associated with irregular domains. In many practical applications, it is necessary to handle massive data sets through complex networks, in which most nodes have limited computing power. Designing efficient distributed algorithms is critical for this task. This paper focuses on the distributed reconstruction of a time-varying bandlimited graph signal based on observations sampled at a subset of selected nodes. A distributed least square reconstruction (DLSR) algorithm is proposed to recover the unknown signal iteratively, by allowing neighboring nodes to communicate with one another and make fast updates. DLSR uses a decay scheme to annihilate the out-of-band energy occurring in the reconstruction process, which is inevitably caused by the transmission delay in distributed systems. Proof of convergence and error bounds for DLSR are provided in this paper, suggesting that the algorithm is able to track time-varying graph signals and perfectly reconstruct time-invariant signals. The DLSR algorithm is numerically experimented with synthetic data and real-world sensor network data, which verifies its ability in tracking slowly time-varying graph signals.Comment: 30 pages, 9 figures, 2 tables, journal pape

    When Is network lasso accurate?

    Get PDF
    The “least absolute shrinkage and selection operator” (Lasso) method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes
    corecore